Leggi 0-1, successioni di v.a. stazionarie in senso stretto ed introduzione alla teoria ergodica

Michele Gianfelice

a.a. 2012-2013

1 Misura sullo spazio delle successioni a valori reali

Sia $\mathbb{R}^{\mathbb{N}}$ l'insieme delle successioni a valori reali. Dato un boreliano $B \in \mathcal{B}(\mathbb{R}^n)$, sia

$$C(B) = \{ \omega \in \mathbb{R}^{\mathbb{N}} : (\omega_1, ..., \omega_n) \in B \}$$
(1)

l'insieme cilindrico (cilindro) di base $B \in \mathcal{B}(\mathbb{R}^n)$ e \mathcal{C} la σ algebra generata dagli insiemi cilindrici.

Teorema 1 (di Carathéodory) Sia Ω un insieme, \mathcal{A} un'algebra dei suoi sottoinsiemi e $\sigma(\mathcal{A})$ la più piccola σ algebra contenente \mathcal{A} . Data μ_0 una misura σ additiva su (Ω, \mathcal{A}) . Esiste un unica misura μ su $(\Omega, \sigma(\mathcal{A}))$ estensione di μ_0 , ovvero tale che $\forall A \in \mathcal{A}$, $\mu(A) = \mu_0(A)$.

Dato uno spazio misurabile (Ω, \mathcal{F}) , indichiamo con $\mathfrak{P}(\Omega, \mathcal{F})$ la collezione delle misure di probabilità su (Ω, \mathcal{F}) .

Teorema 2 (di Kolmogorov sull'estensione di misure su $(\mathbb{R}^{\mathbb{N}}, \mathcal{C})$)

Sia $\{\mathbb{P}_n\}_{n\geq 1}$, $\mathbb{P}_n\in\mathfrak{P}\left(\mathbb{R}^n,\mathcal{B}\left(\mathbb{R}^n\right)\right)$ una collezione di misure di probabilità tali che $\forall n\geq 1,\ B\in\mathcal{B}\left(\mathbb{R}^n\right)$,

$$\mathbb{P}_{n+1}\left(B\times\mathbb{R}\right) = \mathbb{P}_n\left(B\right). \tag{2}$$

Allora $\exists ! \mathbb{P} \in \mathfrak{P}(\mathbb{R}^{\mathbb{N}}, \mathcal{C}) \text{ tale che se } \forall n \geq 1, B \in \mathcal{B}(\mathbb{R}^n),$

$$\mathbb{P}\left(C\left(B\right)\right) = \mathbb{P}_n\left(B\right). \tag{3}$$

Dimostrazione: $\forall n \geq 1, B \in \mathcal{B}(\mathbb{R}^n)$, assegnamo a $\mathbb{P}(C(B))$ il valore $\mathbb{P}_n(B)$. Allora poiché, $\forall k \geq 1$,

$$C(B) = \{ \omega \in \mathbb{R}^{\mathbb{N}} : (\omega_1, ..., \omega_n) \in B, \, \omega_{n+1}, ..., \omega_{n+k} \in \mathbb{R} \}$$

$$= C\left(B \times \underbrace{\mathbb{R} \times ... \times \mathbb{R}}_{k \, volte}\right)$$
(4)

per la (2), la definizione di $\mathbb{P}(C(B))$ è indipendente dalla rappresentazione scelta di C(B), infatti

$$\mathbb{P}_n(B) = \mathbb{P}_{n+1}(B \times \mathbb{R}) = \dots = \mathbb{P}_{n+k}(B \times \mathbb{R} \times \dots \times \mathbb{R}), \ k \ge 1.$$
 (5)

Sia $\mathcal{C}\left(\mathbb{R}^{\mathbb{N}}\right)$ la collezione di tutti i cilindri $C\left(B\right)$ al variare di $n \geq 1$ e $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. È facile vedere che $\mathcal{C}\left(\mathbb{R}^{\mathbb{N}}\right)$ è un algebra. Dato $k \geq 2$ e $A_{1},...,A_{k} \in \mathcal{C}\left(\mathbb{R}^{\mathbb{N}}\right)$ disgiunti, $\exists n \geq 1$ e $B_{1},...,B_{k} \in \mathbb{R}^{n}$ boreliani disgiunti tale che $A_{i} = C\left(B_{i}\right),\ i = 1,...,k$. Allora,

$$\mathbb{P}\left(\bigcup_{i=1}^{k} A_{i}\right) = \mathbb{P}\left(\bigcup_{i=1}^{k} C\left(B_{i}\right)\right) = \mathbb{P}\left(C\left(\bigcup_{i=1}^{k} B_{i}\right)\right) = \sum_{i=1}^{k} \mathbb{P}_{n}\left(B_{i}\right)$$

$$= \sum_{i=1}^{k} \mathbb{P}\left(C\left(B_{i}\right)\right) = \sum_{i=1}^{k} \mathbb{P}\left(A_{i}\right),$$
(6)

ovvero \mathbb{P} è finitamente additiva sull'algebra $\mathcal{C}\left(\mathbb{R}^{\mathbb{N}}\right)$. Se \mathbb{P} è anche σ additiva su $\mathcal{C}\left(\mathbb{R}^{\mathbb{N}}\right)$ allora la tesi segue dal teorema precedente. A tal fine è sufficiente dimostrare che, per una generica successione di elementi di $\mathcal{C}\left(\mathbb{R}^{\mathbb{N}}\right)$, $\{C\left(B_{n}\right)\}_{n\geq1}$ tale che $C\left(B_{n}\right)\downarrow\emptyset$, $\mathbb{P}\left(C\left(B_{n}\right)\right)\underset{n\to\infty}{\longrightarrow}0$. Supponiamo il contrario, ovvero $\lim_{n\to\infty}\mathbb{P}\left(C\left(B_{n}\right)\right)=\delta>0$. Poiché $\forall n\geq1$, $B_{n}\in\mathcal{B}\left(\mathbb{R}^{n}\right)$, dato $\delta>0$ esiste $A_{n}\subseteq B_{n}$ compatto tale che $\mathbb{P}_{n}\left(B_{n}\backslash A_{n}\right)\leq\frac{\delta}{2^{n+1}}$, allora,

$$\mathbb{P}\left(C\left(B_{n}\right)\backslash C\left(A_{n}\right)\right) = \mathbb{P}_{n}\left(B_{n}\backslash A_{n}\right) \leq \frac{\delta}{2^{n+1}}.$$
(7)

Sia $\bar{C}_n := \bigcap_{k=1}^n C(A_k)$ e sia D_n tale che $\bar{C}_n = C(D_n)$. Poiché $\{C(B_n)\}_{n\geq 1}$ è decrescente, si

$$\mathbb{P}\left(C\left(B_{n}\right)\backslash C\left(D_{n}\right)\right) \leq \sum_{k=1}^{n} \mathbb{P}\left(C\left(B_{n}\right)\backslash C\left(A_{k}\right)\right) = \sum_{k=1}^{n} \mathbb{P}\left(C\left(B_{n}\backslash A_{k}\right)\right)$$

$$\leq \sum_{k=1}^{n} \frac{\delta}{2^{k+1}} = \frac{\delta}{2},$$
(8)

ma per ipotesi $\lim_{n\to\infty} \mathbb{P}(C(B_n)) = \delta > 0$ e quindi $\lim_{n\to\infty} \mathbb{P}(C(D_n)) \geq \frac{\delta}{2} > 0$. Ma ciò contraddice l'ipotesi che $C(D_n) \downarrow \emptyset$. Infatti, $\forall n \geq 1$ sia $x^{(n)} \in C(D_n)$, allora $\left(x_1^{(n)}, ..., x_n^{(n)}\right) \in D_n$. Inoltre, poiché D_1 è compatto, esiste una sottosuccessione $\{n_1\}$ di $\{n\}$ tale che $x_1^{(n_1)} \to x_1^0 \in D_1$. Allo stesso modo è possibile scegliere $\{n_2\} \subseteq \{n_1\}$ tale che $\left(x_1^{(n_2)}, x_2^{(n_2)}\right) \to (x_1^0, x_2^0) \in D_2$. Iterando questa costruzione si ha

$$\forall k \ge 1, \left(x_1^{(n_k)}, ..., x_k^{(n_k)}\right) \to \left(x_1^0, ..., x_k^0\right) \in D_k. \tag{9}$$

Considerando la sottosuccessione diagonale $\{m_k\}$ segue che $\forall i \geq 1, x_i^{(m_k)} \rightarrow x_i^0$ e $(x_1^0, ...) \in C(D_n) \ \forall n \geq 1$ contrariamente all'ipotesi che $C(D_n) \downarrow \varnothing$.

2 Leggi 0-1 per successioni di v.a. indipendenti

Sia $\{\xi_i\}_{i\geq 1}$ una successione di v.a. definita sullo spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$ e, $\forall n\geq 1$, siano

• \mathcal{F}_n la σ algebra generata dalla collezione di v.a. $\{\xi_i\}_{i=1}^n$, ovvero quella generata dalla collezione di eventi di \mathcal{F} :

$$\{\omega \in \Omega : (\xi_1(\omega), ..., \xi_n(\omega)) \in B\} \quad B \in \mathcal{B}(\mathbb{R}^n) ; \tag{10}$$

• \mathcal{F}^n la σ algebra generata dalla collezione di v.a. $\{\xi_i\}_{i\geq 1}$, ovvero quella generata dalla collezione di eventi di \mathcal{F} :

$$\{\omega \in \Omega : (\xi_n(\omega), \xi_{n+1}(\omega), ..) \in B\} \quad B \in \mathcal{C}.$$
(11)

La σ algebra

$$\mathcal{T} := \bigcap_{n>1} \mathcal{F}^n \tag{12}$$

è detta σ algebra di coda. Ne segue che $\forall n \geq 1$, se gli elementi della successione $\{\xi_i\}_{i\geq 1}$ sono v.a. indipendenti, ogni evento $A \in \mathcal{T}$ è indipendente da $\{\xi_i\}_{i=1}^n$.

Teorema 3 (Legge 0-1 di Kolmogorov) Sia $\{\xi_i\}_{i\geq 1}$ una successione di v.a. indipendenti definita sullo spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P}) \cdot \forall A \in \mathcal{T}, \mathbb{P}(A)$ può assumere soltanto i valori zero e uno.

Dimostrazione: Sia $A \in \mathcal{T}$. Allora, $A \in \mathcal{F}^1$ e pertanto $\exists A_n \in \mathcal{F}_n$ tale che

$$\lim_{n \to \infty} \mathbb{P}(A \triangle A_n) = 0, \tag{13}$$

ovvero

$$\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n) , \qquad (14)$$

ma allora

$$\lim_{n\to\infty} \mathbb{P}\left(A\cap A_n\right) = \mathbb{P}\left(A\right) .$$

Poiché per ipotesi $A \in \mathcal{T}$, A e A_n sono indipendenti, $\forall n \geq 1$, $\mathbb{P}(A \cap A_n) = \mathbb{P}(A)\mathbb{P}(A_n)$ che tende a $\mathbb{P}^2(A)$ per $n \to \infty$. Dunque, vale $\mathbb{P}(A) = \mathbb{P}^2(A)$.

Corollario 4 Nelle ipotesi del teorema precedente, una v.a. η definita su $(\Omega, \mathcal{F}, \mathbb{P})$ e misurabile rispetto a \mathcal{T} è degenere, ovvero $\exists c \in \mathbb{R} : \eta = c \, \mathbb{P}$ -q.c..

Dimostrazione: Poiché η è \mathcal{T} -misurabile, $\forall x \in \mathbb{R}$, $\{\omega \in \Omega : \eta(\omega) \leq x\} \in \mathcal{T}$. Quindi,

$$\mathbb{P}\{\omega \in \Omega : \eta(\omega) \le x\} = F_n(x) \tag{15}$$

può assumere soltanto i valori 0 e 1. Sia

$$c := \inf\{x \in \mathbb{R} : F_n(x) = 1\}. \tag{16}$$

Allora, $\forall \varepsilon > 0$,

$$\mathbb{P}\{\omega \in \Omega : c - \varepsilon < \eta(\omega) \le c + \varepsilon\} = F_n(c + \varepsilon) - F_n(c - \varepsilon) = 1, \tag{17}$$

cioè la tesi. ■

Definizione 5 Un'applicazione $\mathbb{N} \ni n \longmapsto \sigma_n \in \mathbb{N}$ è detta permutazione finita se $\sigma_n = n$ salvo un numero finito di elementi di \mathbb{N} . Sia quindi, per ogni permutazione finita σ ,

$$\mathbb{R}^{\mathbb{N}} \ni x \longmapsto \mathbf{T}_{\sigma} x = \{x_{\sigma_n}\}_{n \ge 1} \in \mathbb{R}^{\mathbb{N}} . \tag{18}$$

 $e \ \forall B \in \mathcal{C}$

$$\mathbf{T}_{\sigma}^{-1}(B) := \left\{ x \in \mathbb{R}^{\mathbb{N}} : \mathbf{T}_{\sigma} x \in B \right\} . \tag{19}$$

Data $\xi := \{\xi_i\}_{i \geq 1}$ una successione di v.a. definite su uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$, $\forall B \in \mathcal{C}$, sia

$$A_B := \{ \omega \in \Omega : \xi(\omega) \in B \}, \tag{20}$$

e, posto $\mathbf{T}_{\sigma}(\xi) := \{\xi_{\sigma_i}\}_{i \geq 1}$, sia

$$A_{\mathbf{T}_{\sigma}^{-1}(B)} := \{ \omega \in \Omega : \mathbf{T}_{\sigma}(\xi)(\omega) \in B \}.$$
(21)

Definizione 6 Ogni evento $A \in \mathcal{F}$ è detto simmetrico se $\exists B \in \mathcal{C}$ tale che $A = A_B$ e per ogni permutazione finita $\sigma, A_B = A_{\mathbf{T}_{\sigma}^{-1}(B)}$.

Teorema 7 (Legge 0-1 di Hewitt-Savage) Sia $\xi := \{\xi_i\}_{i \geq 1}$ una successione di v.a.i.i.d.. Ogni evento simmetrico ha probabilità zero o uno.

Dimostrazione: Sia A un evento simmetrico e sia quindi $B \in \mathcal{C}$ tale che $A = A_B$. Sia $B_n \in \mathcal{B}(\mathbb{R}^n)$ tale che, se

$$A_n := A_{C(B_n)} = \{ \omega \in \Omega : (\xi_1(\omega), ..., \xi_n(\omega)) \in B_n \}, \tag{22}$$

 $\lim_{n\to\infty} \mathbb{P}(A\triangle A_n) = 0$. Poiché le ξ_i sono v.a.i.i.d., per ogni permutazione finita σ ,

$$\mathbb{P}(A_n) = \mathbb{P}_{\xi}(C(B_n)) = \mathbb{P}_{\mathbf{T}_{\sigma}(\xi)}(C(B_n)). \tag{23}$$

Dunque,

$$\mathbb{P}(A\triangle A_n) = \mathbb{P}(A_B\triangle A_n) = \mathbb{P}_{\xi}(B\triangle C(B_n)) = \mathbb{P}_{\mathbf{T}_{\sigma}(\xi)}(B\triangle C(B_n))
= \mathbb{P}(\{\omega \in \Omega : \mathbf{T}_{\sigma}(\xi)(\omega) \in B\}\triangle\{\omega \in \Omega : \mathbf{T}_{\sigma}(\xi)(\omega) \in C(B_n)\})
= \mathbb{P}(\{\omega \in \Omega : \xi(\omega) \in B\}\triangle\{\omega \in \Omega : \mathbf{T}_{\sigma}(\xi)(\omega) \in C(B_n)\})
= \mathbb{P}(A\triangle A_{\mathbf{T}_{\sigma}^{-1}(C(B_n))}).$$
(24)

Allora, $\lim_{n\to\infty} \mathbb{P}\left(A\triangle A_{\mathbf{T}_{\sigma}^{-1}(C(B_n))}\right) = 0$, ovvero $\lim_{n\to\infty} \mathbb{P}\left(A_{\mathbf{T}_{\sigma}^{-1}(C(B_n))}\right) = \mathbb{P}(A)$, il che implica

$$\lim_{n \to \infty} \mathbb{P}\left(A_n \cap A_{\mathbf{T}_{\sigma}^{-1}(C(B_n))}\right) = \mathbb{P}\left(A\right). \tag{25}$$

Scelta la permutazione finita σ tale che, $\sigma_i = 2n - i + 1$ per i = 1, ..., n e $\sigma_i = i \forall i \geq n + 1$,

$$\mathbb{P}\left(A_n \cap A_{\mathbf{T}_{\sigma}^{-1}(C(B_n))}\right) = \mathbb{P}\left(\left\{\omega \in \Omega : \left(\xi_1(\omega), ..., \xi_n(\omega)\right) \in B_n\right\} \cap \left\{\omega \in \Omega : \left(\xi_{2n}(\omega), ..., \xi_{n+1}(\omega)\right) \in B_n\right\}\right),$$

ma poiché le ξ_i sono v.a.i.i.d.,

$$\mathbb{P}\left(A_n \cap A_{\mathbf{T}_{\sigma}^{-1}(C(B_n))}\right) = \mathbb{P}\left(A_n\right) \mathbb{P}\left(A_{\mathbf{T}_{\sigma}^{-1}(C(B_n))}\right) = \mathbb{P}^2\left(A_n\right) \underset{n \to \infty}{\longrightarrow} \mathbb{P}^2\left(A\right). \tag{26}$$

Perciò $\forall A \in \mathcal{F}$ simmetrico $\mathbb{P}(A) = \mathbb{P}^2(A)$.

Osservazione 8 $Se \{\xi_i\}_{i\geq 1}$ una successione di v.a. indipendenti definita sullo spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$, sia $\{S_n\}_{n\geq 1}$ la successione di v.a. tale che $\forall n\geq 1$, $S_n:=\sum_{k=1}^n \xi_n$. Allora, se χ^n è la σ algebra generata dalle v.a. $\{S_m\}_{m\geq n}$, ogni evento $A\in \mathcal{T}(S):=\bigcap_{n\geq 1}\chi^n$ è invariante per permutazioni finite, quindi, se le ξ_i sono v.a.i.i.d., $\mathbb{P}(A)$ assume soltanto i valori 0 e 1. È altrettanto vero che ogni evento $A\in \mathcal{T}$ essendo indipendente dai valori assunti da $\xi_1,...,\xi_n, \forall n\geq 1$, è invariante per permutazioni finite. Quindi la Legge 0-1 di Kolmogorov nel caso di una successione di v.a.i.i.d., risulta essere un corollario di quella di Hewitt-Savage.

3 Successioni di v.a. stazionarie (in senso stretto)

Sia $\mathbb{R}^{\mathbb{N}} \ni u \longmapsto \mathbf{S}u \in \mathbb{R}^{\mathbb{N}}$ l'applicazione tale che $\forall i \geq 1, \ (\mathbf{S}u)_i = u_{i+1} \in \forall B \in \mathcal{C}$ sia

$$\mathbf{S}^{-1}B := \{ u \in \mathbb{R}^{\mathbb{N}} : \mathbf{S}u \in B \}. \tag{27}$$

Dunque, $\forall n \geq 2, \mathbf{S}^{-n}B = \mathbf{S}^{-1}\left(\mathbf{S}^{-(n-1)}B\right)$. Inoltre, se $B \in \mathcal{C}$, da (20) segue che, $\forall n \geq 1$,

$$A_{\mathbf{S}^{-n}B} = \{ \omega \in \Omega : \mathbf{S}^n \xi (\omega) \in B \} . \tag{28}$$

Definizione 9 Sia $\xi = \{\xi_i\}_{i\geq 1}$ una successione di v.a. definita sullo spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$. Un evento $A \in \mathcal{F}$ è detto invariante relativamente alla successione ξ se $\exists B \in \mathcal{C}$ tale che $\forall n \geq 1$

$$A := \{ \omega \in \Omega : \mathbf{S}^n \xi (\omega) \in B \}. \tag{29}$$

Sia inoltre \mathcal{I} la σ algebra generata dalla collezione di tali insiemi.

Definizione 10 Una v.a. η definita sullo spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$ è detta invariante relativamente alla successione ξ se è \mathcal{I} misurabile, ovvero se esiste una v.a. φ definita su $(\mathbb{R}^{\mathbb{N}}, \mathcal{C})$ tale che $\eta = \varphi \circ \xi = \varphi \circ \mathbf{S}\xi$.

Definizione 11 Una successione di v.a. $\xi = \{\xi_i\}_{i\geq 1}$ definita su $(\Omega, \mathcal{F}, \mathbb{P})$ è detta stazionaria (in senso stretto, rispetto a \mathbb{P}) se $\forall B \in \mathcal{C}$, $n \geq 1 \, \mathbb{P} (A_B) = \mathbb{P} (A_{\mathbf{S}^{-n}B})$.

Definizione 12 Una successione di v.a. $\xi = \{\xi_i\}_{i\geq 1}$ definita su $(\Omega, \mathcal{F}, \mathbb{P})$, stazionaria, è detta ergodica (rispetto a \mathbb{P}) se, $\forall A \in \mathcal{F}$ invariante rispetto a ξ , $\mathbb{P}(A)$ può assumere solo i valori zero e uno.

Proposizione 13 Ogni evento invariante per la successione di v.a. $\xi = \{\xi_i\}_{i\geq 1}$ definita su $(\Omega, \mathcal{F}, \mathbb{P})$ appartiene alla σ algebra di coda.

Dimostrazione: $\mathcal{T} = \bigcap_{n\geq 1} \mathcal{F}^n$, ma \mathcal{F}^n è la σ algebra generata dalla successione $\mathbf{S}^n \xi$ quindi $\mathcal{T} = \bigcap_{n\geq 1} \mathbf{S}^{-n} \mathcal{F}_{\xi}$ con $\mathcal{F}_{\xi} \subseteq \mathcal{F}$ la σ algebra generata dalla collezione d'insiemi $\{A_B\}_{B\in\mathcal{C}}$. Poiché se A è invariante, per definizione $\exists B \in \mathcal{C}$ tale che $\forall n \geq 1$,

$$A = \{ \omega \in \Omega : \mathbf{S}^n \xi \in B \}, \tag{30}$$

 $A \in \mathbf{S}^{-n} \mathcal{F}_{\xi} = \mathcal{F}^n$.

Osservazione 14 Se $\xi = \{\xi_i\}_{i\geq 1}$ è una successione di v.a.i.i.d., ξ è stazionaria in senso stretto. Quindi, poiché la σ algebra degli insiemi invarianti è contenuta nella σ algebra di coda, l'ergodicità della successione ξ seque dalla Legge 0-1 di Kolmogorov.

Teorema 15 (Ergodico massimale) Sia $\xi = \{\xi_i\}_{i\geq 1}$ una successione di v.a. definite sullo spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$ stazionaria e tale che $\xi_1 \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Sia $\forall n \geq 1$, $S_n := \sum_{k=1}^n \xi_k$ e $M_n := \max\{0, S_1, ..., S_n\}$. Allora,

$$\mathbb{E}\left[\xi_1 \mathbf{1}_{\{\omega \in \Omega: M_n(\omega) > 0\}}\right] \ge 0. \tag{31}$$

Dimostrazione: Poiché $\forall n \geq 1$ sia M_n che S_n dipendono soltanto dal vettore aleatorio $(\xi_1, ..., \xi_n)$, siano \bar{M}_n, \bar{S}_n variabili aleatorie su $(\mathbb{R}^{\mathbb{N}}, \mathcal{C})$ tali che $M_n = \bar{M}_n \circ \xi, S_n = \bar{S}_n \circ \xi$. Allora, $\forall 1 \leq k \leq n$,

$$\bar{M}_n \circ \mathbf{S}\xi \ge \bar{S}_k \circ \mathbf{S}\xi$$
 (32)

Perciò

$$\xi_1 + \bar{M}_n \circ \mathbf{S}\xi \ge \bar{S}_k \circ \mathbf{S}\xi + \xi_1 = \bar{S}_{k+1} \circ \xi . \tag{33}$$

Quindi,

$$\xi_1 \ge \xi_1 - \bar{M}_n \circ \mathbf{S}\xi = \bar{S}_1 \circ \xi - \bar{M}_n \circ \mathbf{S}\xi \ . \tag{34}$$

Allora

$$\xi_1 \ge \max\left\{\bar{S}_1 \circ \xi, ..., \bar{S}_n \circ \xi\right\} - \bar{M}_n \circ \mathbf{S}\xi \tag{35}$$

e

$$\mathbb{E}\left[\xi_{1}\mathbf{1}_{\{\omega\in\Omega:M_{n}(\omega)>0\}}\right] \geq \mathbb{E}\left[\left(\max\left\{\bar{S}_{1}\circ\xi,..,\bar{S}_{n}\circ\xi\right\} - \bar{M}_{n}\circ\mathbf{S}\xi\right)\mathbf{1}_{\{\omega\in\Omega:M_{n}(\omega)>0\}}\right].$$
 (36)

Ma

$$\max \left\{ \bar{S}_1 \circ \xi, ..., \bar{S}_n \circ \xi \right\} \mathbf{1}_{\{\omega \in \Omega: M_n(\omega) > 0\}} = \bar{M}_n \circ \xi . \tag{37}$$

Quindi,

$$\mathbb{E}\left[\xi_{1}\mathbf{1}_{\{\omega\in\Omega:M_{n}(\omega)>0\}}\right] \geq \mathbb{E}\left[\left(\bar{M}_{n}\circ\xi - \bar{M}_{n}\circ\mathbf{S}\xi\right)\mathbf{1}_{\{\omega\in\Omega:M_{n}(\omega)>0\}}\right]$$

$$\geq \mathbb{E}\left[\left(\bar{M}_{n}\circ\xi - \bar{M}_{n}\circ\mathbf{S}\xi\right)\right] = 0$$
(38)

poiché dato che ξ è stazionaria $\xi \stackrel{d}{=} \mathbf{S}\xi$.

Teorema 16 (Ergodico per successioni di v.a. stazionarie) Sia $\xi = \{\xi_i\}_{i\geq 1}$ una successione di v.a. definite sullo spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$ ergodica rispetto a \mathbb{P} , tale che $\xi_1 \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Allora, la successione di v.a. $\left\{\frac{S_n}{n}\right\}_{n\geq 1}$ tale che, $\forall n \geq 1, S_n := \sum_{k=1}^n \xi_k$, converge a $\mathbb{E}[\xi_1]$ \mathbb{P} -q.c..

Dimostrazione: Siano $\overline{\eta} := \overline{\lim}_n \left(\frac{S_n}{n} - \mathbb{E} \left[\xi_1 | \mathcal{I} \right] \right)$ e $\underline{\eta} := \underline{\lim}_n \left(\frac{S_n}{n} - \mathbb{E} \left[\xi_1 | \mathcal{I} \right] \right)$. Poiché $\overline{\eta}$ è invariante, ovvero è \mathcal{I} misurabile, $\forall \varepsilon > 0, A_{\varepsilon} := \{ \omega \in \Omega : \overline{\eta} \left(\overline{\omega} \right) > \varepsilon \}$ è invariante. Definiamo $\forall i \geq 1$

$$\xi_i^* := (\xi_i - \mathbb{E}\left[\xi_1 | \mathcal{I}\right] - \varepsilon) \mathbf{1}_{A_{\varepsilon}} \tag{39}$$

e poniamo

$$S_k^* := \sum_{l=1}^k \xi_l^* , \qquad M_n^* := \max\{0, S_1^*, ..., S_n^*\} . \tag{40}$$

Allora, poiché $M_n^* \leq M_{n+1}^*$,

$$\{\omega \in \Omega : M_n^*(\omega) > 0\} \subseteq \{\omega \in \Omega : M_{n+1}^*(\omega) > 0\} , \qquad (41)$$

dunque,

$$\lim_{n \to \infty} \left\{ \omega \in \Omega : M_n^*(\omega) > 0 \right\} = \left\{ \omega \in \Omega : \sup_{n \ge 1} S_n^*(\omega) > 0 \right\}$$

$$= \left\{ \omega \in \Omega : \sup_{n \ge 1} \frac{S_n^*(\omega)}{n} > 0 \right\} = \left\{ \omega \in \Omega : \sup_{n \ge 1} \frac{S_n(\omega)}{n} - \mathbb{E}\left[\xi_1 | \mathcal{I}\right] > \varepsilon \right\} \cap A_{\varepsilon}$$

ma, poiché

$$\sup_{n\geq 1} \frac{S_n\left(\omega\right)}{n} \geq \inf_{k\geq 1} \sup_{n>k} \frac{S_n\left(\omega\right)}{n} = \overline{\eta} + \mathbb{E}\left[\xi_1 | \mathcal{I}\right],\tag{42}$$

allora

$$\left\{\omega \in \Omega : \sup_{n \ge 1} \frac{S_n(\omega)}{n} - \mathbb{E}\left[\xi_1 | \mathcal{I}\right] > \varepsilon\right\} \supseteq A_{\varepsilon} \tag{43}$$

perciò

$$\lim_{n \to \infty} \left\{ \omega \in \Omega : M_n^*(\omega) > 0 \right\} = A_{\varepsilon} . \tag{44}$$

Inoltre, poiché $\xi_1 \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, anche $\xi_1^* \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ dato che, $\mathbb{E}[|\xi_1^*|] \leq \mathbb{E}[|\xi_1|] + \varepsilon$. Pertanto, per il Teorema ergodico massimale, $\forall n \geq 1, \mathbb{E}\left[\xi_1^*\mathbf{1}_{\{\omega \in \Omega: M_n^*(\omega) > 0\}}\right] \geq 0$. Dunque, poiché $A_{\varepsilon} \in \mathcal{I}$,

$$0 \leq \lim_{n \to \infty} \mathbb{E}\left[\xi_1^* \mathbf{1}_{\{\omega \in \Omega: M_n^*(\omega) > 0\}}\right] = \mathbb{E}\left[\xi_1^* \mathbf{1}_{A_{\varepsilon}}\right] = \mathbb{E}\left[\left(\xi_1 - \mathbb{E}\left[\xi_1 | \mathcal{I}\right] - \varepsilon\right) \mathbf{1}_{A_{\varepsilon}}\right]$$

$$= \mathbb{E}\left[\xi_1 \mathbf{1}_{A_{\varepsilon}} - \mathbb{E}\left[\xi_1 \mathbf{1}_{A_{\varepsilon}} | \mathcal{I}\right]\right] - \varepsilon \mathbb{P}\left(A_{\varepsilon}\right) = -\varepsilon \mathbb{P}\left(A_{\varepsilon}\right) ,$$

$$(45)$$

ovvero $\forall \varepsilon > 0, \mathbb{P}(A_{\varepsilon}) = 0$, il che implica $\overline{\eta} \leq 0$ P-q.c..

Considerando al posto di ξ , la successione $\{-\xi_i\}_{i\geq 1}$ si ha che

$$\overline{\lim}_{n} \left(\left(-\frac{S_{n}}{n} \right) + \mathbb{E}\left[\xi_{1} | \mathcal{I} \right] \right) = -\underline{\eta}$$
(46)

da cui segue $-\eta \leq 0$ P-q.c., cio
è $\eta \geq 0$ P-q.c.. Quindi, $0 \leq \eta \leq \overline{\eta} \leq 0$ P-q.c., ovvero

$$\lim_{n \to \infty} \frac{S_n}{n} = \mathbb{E}\left[\xi_1 | \mathcal{I}\right] \mathbb{P}\text{-q.c.},\tag{47}$$

ma poiché la successione è ergodica, $\mathbb{E}\left[\xi_1|\mathcal{I}\right] = \mathbb{E}\left[\xi_1\right]$ \mathbb{P} -q.c..

3.1 Introduzione alla teoria ergodica

Definizione 17 Sia (Ω, \mathcal{F}) uno spazio misurabile. Un'applicazione $T: \Omega \longrightarrow \Omega$ è detta misurabile se, $\forall A \in \mathcal{F}$,

$$T^{-1}A := \{ \omega \in \Omega : T\omega \in A \} \in \mathcal{F} . \tag{48}$$

Definizione 18 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità. Un'applicazione $T : \Omega \longrightarrow \Omega$ è detta preservare la misura se è misurabile e se $\forall A \in \mathcal{F}$,

$$\mathbb{P}(A) = \mathbb{P}\left(T^{-1}A\right) , \tag{49}$$

ovvero se per ogni v.a. η definita su $(\Omega, \mathcal{F}, \mathbb{P})$ si ha $\mathbb{E}[\eta] = \mathbb{E}[\eta \circ T]$.

Proposizione 19 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità, η una v.a. su di esso definita $e \ T : \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura. Ponendo per $k = 1, \xi_1 := \eta \ e, \forall k \geq 2, \xi_k := \eta \circ T^{k-1}$, la successione di v.a. $\xi = \{\xi_k\}_{k \geq 1}$ è stazionaria.

Dimostrazione: $\forall B \in \mathcal{C}$,

$$A_{\mathbf{S}^{-1}B} = \{ \omega \in \Omega : \mathbf{S}\xi(\omega) \in B \} = \{ \omega \in \Omega : \xi(T\omega) \in B \} . \tag{50}$$

Pertanto, $\omega \in A_{\mathbf{S}^{-1}B} \iff T\omega \in A_B$, ovvero $A_{\mathbf{S}^{-1}B} = T^{-1}A_B$. Ma siccome T preserva la misura $\mathbb{P}(A_{\mathbf{S}^{-1}B}) = \mathbb{P}(T^{-1}A_B) = \mathbb{P}(A_B)$. Ripetendo questo argomento per $A_{\mathbf{S}^{-k}B}$ con $k \geq 2$ si ha la tesi. \blacksquare

Proposizione 20 Sia ζ una successione di v.a. stazionaria definita su uno spazio di probabilità $(\Xi, \mathcal{X}, \mathbb{Q})$. Allora si può costruire uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$, una v.a. η su di esso definita e un'applicazione $T: \Omega \longrightarrow \Omega$ che preserva la misura tale che la successione di v.a. ξ , definita su $(\Omega, \mathcal{F}, \mathbb{P})$ come nella proposizione precedente coincide con ζ in distribuzione.

Dimostrazione: Poniamo $\Omega := \mathbb{R}^{\mathbb{N}}, \mathcal{F} := \mathcal{C}, \mathbb{P} := \mathbb{Q} \circ \zeta^{-1}, T := \mathbf{S} \in \eta \text{ tale che } \mathbb{R}^{\mathbb{N}} \ni u \longmapsto \eta(u) := u_1 \in \mathbb{R}.$ Allora $\forall n \geq 1$ e ogni $B \in \mathcal{B}(\mathbb{R}^n)$,

$$T^{-1}C(B) = \{\omega \in \Omega : \mathbf{S}\omega \in C(B)\} = \{\omega \in \Omega : (\omega_2, ..., \omega_{n+1}) \in B\}$$

$$= \{\omega \in \Omega : ((\eta \circ T)(\omega), ..., (\eta \circ T^n)(\omega)) \in B\}$$

$$= \{\omega \in \Omega : (\xi_2(\omega), ..., \xi_{n+1}(\omega)) \in B\}.$$
(51)

Poiché ζ è stazionaria si ha

$$\mathbb{P}\left(C\left(B\right)\right) = \mathbb{Q}\left\{x \in \Xi : \left(\zeta_{1}\left(x\right), ..., \zeta_{n}\left(x\right)\right) \in B\right\}$$

$$= \mathbb{Q}\left\{x \in \Xi : \left(\zeta_{2}\left(x\right), ..., \zeta_{n+1}\left(x\right)\right) \in B\right\} = \mathbb{P}\left(T^{-1}C\left(B\right)\right),$$

$$(52)$$

ovvero T preserva la misura. Inoltre, siccome $\forall n \geq 1$ e ogni $B \in \mathcal{B}(\mathbb{R}^n)$,

$$\mathbb{P}(C(B)) = \mathbb{P}\left\{\omega \in \Omega : (\xi_1(\omega), ..., \xi_n(\omega)) \in B\right\} =$$

$$\mathbb{Q}\left\{x \in \Xi : (\zeta_1(x), ..., \zeta_n(x)) \in B\right\},$$
(53)

 $\zeta \stackrel{d}{=} \xi$.

Esempio 1 Un esempio di trasformazione che preserva la misura è il flusso di fase hamiltoniano che, per il Teorema di Liouville, conserva la misura di Lebesgue nello spazio delle fasi.

Teorema 21 (di ricorrenza di Poincaré) Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità, $T : \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura e $A \in \mathcal{F}$. Allora, \mathbb{P} -q.c. se $\omega \in A, T^n \omega \in A$ per infiniti valori di $n \geq 1$.

Dimostrazione: Sia

$$N_{0}(A) := \{ \omega \in A : T^{n} \omega \notin A, \forall n \geq 1 \} = \bigcap_{n \geq 1} A \setminus \{ \omega \in A : T^{n} \omega \in A \}$$

$$= A \setminus \bigcup_{n \geq 1} \{ \omega \in \Omega : \omega \in A, \ T^{n} \omega \in A \}$$

$$(54)$$

l'insieme degli elementi di A la cui immagine sotto le trasformazioni della famiglia $\{T^n\}_{n\geq 1}$ non appartiene ad A. Siccome $\forall n\geq 1, N_0\left(A\right)\cap T^{-n}N_0\left(A\right)=\varnothing$, allora, $\forall m\geq 1$,

$$T^{-m}N_0(A) \cap T^{-(m+n)}N_0(A) = \varnothing$$
 (55)

Siccome T preserva la misura $\{T^{-n}N_0\left(A\right)\}_{n\geq 1}$ è una successione d'insiemi disgiunti di uguale misura

$$\sum_{n\geq 1} \mathbb{P}\left(N_0\left(A\right)\right) = \mathbb{P}\left(N_0\left(A\right)\right) + \sum_{n\geq 1} \mathbb{P}\left(T^{-n}N_0\left(A\right)\right) \leq \mathbb{P}\left(\Omega\right) = 1 , \qquad (56)$$

ovvero $\mathbb{P}(N_0(A)) = 0$. Quindi, per \mathbb{P} -quasi ogni $\omega \in A, T^n \omega \in A$ per almeno un $n \geq 1$. Questo argomento si può ripetere sostituendo $T^k A$ ad $A, \forall k \geq 1$. Pertanto, poiché posto $\forall k \geq 1, N_k(A) := N(T^k A), \mathbb{P}(N_k(A)) = 0$, quindi $\forall \omega \in A \setminus N(A)$, dove $N(A) := \bigcup_{k \geq 0} N_k(A), \forall m \geq 1, \exists n_m \geq 1$ tale che $(T^m)^{n_m} \omega \in A$. Dunque, $T^n \omega \in A$ per infiniti valori di $n \geq 1$.

Corollario 22 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità, $T : \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura e η una v.a. non negativa. Allora, \mathbb{P} -q.c. su $\{\omega \in \Omega : \eta(\omega) > 0\}$,

$$\eta(\omega) + \sum_{k>1} \eta(T^k \omega) = \infty$$
 (57)

Dimostrazione: Sia $A_n:=\left\{\omega\in\Omega:\eta\left(\omega\right)\geq\frac{1}{n}\right\}$. Allora, per il teorema precedente, \mathbb{P} -q.c. su A_n ,

$$\eta(\omega) + \sum_{k>1} \eta(T^k \omega) = \infty,$$
(58)

quindi anche su $\bigcup_{n>1} A_n = \{\omega \in \Omega : \eta(\omega) > 0\}$.

Definizione 23 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $T : \Omega \longrightarrow \Omega$ un'applicazione misurabile. Un evento $A \in \mathcal{F}$ è detto

- invariante per T se $T^{-1}A = A$;
- quasi invariante per T se $\mathbb{P}(A\triangle T^{-1}A)=0$.

Chiaramente sia la collezione degli eventi invarianti \mathcal{I}_T che quella degli eventi quasi invarianti \mathcal{I}_T^* sono sub σ algebre di \mathcal{F} . In particolare, $\mathcal{I}_T \subseteq \mathcal{I}_T^* \subseteq \mathcal{F}$.

Lemma 24 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $T : \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura. Se $A \in \mathcal{I}_T^*$ allora $\exists B \in \mathcal{I}_T$ tale che $\mathbb{P}(A \triangle B) = 0$.

Dimostrazione: Sia $B:=\overline{\lim}_n T^{-n}A=\bigcap_{n\geq 1}\bigcup_{k\geq n}T^{-k}A$. Allora, $T^{-1}B=B$ quindi $B\in\mathcal{I}_T$. Inoltre,

$$A\triangle B = \left(A\triangle T^{-1}A\right) \cup \left(\bigcup_{k>1} \left(T^{-k}A\triangle T^{-(k+1)}A\right)\right) , \qquad (59)$$

ma T preserva la misura, quindi

$$\mathbb{P}\left(\left(T^{-k}A\triangle T^{-(k+1)}A\right)\right) = \mathbb{P}\left(A\triangle T^{-1}A\right) = 0\tag{60}$$

da cui segue che $\mathbb{P}(A\triangle B)=0$.

Definizione 25 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $T : \Omega \longrightarrow \Omega$ un'applicazione misurabile. Una v.a. η è detta invariante per T se è \mathcal{I}_T -misurabile, ovvero $\eta^{-1}(\mathcal{B}(\mathbb{R})) \subseteq \mathcal{I}_T$, o, equivalentemente $\eta = \eta \circ T$. Allo stesso modo η si dirà quasi invariante per T se è \mathcal{I}_T^* -misurabile $(\eta^{-1}(\mathcal{B}(\mathbb{R})) \subseteq \mathcal{I}_T^*)$.

Definizione 26 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $T : \Omega \longrightarrow \Omega$ un'applicazione misurabile. Un evento $A \in \mathcal{I}_T$ è detto metricamente indecomponibile se non si può rappresentare come unione disgiunta di una coppia d'eventi invarianti di propabilità positiva, ovvero $\not\exists A_1, A_2 \in \mathcal{I}_T$ tali che $A_1 \cap A_2 = \varnothing; \mathbb{P}(A_1), \mathbb{P}(A_2) > 0$ e $A = A_1 \bigvee A_2$.

Definizione 27 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità. Un'applicazione $T : \Omega \longrightarrow \Omega$ che preserva la misura è detta ergodica o metricamente transitiva se $\forall A \in \mathcal{I}_T, \mathbb{P}(A)$ può assumere soltanto i valori zero e uno.

Proposizione 28 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $T: \Omega \longrightarrow \Omega$ un'applicazione ergodica. Allora ogni evento invariante di probabilità positiva è metricamente indecomponibile se e solo se ha probabilità uno.

Dimostrazione:

- \implies T è ergodica, quindi per definizione ogni evento invariante di probabilità positiva ha probabilità uno.
- \Leftarrow Sia $A \in \mathcal{I}_T$ tale che $\mathbb{P}(A) = 1$. Se A non fosse metricamente indecomponibile esisterebbero $A_1, A_2 \in \mathcal{I}_T$ disgiunti tali che $\mathbb{P}(A_1), \mathbb{P}(A_2) > 0$ e $A = A_1 \bigvee A_2$. Ma siccome T è ergodica

$$\mathbb{P}(A_1) = \mathbb{P}(A_2) = 1 = \mathbb{P}(A) ; \qquad (61)$$

perciò si avrebbe che

$$1 = \mathbb{P}(A) = \mathbb{P}(A_1) + \mathbb{P}(A_2) = 2. \tag{62}$$

Lemma 29 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $T : \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura. Allora, T è ergodica se e solo se ogni evento quasi invariante ha probabilità zero o uno.

Dimostrazione:

- \Longrightarrow Se T preserva la misura, dal Lemma 24 segue che se $A \in \mathcal{I}_T^*$ allora $\exists B \in \mathcal{I}_T$ tale che $\mathbb{P}(A \triangle B) = 0$. Inoltre, se T è ergodica, la probabilità di un qualsiasi evento invariante, quindi anche di B, può assumere soltanto i valori zero e uno, dunque lo stesso vale per la probabilità di A.
- \iff Segue dal fatto che $\mathcal{I}_T \subseteq \mathcal{I}_T^*$.

Teorema 30 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità e $T: \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura. Le seguenti affermazioni sono equivalenti:

- 1. T è ergodica.
- 2. Ogni v.a. η quasi invariante per T è costante \mathbb{P} -q.c..
- 3. Ogni v.a. η invariante per T è costante \mathbb{P} -q.c..

Dimostrazione:

1) \Longrightarrow 2) Se η è quasi invariante, allora $\forall c \in \mathbb{R}, A_c := \{\omega \in \Omega : \eta(\omega) \leq c\} \in \mathcal{I}_T^*$, e siccome T è ergodica $\mathbb{P}(A_c)$ può assumere soltanto i valori zero e uno. Posto $\kappa := \sup\{c \in \mathbb{R} : \mathbb{P}(A_c) = 0\}$, siccome $A_c \uparrow \Omega$ per $c \to \infty$ e $A_c \downarrow \emptyset$ per $c \to -\infty$ allora $|\kappa| < \infty$. Dunque,

$$\mathbb{P}\left\{\omega \in \Omega : \eta\left(\omega\right) < \kappa\right\} = \mathbb{P}\left(\bigcup_{n>1} \left\{\omega \in \Omega : \eta\left(\omega\right) \le \kappa - \frac{1}{n}\right\}\right) = 0. \tag{63}$$

Allo stesso modo si ha che $\mathbb{P}\left\{\omega\in\Omega:\eta\left(\omega\right)>\kappa\right\}=0$, dunque $\mathbb{P}\left\{\omega\in\Omega:\eta\left(\omega\right)=\kappa\right\}=1$.

- 2) \Longrightarrow 3) Se η è invariante è anche \mathcal{I}_T^* -misurabile perché $\mathcal{I}_T \subseteq \mathcal{I}_T^*$.
- 3) \Longrightarrow 1) Dato $A \in \mathcal{I}_T$, allora $\mathbf{1}_A$ è una v.a. invariante per T che per ipotesi è costante \mathbb{P} -q.c.. Ma poiché $\mathbf{1}_A \in \{0,1\}$, $\mathbb{P}(A)$ può assumero soltanto i valori zero e uno e dunque T è ergodica.

Definizione 31 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità. Un'applicazione $T : \Omega \longrightarrow \Omega$ che preserva la misura è detta mixing se $\forall A, B \in \mathcal{F}$

$$\lim_{n \to \infty} \mathbb{P}\left(A \cap T^{-n}B\right) = \mathbb{P}\left(A\right)\mathbb{P}\left(B\right) . \tag{64}$$

Teorema 32 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità. Ogni applicazione $T : \Omega \longrightarrow \Omega$ mixing è ergodica.

Dimostrazione: $\forall A \in \mathcal{F}, B \in \mathcal{I}_T$ poiché T è mixing, $\forall n \geq 1$, si ha

$$\mathbb{P}(A \cap B) = \mathbb{P}(A \cap T^{-n}B) = \mathbb{P}(A)\mathbb{P}(B)$$
(65)

che, ponendo A=B, implica $\mathbb{P}\left(B\right)=\mathbb{P}^{2}\left(B\right)$, ovvero che ogni insieme invariante ha probabilità o zero o uno. \blacksquare

Teorema 33 (di Birkhoff-Khinchin) Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità, $T : \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura $e \eta \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Allora,

$$\lim_{n \to \infty} \frac{1}{n} \left[\eta + \sum_{k=1}^{n-1} \eta \circ T^k \right] = \mathbb{E} \left[\eta | \mathcal{I}_T \right] \mathbb{P} - q.c.. \tag{66}$$

Se inoltre T è ergodica $\mathbb{E}[\eta | \mathcal{I}_T] = \mathbb{E}[\eta]$ \mathbb{P} -q.c..

Dimostrazione: Ponendo per $k=1, \xi_1:=\eta$ e, $\forall k\geq 2, \xi_k:=\eta\circ T^{k-1}$, per la Proposizione 19, la successione di v.a. $\xi=\{\xi_k\}_{k\geq 1}$ è stazionaria, quindi la tesi segue dal Teorema ergodico per successioni di v.a. stazionarie. Inoltre, se T è ergodica, dato che $\mathbb{E}\left[\eta|\mathcal{I}_T\right]$ è \mathcal{I}_T -misurabile è invariante e quindi, per il Teorema 30 \mathbb{P} -q.c. costante, ovvero $\mathbb{E}\left[\eta|\mathcal{I}_T\right]=\mathbb{E}\left[\eta\right]$ \mathbb{P} -q.c..

Corollario 34 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità. Un'applicazione $T: \Omega \longrightarrow \Omega$ che preserva la misura è ergodica se e solo se $\forall A, B \in \mathcal{F}$

$$\lim_{n \to \infty} \frac{1}{n} \left[\mathbb{P}(A \cap B) + \sum_{k=1}^{n-1} \mathbb{P}(A \cap T^{-k}B) \right] = \mathbb{P}(A) \mathbb{P}(B) . \tag{67}$$

Dimostrazione:

 \implies Se T è ergodica, per il Teorema di Birkhoff-Khinchin $\forall B \in \mathcal{F}$

$$\lim_{n \to \infty} \frac{1}{n} \left[\mathbf{1}_B + \sum_{k=1}^{n-1} \mathbf{1}_B \circ T^k \right] = \lim_{n \to \infty} \frac{1}{n} \left[\mathbf{1}_B + \sum_{k=1}^{n-1} \mathbf{1}_{T^{-k}B} \right] = \mathbb{P}(B) \ \mathbb{P}\text{-q.c.}. \tag{68}$$

Quindi, per il Teorema di Lebesgue della convergenza dominata,

$$\lim_{n \to \infty} \frac{1}{n} \left[\mathbb{P} \left(A \cap B \right) + \sum_{k=1}^{n-1} \mathbb{P} \left(A \cap T^{-k} B \right) \right]$$

$$= \lim_{n \to \infty} \frac{1}{n} \left[\mathbb{E} \left[\mathbf{1}_{A \cap B} \right] + \sum_{k=1}^{n-1} \mathbb{E} \left[\mathbf{1}_{A \cap T^{-k} B} \right] \right]$$

$$= \mathbb{E} \left[\mathbf{1}_{A} \lim_{n \to \infty} \frac{1}{n} \left(\mathbf{1}_{B} + \sum_{k=1}^{n-1} \mathbf{1}_{T^{-k} B} \right) \right] = \mathbb{P} \left(A \right) \mathbb{P} \left(B \right) .$$
(69)

 \Leftarrow Posto $A = B \in \mathcal{I}_T, \forall k \geq 1$, si ha $A \cap T^{-k}B = A \cap B = B$. Quindi, la (67) implica $\mathbb{P}(B) = \mathbb{P}^2(B)$, cioè che ogni insieme invariante ha probabilità o zero o uno.

Teorema 35 Sia $(\Omega, \mathcal{F}, \mathbb{P})$ uno spazio di probabilità, $T: \Omega \longrightarrow \Omega$ un'applicazione che preserva la misura $e \eta \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Allora,

$$\lim_{n \to \infty} \mathbb{E} \left| \frac{1}{n} \left[\eta + \sum_{k=1}^{n-1} \eta \circ T^k \right] - \mathbb{E} \left[\eta | \mathcal{I}_T \right] \right| = 0 . \tag{70}$$

Se inoltre T è ergodica $\mathbb{E}[\eta | \mathcal{I}_T] = \mathbb{E}[\eta]$ \mathbb{P} -q.c..

Dimostrazione: Siccome $\eta \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, $\forall \varepsilon > 0$, $\exists M_{\varepsilon} > 0$ e una v.a. $\eta_{\varepsilon} \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ tale che $|\eta_{\varepsilon}| \leq M_{\varepsilon} < \infty$ e $\mathbb{E} |\eta - \eta_{\varepsilon}| \leq \varepsilon$. Allora, ponendo, per $k = 1, \xi_1 := \eta, \forall k \geq 2$, $\xi_k := \eta \circ T^{k-1}$ e dunque $\forall n \geq 1, S_n := \sum_{k=1}^n \xi_k$ nonché, definendo allo stesso modo S_n^{ε} , si ha

$$\mathbb{E}\left|\frac{S_n}{n} - \mathbb{E}\left[\eta|\mathcal{I}_T\right]\right| \leq \mathbb{E}\left|\frac{1}{n}\left[\eta - \eta_{\varepsilon} + \sum_{k=2}^n \left(\eta \circ T^{k-1} - \eta_{\varepsilon} \circ T^{k-1}\right)\right]\right| + \\
+ \mathbb{E}\left|\frac{S_n^{\varepsilon}}{n} - \mathbb{E}\left[\eta^{\varepsilon}|\mathcal{I}_T\right]\right| + \mathbb{E}\left|\mathbb{E}\left[\eta|\mathcal{I}_T\right] - \mathbb{E}\left[\eta^{\varepsilon}|\mathcal{I}_T\right]\right| .$$
(71)

Per il Teorema di Birkhoff-Khinchin $\lim_{n\to\infty} \frac{S_n^{\varepsilon}}{n} = \mathbb{E}\left[\eta^{\varepsilon} | \mathcal{I}_T\right] \mathbb{P}$ -q.c. ma, dato che η_{ε} è limitata, per il Teorema di Lebesgue della convergenza dominata

$$\lim_{n \to \infty} \mathbb{E} \left| \frac{S_n^{\varepsilon}}{n} - \mathbb{E} \left[\eta^{\varepsilon} | \mathcal{I}_T \right] \right| = 0 . \tag{72}$$

In oltre, $\mathbb{E}\left|\eta\circ T^{k-1}-\eta_{\varepsilon}\circ T^{k-1}\right|\leq\varepsilon$ come pure

$$|\mathbb{E}\left[\eta|\mathcal{I}_{T}\right] - \mathbb{E}\left[\eta^{\varepsilon}|\mathcal{I}_{T}\right]| = |\mathbb{E}\left[\left(\eta - \eta^{\varepsilon}\right)|\mathcal{I}_{T}\right]| \le \mathbb{E}\left[\left|\eta - \eta^{\varepsilon}\right||\mathcal{I}_{T}\right] \le \varepsilon. \tag{73}$$

Pertanto, $\forall \varepsilon > 0, \mathbb{E}\left|\frac{S_n}{n} - \mathbb{E}\left[\eta | \mathcal{I}_T\right]\right| \leq 2\varepsilon$. Se inoltre T è ergodica, $\mathbb{E}\left[\eta | \mathcal{I}_T\right] = \mathbb{E}\left[\eta\right]$ \mathbb{P} -q.c..