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Transferable Utility Games

A transferable utility game is a pair (N, v), where:

N = {a1, ..., an} is the set of agents

v: 2N → R is the characteristic function

for each subset of players C, v(C) is the amount that the 
members of C can earn by working together
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Coalition Structures

A partition of the agents in exaustive and disjoint coalitions

Every agent belongs to some coalition

Coalitions do not overlap 

The value is the sum of the values of the coalitions
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Problem of Interest

a4

a1

a2

a3

a5

a6

a7

a8

v({a1,a3,a5,a6}) = 9$

v({a2,a4}) = 23$

v({a7,a8}) = 12$

Input: A coalitional game

Ouput: The “optimal coalition structure”…

…that is, the structure with the greatest overall value
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Constraints on Coalition Structures

In the real world, some coalition structures might be not 

admissible, because they violate constraints induced by 

the specific semantics of the applications at hand



Constraints on Coalition Structures

In the real world, some coalition structures might be not 

admissible, because they violate constraints induced by 

the specific semantics of the applications at hand

Constraints on the interactions (e.g., physical limitations) 

[G. Demange, 2009]

Size of coalitions 

[O. Shehory and S. Kraus, 1998] 

[T. Rahwan and N. R. Jennings, 2007]

Positive and negative constraints (via a suitable language)

[T. Rahwan, T. P. Michalak, E. Elkind, P. Faliszewski, 

J. Sroka, M. Wooldridge, and N. R. Jennings, 2011]
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Independent on Disconnected Members (IDM)

[T. Voice, M. Polukarov, and N. R. Jennings, 2012] 

An interaction graph is given, and any two agents have no effect on 

each other’s marginal contribution to their separator

 i and j are not directly connected

 For each coalition C that does not include i or j, it holds that

v(C ∪ {i, j}) = v(C ∪ {i}) + v(C ∪ {j}) − v(C)

i
jC
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satisfy the condition |S ∩ C| ≤ 1 in order to be a feasible one
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Valuation Structures

A valuation structure is a tuple

They are pairwise “incompatible”, so that every coalition C must also 
satisfy the condition |S ∩ C| ≤ 1 in order to be a feasible one

S is a set of pivotal agents

If {2,4,5} is the set of pivotal agents, then

{1,2,4} is no longer a feasible coalition
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Valuation Structures

A valuation structure is a tuple

We start by focusing on IDM functions…

…but we allow a generalization to «affine transformtions» 

IDM function

In general, this is no longer an IDM one!



Clustering Problems

In the k-correlation clustering, 

the value of a clustering is the 

number of + edges within the k

clusters plus the number of –

edges among clusters

Find a k-clustering with 

maximum weight

In the chromatic clustering, the 

value of a clustering is the 

number of the weights of the 

edges within the clusters

Weigths depend on the color 

assigned to the cluster

Find a clustering with maximum 

weigth



Cut Problems

A multicut is a set of edges 

separating all source/terminal pairs: 

s1/t1, s2/t2, … 

Find a multicut whose edges have 

minimum total weight

A multiway cut is a set of edges 

separating all pair of terminals fro 

each other

Find a multiway cut whose edges 

have minimum total weight
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Related Result in the Literature

Theorem: Coalition structure generation is tractable over 

IDM functions defined over interaction graphs

that are nearly-acyclic (bounded treewidth).
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Our Main Result

Theorem: Coalition structure generation is tractable over 

IDM functions defined over interaction graphs

that are nearly-acyclic (bounded treewidth).

[T. Voice, M. Polukarov, and N. R. Jennings, 2012]

Pivotal agents

Affine trasformations from IDM functions

valuation structures and MC-nets

CSP encodings for MC-nets

novel machineries to encode connectivity



Corollaries

The following problems are tractable when restricted

over graphs having bounded treewidth:

k-clustering

chromatic clustering

multicut

multiway cut
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The core of a game is the set of all stable outcomes, 
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Summary of Results

Theorem: Computing the core is intractable. 

Theorem: The coalition structure core can be computed in 

polynomial time on valuation structures defined

over interaction graphs that are nearly-acyclic.

What happens with valuation structures?




