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Abstract

Statistcs concerns the analysis of a collection of data derived from the
outcome of an experiment in order to extract from it meaningful informa-
tion about the nature of the measurements.
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1 Descriptive Statistics

How to organize a data sample in order to extract qualitative information about
the performed experiment?

1.1 Univariate data samples

Let X be an experimental quantity (e.g. a physical quantity such as the lenght
or the weight of an object, but also the rate of growth of a bacterial population).
We denote by x the real number representing the outcome of the mesurement
procedure of X:
Repeting N (N 2 N) times the experiment whose outcome is a measured

value of X; being careful, every single time, to replicate the exact same experi-
mental conditions, we obtain

CN (X) := fx1; ::; xNg

a collection (sample) of size N of measured values of X (data).

Example 1 X is the lifetime (in days) of laboratory animal exposed to a pathogen.
N = 36 is the number of animals so that the sample C36 (X) is the collection of
positive integers given in the following table.

82 89 94 110 74 122 112 95 100
78 65 60 90 83 87 75 114 85
69 94 124 115 107 88 97 74 72
68 83 91 90 102 77 125 108 65

: (1)

Replicating the same experiment we expect to obtain the same outcome,
that is the same measured value for X: Since this is does not always happen,
relevant information on the performed experiment can be gained looking at the
set of values assumed by the mesures of X; i.e. the values of the sample data.
We can partition the data sample into disjoint subsets representing the

the collection of data having the same values CN (X) =
W
y2R F

y
N (X) ; where

FyN (X) := fx 2 CN (X) : x = yg :

De�nition 2 Fy := jFyN (X)j the number of data having value y is said (ab-
solute) frequency of y:

To see which value of the data is more frequent (typical) we can plot the
graph of the function

R 3 y 7�! Fy 2 f0; 1; ::; Ng

which is called frequencies histogram.
The frequencies histogram depends on the size of the data sample N:

De�nition 3 fy :=
Fy
N is said relative frequency of y:
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To compare the amount of information on the phenomenon under investiga-
tion given by data sets of di¤erent sizes it is useful to plot the function

R 3 y 7�! fy 2 [0; 1] ;

which is called relative frequencies histogram and which is independent of the
sample size.

Exercise 4 plot the relative frequencies histogram of the data sample (1).

When the values assumed by the sample data spread out over an interval or
over R and the sample size is large, relative frequencies histograms doesn�t give
back good information on the distribution of the measured values of X: There-
fore, it is more convenient to partition the data sample into classes collecting
data whose values range in an interval rather than those assuming a single value.
To do this let fakgk2Z to be an increasing sequence of real numbers and set

R =
[
k2Z
(ak; ak+1]: Then CN (X) =

W
k2Z BkN (X) ; where

BkN (X) := fy 2 CN (X) : y 2 (ak; ak+1]g ;

set fk :=
jBkN (X)j

N and plot the function

R 3 x 7�! � (x) :=
X
k2Z

fk1(ak;ak+1] (x) 2 [0; 1]

where 1A denotes the indicator function of the set A � R; which represents the
relative frequencies histogram of the data belonging to the subsamples realizing
the partition CN (X) :

Exercise 5 Let 8k 2 Z; ak = 10k: Plot � for the sample data (1) and compare
this plot with the one of the previous exercise. Did we gain any information?

Solution 6

7
36
6
36
5
36
4
36
3
36
2
36
1
36

5 6 7 8 9 10 11 12 13

:

The general criterion to construct a meaningful partiton of CN (X) is to
choose the sequence fakgk2Z realizing the partition of R in such a way that:

� ak+1 � ak is independent of k;
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� the distribution of the relative frequencies of data belonging to a given
subsample BkN (X) is nearly homogeneous, that is if x; y 2 (ak; ak+1];
then fx ' fy;

� the distribution of the relative frequencies of data belonging to dif-
ferent subsamples are di¤erent.

1.2 Statistics

De�nition 7 Statistics are numerical quantities, computed from the data val-
ues, summarizing the information which can be extracted by the data sample.

The most commonly used statistics are:

1.2.1 Modal Values and Sample Mode

The modal values are those values of the data that occur at the highest fre-
quency. If there is only one of such values this is called sample mode.
In general multi modal histograms are generated by data samples being

the union of two or more subsamples, each of which give rise to a unimodal
frequencies histograms.

1.2.2 Sample Median

Rearrange the data sample in increasing order. Denoting by bCN (X) = fx̂1; ::; x̂Ng
the rearranged sample, the sample median is so de�ned

x̂ :=

8<:
�
x̂N
2
+x̂N

2
+1

�
2 if N is even

x̂N+1
2

if N is odd
:

Hence half of the data lie to left of x̂ and half to the right.

1.2.3 Sample Mean

The sample mean is so de�ned

�x :=
1

N

NX
i=1

xi :

Notice that, if

�xk :=
1��BkN (X)��

X
i=1;::;N : xi2BkN (X)

xi

is the sample mean of the class BkN (X) ;

�x =
X
k2Z

fk�xk

which can be seen as the center of mass of the relative frequencies histogram of
the data belonging to the BkN (X)�s.
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1.2.4 Sample Variance and Sample Standard Deviation

The sample variance is so de�ned

s2X :=
1

N � 1

NX
i=1

(xi � �x)2

=
1

N � 1

NX
i=1

�
x2i � �x2

�
and the quantity sX :=

p
s2X is called sample standard deviation.

Notice that SX is a measure of the deviation of the data values from the
sample mean. As a matter of fact,

xi = �x+ (xi � �x) ; i = 1; ::; N :

Since 1
N

PN
i=1 (xi � �x) = 0 ; it would be useful to compute the average distance

of the data values from the sample mean 1
N

PN
i=1 jxi � �xj but,

1

N

NX
i=1

jxi � �xj =
1

N

NX
i=1

q
(xi � �x)2 �

vuut 1

N

NX
i=1

(xi � �x)2 � sX :

so sX overestimates 1
N

PN
i=1 jxi � �xj :

1.2.5 Linear transformations

Linear relations among experimental quantities play a fundamental role in data
analysis, also because exponential and power-law functional dependence between
two of such quantities can be reduced to linear relations.
If A;B are known constants and X;Y are experimental quantities,

Y = AeBX =) log Y = BX + logA

Y = AXB =) log Y = B logX + logA

Therefore, if Y = AX +B; with A;B known constants, we have:

� if f~xigi=1;::;K ; 1 � K � N; are the modal values of CN (X) ; then f~yigi=1;::;K ;
where ~yi = A~xi +B; are the modal values of CN (Y ) ;

� ŷ = Ax̂+B;

� �y = A�x+B;

� s2Y = A2sX ; sY = jAj sX :
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1.3 Bivariate samples

Suppose we perform an experiment which allow us to measure two quantities X
and Y:
A sample of N measured values of X and Y denoted by

CN (X;Y ) := f(x1; y1) ; ::; (xN ; yN )g

and CN (X) ; CN (Y ) denote the univariate associated data samples called
marginal data samples.
The Cartesian plot of CN (X;Y ) is called scatter diagram and gives us a

qualitative criterion to see if there is a functional dependence between X and
Y:

1.3.1 Sample Covariance and Sample Correlation Coe¢ cient

A quantitative measure of the relationship between two experimental quantities
X and Y are the statistics sample covariance

sX;Y :=
1

N � 1

NX
i=1

(xi � �x) (yi � �y)

and sample correlation coe¢ cient

rX;Y :=
sX;Y
sXsY

=

PN
i=1 (xi � �x) (yi � �y)qPN

i=1 (xi � �x)
2
qPN

i=1 (yi � �y)
2
:

If Z = AX +B;W = CY +D; with A;B;C;D constants indipendent of the
data of CN (X;Y ) ;

sZ;W = ACsX;Y ;

rZ;W =
AC

jAj jCjrX;Y :

Hence,

� rX;Y is a pure number i.e. its value does not depend on the mesurement
sytem,

� jrX;Y j � 1 and jrX;Y j = 1() Y = AX +B; in particular

rX;Y =

�
+1 if A > 0
�1 if A < 0

:

In this last case the parameters A and B are called regression parameters.
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2 Introduction to Inferential Statistics

Each time we perform an experiment and mesure X; despite the fact that we
start with the same experimental condition we produce a di¤erent measured
value of X: How to deal with this fact? We can assume the outcomes of an
experiment to be that of a random variable.

2.1 Random variables

Given a set 
; let F be a �algebra of subsets of 
; that is a collection of subsets
of 
 such that:

� 
 2 F ;

� if A 2 F ; then Ac := 
nA 2 F ;

� any �nite or denumerable union of elements of F is in F :

The couple (
;F) is calledmesurable space. A probability measure on (
;F)
is a non-negative function

F 3 A 7�! P (A) 2 [0; 1]

such that if fAigi2N � F is a collection of mutually disjoint subsets of 
; that
is 8i; j 2 N; i 6= j; Ai \Aj = ?; P

�S
i2NAi

�
=
P

i2N P (Ai) :
The triple (
;F ;P) is called probability space. A random variable (r.v.) is a

map � : 
 �! R such that, if B (R) denotes the �algebra generated by the open
subsets of R; with respect to the Euclidean topology, 8B 2 B (R) ; ��1 (B) 2 F :
Hence, � maps a probability measure P on (
;F) to the probability measure P�
on (R;B (R)) such that 8B 2 B (R) ; P� (B) = P

�
��1 (B)

�
:

The function,

R 3 x 7�! F� (x) := P f! 2 
 : � (!) � xg 2 [0; 1]

is called distribution function of the r.v. � and has the following properties:

� F� is non-decreasing;

� limx#�1 F� (x) = 0 ; limx"+1 F� (x) = 1;

� F� is right-continuous and has left limits. Hence, F� has at most jump
discontinuities and the collection of points at which F� is discontinuous is
at most denumerable.

Notice that 8a; b 2 R such that a < b;

P� (a; b) = P�(a; b] = F� (b)� F� (a)

and 8x 2 R;

P� (x) = lim
"#0
(F� (x)� F� (x� ")) = F� (x)� F�

�
x�
�
:
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De�nition 8 A r.v. � is said to be:

� absolutely continuous with respect to the Lebesgue measure (a.c.), if there
exists a positive function f�; called probability density of �; such that
8x 2 R;

F� (x) =

Z x

�1
dyf� (y) ;

� discrete, if F� is a step function. In this case, denoting by S the set of
jump points of F� and by

ps := P f! 2 
 : � (!) = sg ; s 2 S ;

we have
F� (x) =

X
y2S : y�x

ps :

Given a r.v. �; 8k 2 N; the quantity

E
�
�k
�
:=

� R
R dxf� (x)x

k if � is a:c:P
x2S x

kP� (x) if � is discrete
:

is called moment of � of order k: Moreover, the moment of � of order 1 is called
expectation value of �; while the quantities

V ar (�) := E
h
(� � E (�))2

i
= E

�
�2
�
� E

�
�2
�
� 0

and
p
V ar (�) are called respectively variance of � and standard deviation of

�:

Example 9 (Gaussian and Normal r.v�s) � is a Gaussian r.v. of parameters
� 2 R and � > 0 (� 2 N (�; �)) ; if

f� (x) = g (xj�; �) =
1p
2��

e�
(x��)2

2�2 :

Notice that E (�) = �; V ar (�) = �2: If � = 0 and � = 1; � is called normal r.v..

Example 10 (Bernoulli r.v�s) � is a Bernoulli r.v. of parameter p 2 (0; 1) (� 2 Ber (p))
if it is discete and jSj = 2: Therefore, setting S = fs1; s2g ; with s1 < s2; and
ps2 = p;

F� (x) = (1� p)1(s1;s2] (x) + 1(s2;+1) (x) :

Notice that if s1 = 0; s2 = 1; E (�) = p and V ar (�) = p (1� p) :

Example 11 (Poisson r.v�s) � is a Poisson r.v. of parameter � > 0 (� 2 Poi (�))
if

F� (x) = e
��

X
k2N : 0�k�x

�k

k!
:

Notice that E (�) = V ar (�) = �:
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Remark 12 Given a r.v. � such that E (�) ;E
�
�2
�
<1; the r.v. ~� := ��E(�)p

V ar(�)

has expectation value zero and unitary variance. Hence, in the Gaussian case,
if � 2 N (�; �) then ~� 2 N (0; 1) :

De�nition 13 A map � : 
 �! Rn; n � 2; such that for any
B 2 B (Rn) :=

Nn
i=1 B (R) ; ��1 (B) 2 F ; is called random vector. In other

words, � is a vector in Rn whose components are the r.v�s �1; ::; �n: The function

Rn 3 (x1; ::; xn) 7�! F� (x1; ::; xn) := P f! 2 
 : �1 (!) � x1; ::; �1 (!) � xng 2 [0; 1]

is called distribution function of �:

De�nition 14 Two r.v�s �; �; are said to be (stochastically) independent if
considering the random vector � = (�; �) ; 8 (x; y) 2 R2; we have

F� (x; y) = F� (x)F� (y) :

Given collection of r.v�s f�1; ::; �ng this is said to be composed by (stochastically)
independent elements if the vector � = (�1; ::; �n) has (stochastically) indepen-
dent components.

De�nition 15 A sequence f�ngn2N of r.v�s is said to converge in distribution
to a r.v. � if the sequence of functions fFngn2N ; with Fn := F�n ; converges to
F� at any point of continuity of F�:

2.2 Outcome of an experiment as a random variable

We can model the outcome of our experiment as the possible realization of a
random variable �X :
Hence a data sample CN (X) represents a possible realization of the collection

of N i.i.d.r.v�s
�
�Xi
	N
i=1

:

Which is the probability distribution of �X?
Usually this is a priori not known, anyway we can make use of the following

general results:

Theorem 16 (Law of Large Numbers) Let f�igi2N be a sequence of i.i.d.r.v.
such that E (�1) <1: Then,

P

(
! 2 
 : lim

N!1

����� 1N
NX
i=1

�i (!)� E (�1)
����� 6= 0

)
= 0 :

Theorem 17 (Central Limit Theorem) Let f�igi2N be a sequence of i.i.d.r.v.
such that E (�1) and E

�
�21
�
<1: The sequence of r.v. f�NgN2N ; where �N :=p

N
h
1
N

PN
i=1

~�i

i
; converges in distribution to a standard normal r.v..

Let us set PX := P�X : 8N 2 N; let
�
aNk
	
k2Z to be an increasing sequence of

real numbers such that
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� 8k 2 Z; a(N)k+1 � a
(N)
k = �N is independent of k;

� R =
[
k2Z
(aNk ; a

N
k+1];

� f�NgN2N is a decreasing sequence tending to 0:

8k 2 Z; we de�ne the r.v.


 3 ! 7�! �'
(N)
k (X) (!) :=

PN
i=1 1

�
a
(N)
k ;a

(N)
k+1

i ��Xi (!)�
N�N

2 R

representing, 8! 2 
; the relative frequency of the associated realization of the
data subsample BkN (X) � CN (X) divided by the diameter of the partition �N :
Moreover,

E �'(N)k (X) =
PX

�
a
(N)
k ; a

(N)
k+1

i
�N

:

Let us then consider the map


� R 3 (!; x) 7�! ��
(N)
X (x;!) :=

X
k2Z

�'
(N)
k (X) (!)1�

a
(N)
k ;a

(N)
k+1

i (x) 2 R ;
which:

� 8! 2 
; ��(N)X (�;!) is a real function;

� 8x 2 R; ��(N)X (x; �) is a r.v.

and notice that the r.v. de�ned by the series


 3 ! 7�!
X
k2Z

�'
(N)
k (X) (!)�N 2 R

is nothing else but the integral over R of ��(N)X whose expectation value is,by
de�nition, equal to 1: Therefore, we can de�ne the map


� R 3 (!; x) 7�! �F
(N)
X (x;!) :=

Z x

�1
dy ��

(N)
X (y;!) 2 [0; 1] ;

which is called empirical partition function and has the following properties:

� 8! 2 
; �F (N)X (�;!) represents the relative frequency of the data of the as-
sociated realization of the sample CN (X) falling in (�1; x] ; i.e. �F (N)X (�;!)
is the distribution function of a r.v. which we denote by �(N)X ;

� 8x 2 R; �F (N)X (x; �) is a r.v..

10



Making use of the Law of Large Numbers, the sequence of functions
f �F (N)X g converges pointwise to the distribution function FX (x) of �X : Therefore,
we can assume that, if the size N of the data sample CN (X) is very large, the
relative frequency of the data falling into a given interval [a; b] � R of possible
values of the measures of X; called empirical relative frequency of [a; b] ; is

1

N

NX
i=1

1[a;b]
�
�Xi
�
= PX (a; b] + "N ;

where the error in the aproximation "N is such that limN"1 "N = 0:
Now we know how to recover operationally the probability distribution of �X ;

that is of the measured values ofX; even if it is unknown. Unfortunately, usually
we do not possess enough data to minimize the error we make in approximating
such probability distribution with the empirical relative frequency.
On the other hand, by the Central Limit Theorem, we know that the

sequence
�
�XN
	
N2N ; where �

X
N =

p
N
h
1
N

PN
i=1

~�Xi

i
; converges in distribution to

a normal r.v. even if we have no knowledge of the distribution of �X : Therefore,
in the following, we stick to the Gaussian case in which the distribution of �X

is completely speci�ed by the parameters � and �:

2.3 Statistics

In the framework of Inferential Statistics the word statistic refers to r.v�s which
are functions of the collection of i.i.d.r.v�s

�
�Xi
	N
i=1

whose outcomes are all the
possible data sample CN (X) we can produce performing our experiment.
In general, the distribution function of �X ; that is of the measured values of

X; is unknown, but in some case we can guess its functional form as a function
of some unknown parameters. Therefore, in this case, the problem of the iden-
ti�cation of the probability distribution of the measures of X is reduced to the
identi�cation of the parameters specifying the distribution of �X : For example,
in the Gaussian case, the distribution is completely speci�ed by the expectation
value � and by the variance �:
Let F� be the distibution function of �X : Since we have a �nite amount

of data, we can estimate the values of these parameters in such a way that
the large is the sample the more accurate is our estimation. To do this, we can
de�ne certain statistics t

�
�X1 ; ::; �

X
N

�
; called estimator of the parameter �; whose

expectation value is exactly the value of the parameter � we need to know to
specify completely F� and whose probability distribution will concentrate on �:

2.3.1 The Maximum Likelihood method

Suppose our data sample CN (X) is the outcome of a collection of i.i.d. r.v�s
N (�; �) : Then if CN (X) = fx1; ::; xNg;

PX (CN (X)) =
NY
i=1

g (xij�; �) dxi :
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Since � and � are not known, we can estimate them choosing those functions of

the data that maximizing the quantity
NY
i=1

g (xij�; �) called likelyhood function

of (�; �) ; or, which is the same, minimizing its logarithm.
This method is particularly useful in the case we are given a bivariate data

sample CN (X;Y ) such that the absolute value of the associated correlation
coe¢ cient is close to 1 and hence we want to estimate from the data of the
sample the regression parameters linking the experimental quantities X and Y:

Univariate Linear Regression Given a bivariate data sample CN (X;Y ) ;
without loss of generality, suppose X is modeld by a Gaussian r.v. of variance
�2 and Y = AX +B: The likelyhood function is then

NY
i=1

g (yij�i; �) =
NY
i=1

g (yijAxi +B; �) =
e�

PN
i=1

[yi�(Axi+B)]
2

2�2

(2�)
N
2 �N

:

Remark 18 Notice that maximizing
NY
i=1

g (yij�i; �) is equivalent to minimize

NX
i=1

[yi � (Axi +B)]2

2�2
;

this is why this analysis in the Gaussian case is also called Least Squares
Method.

Therefore, the estimated values for A and B are(
�A (x1; ::; xN ; y1; ::yN ) =

sX;Y
s2X

�B (x1; ::; xN ; y1; ::yN ) = �y � sX;Y
s2X

�x
:

Exercise 19 Analyse the bivariate data sample

(51; 74) (68; 70)
(97; 93) (55; 67)
(95; 99) (74; 73)
(20; 33) (91; 91)
(74; 80) (80; 86)

:

The weighted mean Suppose M research groups perform the same experi-
ment producing each a data sample CNi

(X) ; i = 1; ::;M of Gaussian r.v�s. It
can be proven (see what stated in the following section) that the sample mean is
the best estimator of the value of X: How to deal with the fact that we have M
of such values? We can consider the collection of these sample mean f�x1; ::�xMg
as a data sample CM (X) and apply the Maximum Likelihood Method under
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the hypothesis that the variance of the Gaussian r.v. �i modeling the outcome
of the i-th data sample CNi (X) can be approximated by the sample variance of
the CNi

(X)�s. Hence,

MY
i=1

g (�xij�; sX;i) =
MY
i=1

e
� (�xi��)

2

2s2
X;i

p
2�sX;i

=
e
�
PM

i=1

(�xi��)
2

2s2
X;i

(2�)
M
2

MY
i=1

sX;i

;

which gives back as best estimate of X

�x =

PM
i=1

1
s2X;i

�xiPM
i=1

1
s2X;i

:

Notice that the smaller is the sample variance of a data sample of our collection,
i.e. the sharper is the probability distribution of the �i�s, the larger is the weight
of the sample mean in the convex combination �x:

2.4 Introduction to parametric hypothesis tests

Suppose the outcome of the measurement process of an experimental quantity
X is modeled by a r.v. �X with distribution function F�: We can formulate an
hypothesis on the value of the parameter � which usually in Statistics is called
null Hypothesis and denoted by H0: Then, to test if our data sample verify or
not the statement constituting the null hypothesis we will identify a subset of
possible outcomes of

�
�Xi
	N
i=1

called critical region such that such that if the
data values fall in this region the hypothesis is rejected, otherwise is accepted.
It is important to note when developing a procedure for testing a given null
hypothesis that two di¤erent types of errors can result. The �rst of these, called
a type I error, is said to result if the test incorrectly calls for rejecting H0 when
it is indeed correct. The second, called a type II error, results if the test calls for
accepting H0 when it is false. Since the goal of the statistical testing is not to
explicitly determine whether or notH0 is true but rather to determine if the data
sample is consistent with its validity, the classical approach to testing the null
hypothesis is to �x a value �; called signi�cance level, and then require that the
test have the property that the probability of a type I error occurring can never
be greater than �: Therefore, the critical region to the test the null hypothesis
H0 : � 2 W � R will be then identi�ed with the subset of possible outcomes of�
�Xi
	N
i=1

for which the probability of the resulting value of an estimator of � to
fall outside W is smaller than or equal to the signi�cance level �:

2.4.1 The Gaussian case

To deal with Gaussian samples we need to introduce other two probability dis-
tributions.

13



De�nition 20 Let f�igni=1 be a collection of N (0; 1) i.i.d. r.v�s. The probability
distribution of the r.v.

� :=
nX
i=1

�2n

is called �2-distribution with n degrees of freedom
�
� 2 �2n

�
:

De�nition 21 Let � 2 �2n and � 2 N (0; 1) be stochastically independent r.v�s.
The probability distribution of the r.v.

� :=
�p
�

is called (Student) t-distribution with n degrees of freedom (� 2 Tn) :

Let our data sample CN (X) be the outcome of a collection
�
�Xi
	N
i=1

of
N (�; �) i.i.d.r.v�s. The statistics we will consider are:

� the empirical mean

��XN :=
1

N

NX
i=1

�Xi

whose possible outome is the sample mean and whose probability distrib-
ution is Gaussian with parameter � and �p

N
;

� the empirical variance

�
SXN
�2
:=

1

N � 1

NX
i=1

�
�Xi � ��XN

�2
=

1

N � 1

NX
i=1

h�
�Xi
�2 � ���XN �2i

whose possible outcome is the sample variance and whose expectation
value is �2: Furthermore the probability distribution of the r.v. (N�1)�2

�
SXN
�2

is a �2-distribution with N � 1 degrees of freedom.

Remark 22 We remark that the expectation value of the empirical mean and
of the empirical variance is always respectively the expectation value and the
variance of �X : Moreover, in the Gaussian case, these two r.v�s are stochastically
independent.

The Pearson �2 test How can we understand if the data sample we have
produced is composed by the outcomes of a collection of Gaussian i.i.d.r.v�s?
Here is a criterion to establish if the data sample CN (X) issued from our

experiment is or not compatible with the hypothesis of being an outcome of a
collection of N i.i.d.r.v�s N (�x; sX) :
Let us partiton R in 2 (K + 1) disjoint intervals setting
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� R = (�1; �x] [ (�x;+1) ;

� 8k = 0; ::;K � 1;

Ak+1 := (�x+ ksX ; �x+ (k + 1) sX ] ;

A�(k+1) := (�x� (k + 1) sX ; �x� ksX ] ;

� AK+1 := (�x+KsX ;+1) ; A�(K+1) := (�1; �x�KsX) :

Hence,

(�x;+1) =
K�1[
k=0

Ak+1
[
AK+1 ; (�1; �x] =

K�1[
k=0

A�(k+1)
[
A�(K+1) :

Then, 8l 2 f� (K + 1) ; ::;�1g [ f1; ::;K + 1g; let

Ol := jfx 2 CN (X) : x 2 Algj =
NX
i=1

1Al
(xi)

be the observed frequencies of the data subsamples of CN (X) associated to the
elements of the partition fAkgk2f�(K+1);::;�1g[f1;::;K+1g of R: Let also, 8k 2
f� (K + 1) ; ::;�1g [ f1; ::;K + 1g;

Ek := N

Z
Ak

dxg (xj�x; sX) :

Remark 23 By the symmetry of the Gaussian probability density function

g (x� �xj�x; sX) = g (� (x� �x) j�x; sX) ;

8k = 1; ::;K + 1; Ek = E�k so it su¢ cient to compute just the Ek�s.

If we choose K such that:

1. K � 1 and is smaller than N ;

2. the Ok are always positive;

we can de�ne the quantity

��2 :=
1

2 (K + 1)� 3

KX
k=1

"
(Ok � Ek)2

Ek
+
(O�k � E�k)2

E�k

#

called normalized �2 which is the outcome of the statistic [2 (K + 1)� 3]X2

which, for large size of the sample N is distributed as �2 with 2 (K + 1) � 3
degrees of freedom r.v.. Hence, if the deviation of Ok from Ek is small enough,
��2 will be close to 0 and the hypothesis of CN (X) being generated by the
outcome of a N (�x; sX) r.v. will be plausible.
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TEST Given a data sample of size N; the hypothesis that the data are the
outcomes of a r.v. N (�x; sX) is accepted if ��2 � 1 otherwise is rejected.

Exercise 24 Test the hypothesis that the following data sample is N (�x; sX) :

16 20 21 23 34 38 22 33 23 18
17 34 49 55 60 49 45 45 44 41
44 34 38 35 20 23 22 33 46 22
29 24 38 18 35 26 20 36 28 39
17 31 26 32 16 40 32 27 28 17

The t-test We want to test the hypothesis that our data sample CN (X)
represents the outcomes of a Gaussian r.v. N (�; �) where � is equal to a given
value �0: Hence,

H0 : � = �0 :

Let t denote the observed value of the test statistic T =
p
N(��XN��0)

SXN
2 TN�1:

Then compute the probability that jT j would exceed jtj : This is called p-value
of the test. The test then calls for rejection at all signi�cance levels � higher
than the p-value and acceptance at all lower signi�cance levels.

Exercise 25 Given the data sample

31 33 35 39 41 43 45 47 51 53
55 57 61 63 65 67 69 71 75 77
79 81 87 89 91 97 29 59 73 49

test the hypothesis H0 : � = 62:

Test on the variance of a Gaussian sample We want to test the hypothesis
that our data sample CN (X) represents the outcomes of a Gaussian r.v. N (�; �)
where � is equal to a given value �0: Hence,

H0 : �
2 = �20 :

Let s denote the observed value of the test statistic S = (N � 1) (S
X
N )

2

�20
2 �2N�1:

Then compute the probabiliy that S is smaller than s: The quantity

p = 2 (P fS < sg ^ 1� P fS < sg)
is called p-value of the test. The test then calls for rejection at all signi�cance
levels � higher than the p-value and acceptance at all lower signi�cance levels.

Exercise 26 Given the data sample of the previous exercise, test the hypothesis
H0 : �

2 = 361:
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