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Transferable Utility Games

@ A transferable utility game is a pair (N, v), where:
o N={a,, ..., a1 Is the set of agents

@ v: 2N — R is the characteristic function

e for each subset of players C, v(C) is the amount that the
members of C can earn by working together
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Coalition Structures

@ A partition of the agents in exaustive and disjoint coalitions
@ Every agent belongs to some coalition
@ Coalitions do not overlap

@ The value Is the sum of the values of the coalitions
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Problem of Interest

@ Input: A coalitional game

@ Ouput: The “optimal coalition structure™...
...that is, the structure with the greatest overall value
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Constraints on Coalition Structures

@ In the real world, some coalition structures might be not
admissible, because they violate constraints induced by
the specific semantics of the applications at hand



Constraints on Coalition Structures

@ In the real world, some coalition structures might be not
admissible, because they violate constraints induced by
the specific semantics of the applications at hand

@ Constraints on the interactions (e.g., physical limitations)
|G. Demange, 2009]

@ Size of coalitions
[O. Shehory and S. Kraus, 1998]
[T. Rahwan and N. R. Jennings, 2007]

@ Positive and negative constraints (via a suitable language)
[T. Rahwan, T. P. Michalak, E. Elkind, P. Faliszewski,
J. Sroka, M. Wooldridge, and N. R. Jennings, 2011]
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@ Even the worth function can be subject to constraints



«Constraints» on Worth Functions

@ Even the worth function can be subject to constraints

@ Independent on Disconnected Members (IDM)
[T. Voice, M. Polukarov, and N. R. Jennings, 2012]

An interaction graph is given, and any two agents have no effect on
each other’s marginal contribution to their separator

= jandj are not directly connected
= For each coalition C that does not include i or j, it holds that

v(C U, ) =v(Cu{i}) +v(C U {j}) - v(C)



Valuation Structures

@ A valuation structure is a tuple o = (G, S, a, B, z, y)
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induced over the nodes in C is connected
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satisfy the condition |S N C| < 1 in order to be a feasible one

Sis a set of pivotal agents
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Valuation Structures

@ A valuation structure is a tuple o = { Bz, y)
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Sis a set of pivotal agents

S

@ They are pairwise “incompatible”, so that every coalition C must also
satisfy the condition |S N C| < 1 in order to be a feasible one

If {2,4,5} is the set of pivotal agents, then
{1,2,4} is no longer a feasible coalition
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@ We start by focusing on IDM functions...
@ ...but we allow a generalization to «affine transformtions»
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Valuation Structures

@ A valuation structure is a tuple o = (G,

@ We start by focusing on IDM functions...
@ ...but we allow a generalization to «affine transformtions»

O{,ﬁ S = @ X,y € @

a(a;) X v(C) + Ba;) if{a;} =CNS,
{mxv(C)+y\ ifCNS =10
l IDM function

In general, this is no longer an IDM one!




Clustering Problems

In the k-correlation clustering,
the value of a clustering is the
number of + edges within the k
clusters plus the number of —
edges among clusters

Find a k-clustering with
maximum weight

In the chromatic clustering, the
value of a clustering is the
number of the weights of the
edges within the clusters

Weigths depend on the color
assigned to the cluster

Find a clustering with maximum
weigth



Cut Problems

@ A multicut is a set of edges
separating all source/terminal pairs:
S,/ty, SHlt,, ...

@ Find a multicut whose edges have
minimum total weight

3 O @ A multiway cut is a set of edges
separating all pair of terminals fro
each other

@ Find a multiway cut whose edges
have minimum total weight
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Related Result in the Literature

Theorem: Coalition structure generation is tractable over
IDM functions defined over interaction graphs
that are nearly-acyclic (bounded treewidth).

[T. Voice, M. Polukarov, and N. R. Jennings, 2012]
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Our Main Result

. Pivotal agents

. Affine trasformations from IDM functions

valuation structures and MC-nets
CSP encodings for MC-nets

novel machineries to encode connectivity




Corollaries

@ The following problems are tractable when restricted
over graphs having bounded treewidth:

@ k-clustering
@ chromatic clustering
@ multicut

@ multiway cut (
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Transferable Utility Games: Stability

The core of a game is the set of all stable outcomes,
that is, no coalition wants to deviate from

core(G) = {(CS, x) | Zi.c X, 2 v(C) for any C < N}
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Summary of Results

Theorem: Computing the core is intractable.

What happens with valuation structures?



Summary of Results

Theorem: Computing the core is intractable.

What happens with valuation structures?

Theorem: The coalition structure core can be computed in
polynomial time on valuation structures defined
over interaction graphs that are nearly-acyclic.




Thank you!




