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How to organize a data sample in order to extract qualitative information about the performed
experiment?
Let X be an experimental quantity (e.g. a physical quantity such as the lenght or the weight of
an object, but also the rate of growth of a bacterial population). We denote by x the real number
representing the outcome of the mesurement procedure of X.
Repeting N (N ∈ N) times the experiment whose outcome is a measured value of X, being
careful, every single time, to replicate the exact same experimental conditions, we obtain

CN (X) := {x1, .., xN}

a collection (sample) of size N of measured values of X (data).

Example

X is the lifetime (in days) of laboratory animal exposed to a pathogen. N = 36 is the number of
animals so that the sample C36 (X) is the collection of positive integers given in the following
table.

82 89 94 110 74 122 112 95 100
78 65 60 90 83 87 75 114 85
69 94 124 115 107 88 97 74 72
68 83 91 90 102 77 125 108 65

. (1)

Replicating the same experiment we expect to obtain the same outcome, that is the same
measured value for X. Since this is does not always happen, relevant information on the
performed experiment can be gained looking at the set of values assumed by the mesures of X,
i.e. the values of the sample data.
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We can partition the data sample into disjoint subsets representing the the collection of data
having the same values CN (X) =

∨
y∈R F

y
N (X) , where FyN (X) := {x ∈ CN (X) : x = y} .

Definition

Fy :=
∣∣FyN (X)

∣∣ the number of data having value y is said (absolute) frequency of y.

To see which value of the data is more frequent (typical) we can plot the graph of the function

R 3 y 7−→ Fy ∈ {0, 1, .., N}

which is called frequencies histogram.
The frequencies histogram depends on the size of the data sample N.

Definition

fy :=
Fy
N

is said relative frequency of y.

To compare the amount of information on the phenomenon under investigation given by data sets
of different sizes it is useful to plot the function

R 3 y 7−→ fy ∈ [0, 1] ,

which is called relative frequencies histogram and which is independent of the sample size.
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Exercise

plot the relative frequencies histogram of the data sample (1).

When the values assumed by the sample data spread out over an interval or over R and the
sample size is large, relative frequencies histograms doesn’t give back good information on the
distribution of the measured values of X. Therefore, it is more convenient to partition the data
sample into classes collecting data whose values range in an interval rather than those assuming a
single value.

To do this let {ak}k∈Z to be an increasing sequence of real numbers and set R =
⋃
k∈Z

(ak, ak+1].

Then CN (X) =
∨
k∈Z BkN (X) , where

BkN (X) := {y ∈ CN (X) : y ∈ (ak, ak+1]} ,

set fk :=

∣∣∣BkN (X)
∣∣∣

N
and plot the function

R 3 x 7−→ φ (x) :=
∑
k∈Z

fk1(ak,ak+1] (x) ∈ [0, 1]

where 1A denotes the indicator function of the set A ⊂ R, which represents the relative
frequencies histogram of the data belonging to the subsamples realizing the partition CN (X) .
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Exercise

Let ∀k ∈ Z, ak = 10k. Plot φ for the sample data (1) and compare this plot with the one of the
previous exercise. Did we gain any information?

Solution

7
36
6
36
5
36
4
36
3
36
2
36
1
36

5 6 7 8 9 10 11 12 13

.
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Subsample partition

The general criterion to construct a meaningful partiton of CN (X) is to choose the sequence
{ak}k∈Z realizing the partition of R in such a way that:

ak+1 − ak is independent of k;

the distribution of the relative frequencies of data belonging to a given subsample BkN (X) is nearly
homogeneous, that is if x, y ∈ (ak, ak+1], then fx ' fy,
the distribution of the relative frequencies of data belonging to different subsamples are different.
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Definition

Statistics are numerical quantities, computed from the data values, summarizing the information
which can be extracted by the data sample.

Most commonly used statistics are:

Modal Values and Sample Mode

The modal values are those values of the data that occur at the highest frequency. If there is only
one of such values this is called sample mode.
In general multi modal histograms are generated by data samples being the union of two or more
subsamples, each of which give rise to a unimodal frequencies histograms.

Sample Median

Rearrange the data sample in increasing order. Denoting by ĈN (X) = {x̂1, .., x̂N} the
rearranged sample, the sample median is so defined

x̂ :=


(
x̂N

2
+x̂N

2
+1

)
2

if N is even
x̂N+1

2
if N is odd

.

Hence half of the data lie to left of x̂ and half to the right.
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Sample Mean

The sample mean is so defined

x̄ :=
1

N

N∑
i=1

xi .

Notice that, if

x̄k :=
1∣∣BkN (X)

∣∣ ∑
i=1,..,N : xi∈BkN (X)

xi

is the sample mean of the class BkN (X) ,

x̄ =
∑
k∈Z

fkx̄k

which can be seen as the center of mass of the relative frequencies histogram of the data
belonging to the BkN (X)’s.
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Sample Variance and Sample Standard Deviation

The sample variance is so defined

s2X :=
1

N − 1

N∑
i=1

(xi − x̄)2

=
1

N − 1

N∑
i=1

(
x2
i − x̄2

)
and the quantity sX :=

√
s2X is called sample standard deviation.

Notice that SX is a measure of the deviation of the data values from the sample mean. As a
matter of fact,

xi = x̄+ (xi − x̄) , i = 1, .., N .

Since 1
N

∑N
i=1 (xi − x̄) = 0 , it would be useful to compute the average distance of the data

values from the sample mean 1
N

∑N
i=1 |xi − x̄| but,

1

N

N∑
i=1

|xi − x̄| =
1

N

N∑
i=1

√
(xi − x̄)2 ≤

√√√√ 1

N

N∑
i=1

(xi − x̄)2 ≤ sX .

so sX overestimates 1
N

∑N
i=1 |xi − x̄| .
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Linear transformations

Linear relations among experimental quantities play a fundamental role in data analysis, also
because exponential and power-law functional dependence between two of such quantities can be
reduced to linear relations.

If A,B are known constants and X,Y are experimental quantities,

Y = AeBX =⇒ log Y = BX + logA

Y = AXB =⇒ log Y = B logX + logA

Therefore, if Y = AX +B, with A,B known constants, we have:

if {x̃i}i=1,..,K , 1 ≤ K ≤ N, are the modal values of CN (X) , then {ỹi}i=1,..,K , where
ỹi = Ax̃i +B, are the modal values of CN (Y ) ;

ŷ = Ax̂+B;

ȳ = Ax̄+B;

s2Y = A2sX , sY = |A| sX .
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Bivariate samples
Suppose we perform an experiment which allow us to measure two quantities X and Y.
A sample of N measured values of X and Y denoted by

CN (X,Y ) := {(x1, y1) , .., (xN , yN )}

and CN (X) , CN (Y ) denote the univariate associated data samples called marginal data samples.
The Cartesian plot of CN (X,Y ) is called scatter diagram and gives us a qualitative criterion to
see if there is a functional dependence between X and Y.

Sample Covariance and Sample Correlation Coefficient

A quantitative measure of the relationship between two experimental quantities X and Y are the
statistics sample covariance

sX,Y :=
1

N − 1

N∑
i=1

(xi − x̄) (yi − ȳ)

and sample correlation coefficient

rX,Y :=
sX,Y

sXsY
=

∑N
i=1 (xi − x̄) (yi − ȳ)√∑N

i=1 (xi − x̄)2
√∑N

i=1 (yi − ȳ)2
.
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If Z = AX +B,W = CY +D, with A,B,C,D constants indipendent of the data of CN (X,Y ) ,

sZ,W = ACsX,Y ,

rZ,W =
AC

|A| |C|
rX,Y .

Hence,

rX,Y is a pure number i.e. its value does not depend on the mesurement sytem,∣∣rX,Y ∣∣ ≤ 1 and
∣∣rX,Y ∣∣ = 1⇐⇒ Y = AX +B, in particular

rX,Y =

{
+1 if A > 0
−1 if A < 0

.

In this last case the parameters A and B are called regression parameters.
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Introduction to Inferential Statistics

Each time we perform an experiment and mesure X, despite the fact that we start with the same
experimental condition we produce a different measured value of X. How to deal with this fact?
We can assume the outcomes of an experiment to be that of a random variable.
Given a set Ω, let F be a σalgebra of subsets of Ω, that is a collection of subsets of Ω such that:

Ω ∈ F ;

if A ∈ F , then Ac := Ω\A ∈ F ;

any finite or denumerable union of elements of F is in F .

The couple (Ω,F) is called mesurable space. A probability measure on (Ω,F) is a non-negative
function

F 3 A 7−→ P (A) ∈ [0, 1]

such that if {Ai}i∈N ⊂ F is a collection of mutually disjoint subsets of Ω, that is

∀i, j ∈ N, i 6= j, Ai ∩Aj = ∅, P
(⋃

i∈N Ai
)

=
∑
i∈N P (Ai) .

The triple (Ω,F ,P) is called probability space. A random variable (r.v.) is a map ξ : Ω −→ R
such that, if B (R) denotes the σalgebra generated by the open subsets of R, with respect to the
Euclidean topology, ∀B ∈ B (R) , ξ−1 (B) ∈ F . Hence, ξ maps a probability measure P on (Ω,F)
to the probability measure Pξ on (R,B (R)) such that ∀B ∈ B (R) , Pξ (B) = P

(
ξ−1 (B)

)
.
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The function,
R 3 x 7−→ Fξ (x) := P {ω ∈ Ω : ξ (ω) ≤ x} ∈ [0, 1]

is called distribution function of the r.v. ξ and has the following properties:

Fξ is non-decreasing;

limx↓−∞ Fξ (x) = 0 , limx↑+∞ Fξ (x) = 1;

Fξ is right-continuous and has left limits. Hence so Fξ has at most jump discontinuities and
the collection of points at which Fξ is discontinuous is at most denumerable.

Notice that ∀a, b ∈ R such that a < b,

Pξ (a, b) = Pξ(a, b] = Fξ (b)− Fξ (a)

and ∀x ∈ R,
Pξ (x) = lim

ε↓0

(
Fξ (x)− Fξ (x− ε)

)
= Fξ (x)− Fξ

(
x−
)
.
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Definition

A r.v. ξ is said to be:

absolutely continuous with respect to the Lebesgue measure (a.c.), if there exists a positive
function fξ, called probability density of ξ, such that ∀x ∈ R,

Fξ (x) =

∫ x

−∞
dyfξ (y) ;

discrete, if Fξ is a step function. In this case, denoting by S the set of jump points of Fξ
and by

ps := P {ω ∈ Ω : ξ (ω) = s} , s ∈ S ,

we have
Fξ (x) =

∑
y∈S : y≤x

ps .
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Given a r.v. ξ, ∀k ∈ N, the quantity

E
(
ξk
)

:=

{ ∫
R dxfξ (x)xk if ξ is a.c.∑
x∈S x

kPξ (x) if ξ is discrete
.

is called moment of ξ of order k. Moreover, the moment of ξ of order 1 is called expectation
value of ξ, while the quantities

V ar (ξ) := E
[
(ξ − E (ξ))2

]
= E

(
ξ2
)
− E

(
ξ2
)
≥ 0

and
√
V ar (ξ) are called respectively variance of ξ and standard deviation of ξ.

Example

(Gaussian and Normal r.v’s) ξ is a Gaussian r.v. of parameters µ ∈ R and σ > 0 (ξ ∈ N (µ, σ)) , if

fξ (x) = g (x|µ, σ) =
1

√
2πσ

e
− (x−µ)2

2σ2 .

Notice that E (ξ) = µ, V ar (ξ) = σ2. If µ = 0 and σ = 1, ξ is called normal r.v..
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Example

(Bernoulli r.v’s) ξ is a Bernoulli r.v. of parameter p ∈ (0, 1) (ξ ∈ Ber (p)) if it is discete and
|S| = 2. Therefore, setting S = {s1, s2} , with s1 < s2, and ps2 = p,

Fξ (x) = (1− p)1(s1,s2] (x) + 1(s2,+∞) (x) .

Notice that if s1 = 0, s2 = 1, E (ξ) = p and V ar (ξ) = p (1− p) .

Example

(Poisson r.v’s) ξ is a Poisson r.v. of parameter λ > 0 (ξ ∈ Poi (λ)) if

Fξ (x) = e−λ
∑

k∈N : 0≤k≤x

λk

k!
.

Notice that E (ξ) = V ar (ξ) = λ.

Remark

Given a r.v. ξ such that E (ξ) ,E
(
ξ2
)
<∞, the r.v. ξ̃ :=

ξ−E(ξ)√
V ar(ξ)

has expectation value zero

and unitary variance. Hence, in the Gaussian case, if ξ ∈ N (µ, σ) then ξ̃ ∈ N (0, 1) .
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Definition

A map ξ : Ω −→ Rn, n ≥ 2, such that ∀B ∈ B (Rn) :=
⊗n
i=1 B (R) , ξ−1 (B) ∈ F , is called

random vector. In other words, ξ is a vector in Rn whose components are the r.v’s ξ1, .., ξn. The
function

Rn 3 (x1, .., xn) 7−→ Fξ (x1, .., xn) := P {ω ∈ Ω : ξ1 (ω) ≤ x1, .., ξ1 (ω) ≤ xn} ∈ [0, 1]

is called distribution function of ξ.

Definition

Two r.v’s ξ, η, are said to be (stochastically) independent if considering the random vector
ζ = (ξ, η) , ∀ (x, y) ∈ R2, we have

Fζ (x, y) = Fξ (x)Fη (y) .

Given collection of r.v’s {ξ1, .., ξn} this is said to be composed by (stochastically) independent
elements if the vector ξ = (ξ1, .., ξn) has (stochastically) independent components.

Definition

A sequence {ξn}n∈N of r.v’s is said to converge in distribution to a r.v. ξ if the sequence of
functions {Fn}n∈N , with Fn := Fξn , converges to Fξ at any point of continuity of Fξ.
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Outcome of an experiment as a random variable
We can model the outcome of our experiment as the possible realization of a random variable ξX .
Hence a data sample CN (X) represents a possible realization of the collection of N i.i.d.r.v’s{
ξXi
}N
i=1

.

Which is the probability distribution of ξX?
Usually this is a priori not known, anyway we can make use of the following general results:

Theorem

(Law of Large Numbers) Let {ξi}i∈N be a sequence of i.i.d.r.v. such that E (ξ1) <∞. Then,

P

{
ω ∈ Ω : lim

N→∞

∣∣∣∣∣ 1

N

N∑
i=1

ξi (ω)− E (ξ1)

∣∣∣∣∣ 6= 0

}
= 0 .

Theorem

(Central Limit Theorem) Let {ξi}i∈N be a sequence of i.i.d.r.v. such that E (ξ1) and

E
(
ξ2
1

)
<∞. The sequence of r.v. {ηN}N∈N , where ηN :=

√
N
[

1
N

∑N
i=1 ξ̃i

]
, converges in

distribution to a standard normal r.v..
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Let us set PX := PξX . ∀N ∈ N, let
{
aNk
}
k∈Z to be an increasing sequence of real numbers such

that

∀k ∈ Z, a(N)
k+1 − a

(N)
k = ∆N is independent of k;

R =
⋃
k∈Z

(aNk , a
N
k+1];

{∆N}N∈N is a decreasing sequence tending to 0.

∀k ∈ Z, we define the r.v.

Ω 3 ω 7−→ ϕ̄
(N)
k (X) (ω) :=

∑N
i=1 1(

a
(N)
k

,a
(N)
k+1

] (ξXi (ω)
)

N∆N
∈ R

representing, ∀ω ∈ Ω, the relative frequency of the associated realization of the data subsample
BkN (X) ⊂ CN (X) divided by the diameter of the partition ∆N . Moreover,

Eϕ̄(N)
k (X) =

PX
(
a

(N)
k , a

(N)
k+1

]
∆N

.
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Let us then consider the map

Ω× R 3 (ω, x) 7−→ φ̄
(N)
X (x;ω) :=

∑
k∈Z

ϕ̄
(N)
k (X) (ω)1(

a
(N)
k

,a
(N)
k+1

] (x) ∈ R ,

which:

∀ω ∈ Ω, φ̄
(N)
X (·;ω) is a real function;

∀x ∈ R, φ̄(N)
X (x; ·) is a r.v.

and notice that the r.v. defined by the series

Ω 3 ω 7−→
∑
k∈Z

ϕ̄
(N)
k (X) (ω) ∆N ∈ R

is nothing else but the integral over R of φ̄
(N)
X whose expectation value is,by definition, equal to

1. Therefore, we can define the map

Ω× R 3 (ω, x) 7−→ F̄
(N)
X (x;ω) :=

∫ x

−∞
dyφ̄

(N)
X (y;ω) ∈ [0, 1] ,

which is called empirical partition function and has the following properties:

∀ω ∈ Ω, F̄
(N)
X (·;ω) represents the relative frequency of the data of the associated

realization of the sample CN (X) falling in (−∞, x] , i.e. F̄
(N)
X (·;ω) is the distribution

function of a r.v. which we denote by ξ
(N)
X ;

∀x ∈ R, F̄ (N)
X (x; ·) is a r.v..
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Making use of the Law of Large Numbers, the sequence of functions {F̄ (N)
X } converges pointwise

to the distribution function FX (x) of ξX . Therefore, we can assume that, if the size N of the
data sample CN (X) is very large, the relative frequency of the data falling into a given interval
[a, b] ⊆ R of possible values of the measures of X, called empirical relative frequency of [a, b] , is

1

N

N∑
i=1

1[a,b]

(
ξXi

)
= PX (a, b] + εN ,

where the error in the aproximation εN is such that limN↑∞ εN = 0.

Now we know how to recover operationally the probability distribution of ξX , that is of the
measured values of X, even if it is unknown. Unfortunately, usually we do not possess enough
data to minimize the error we make in approximating such probability distribution with the
empirical relative frequency.
On the other hand, by the Central Limit Theorem, we know that the sequence

{
ηXN
}
N∈N ,

where ηXN =
√
N
[

1
N

∑N
i=1 ξ̃

X
i

]
, converges in distribution to a normal r.v. even if we have no

knowledge of the distribution of ξX . Therefore, in the following, we stick to the Gaussian case in
which the distribution of ξX is completely specified by the parameters µ and σ.
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Statistics

In the framework of Inferential Statistics the word statistic refers to r.v’s which are functions of
the collection of i.i.d.r.v’s

{
ξXi
}N
i=1

whose outcomes are all the possible data sample CN (X) we
can produce performing our experiment.

1st Consideration

In general, the distribution function of ξX , that is of the measured values of X, is unknown, but
in some case we can guess its functional form as a function of some unknown parameters.
Therefore, in this case, the problem of the identification of the probability distribution of the
measures of X is reduced to the identification of the parameters specifying the distribution of ξX .
For example, in the Gaussian case, the distribution is completely specified by the expectation
value µ and by the variance σ.

2nd Consideration

Let Fθ be the distibution function of ξX . Since we have a finite amount of data, we can estimate
the values of these parameters in such a way that the large is the sample the more accurate is our
estimation. To do this, we can define certain statistics t

(
ξX1 , .., ξ

X
N

)
, called estimator of the

parameter θ, whose expectation value is exactly the value of the parameter θ we need to know to
specify completely Fθ and whose probability distribution will concentrate on θ.
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The Maximum Likelihood method

Suppose our data sample CN (X) is the outcome of a collection of i.i.d. r.v’s N (µ, σ) . Then if
CN (X) = {x1, .., xN},

PX (CN (X)) =
N∏
i=1

g (xi|µ, σ) dxi .

Since µ and σ are not known, we can estimate them choosing those functions of the data that

maximizing the quantity
N∏
i=1

g (xi|µ, σ) called likelyhood function of (µ, σ) , or, which is the same,

minimizing its logarithm.
This method is particularly useful in the case we are given a bivariate data sample CN (X,Y )
such that the absolute value of the associated correlation coefficient is close to 1 and hence we
want to estimate from the data of the sample the regression parameters linking the experimental
quantities X and Y.
Given a bivariate data sample CN (X,Y ) , without loss of generality, suppose X is modeld by a
Gaussian r.v. of variance σ2 and Y = AX +B. The likelyhood function is then

N∏
i=1

g (yi|µi, σ) =
N∏
i=1

g (yi|Axi +B, σ) =
e
−
∑N
i=1

[yi−(Axi+B)]2

2σ2

(2π)
N
2 σN

.
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remark

Notice that maximizing
N∏
i=1

g (yi|µi, σ) is equivalent to minimize

N∑
i=1

[yi − (Axi +B)]2

2σ2
,

this is why this analysis in the Gaussian case is also called Least Squares Method.

Therefore, the estimated values for A and B are Ǎ (x1, .., xN ; y1, ..yN ) =
sX,Y
s2
X

B̌ (x1, .., xN ; y1, ..yN ) = ȳ − sX,Y
s2
X

x̄
.

Exercise

Analyse the bivariate data sample

(51, 74) (68, 70)
(97, 93) (55, 67)
(95, 99) (74, 73)
(20, 33) (91, 91)
(74, 80) (80, 86)

.
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The weighted mean

Suppose M research groups perform the same experiment producing each a data sample
CNi (X) , i = 1, ..,M of Gaussian r.v’s. It can be proven (see what stated in the following
section) that the sample mean is the best estimator of the value of X. How to deal with the fact
that we have M of such values? We can consider the collection of these sample mean {x̄1, ..x̄M}
as a data sample CM (X) and apply the Maximum Likelihood Method under the hypothesis that
the variance of the Gaussian r.v. ξi modeling the outcome of the i-th data sample CNi (X) can
be approximated by the sample variance of the CNi (X)’s. Hence,

M∏
i=1

g
(
x̄i|µ, sX,i

)
=

M∏
i=1

e
− (x̄i−µ)2

2s2
X,i

√
2πsX,i

=
e
−
∑M
i=1

(x̄i−µ)2

2s2
X,i

(2π)
M
2

M∏
i=1

sX,i

,

which gives back as best estimate of X

x̆ =

∑M
i=1

1
s2
X,i

x̄i∑M
i=1

1
s2
X,i

.

Remark

Notice that the smaller is the sample variance of a data sample of our collection, i.e. the sharper
is the probability distribution of the ξi’s, the larger is the weight of the sample mean in the
convex combination x̆.
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Introduction to parametric hypothesis tests

Suppose the outcome of the measurement process of an experimental quantity X is modeled by a
r.v. ξX with distribution function Fθ.
We take into account, together with the two previous consideration,

3rd Consideration

We can formulate an hypothesis on the value of the parameter θ which usually in Statistics is
called null Hypothesis and denoted by H0. Then, to test if our data sample verify or not the
statement constituting the null hypothesis we will identify a subset of possible outcomes of{
ξXi
}N
i=1

called critical region such that such that if the data values fall in this region the
hypothesis is rejected, otherwise is accepted.
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Remark

It is important to note when developing a procedure for testing a given null hypothesis that two
different types of errors can result. The first of these, called a type I error, is said to result if the
test incorrectly calls for rejecting H0 when it is indeed correct. The second, called a type II error,
results if the test calls for accepting H0 when it is false.

Since the goal of the statistical testing is not to explicitly determine whether or not H0 is true
but rather to determine if the data sample is consistent with its validity, the classical approach to
testing the null hypothesis is to fix a value α, called significance level, and then require that the
test have the property that the probability of a type I error occurring can never be greater than α.
Therefore, the critical region to the test the null hypothesis H0 : θ ∈W ⊂ R will be then

identified with the subset of possible outcomes of
{
ξXi
}N
i=1

for which the probability of the
resulting value of an estimator of θ to fall outside W is smaller than or equal to the significance
level α.
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The Gaussian case

To deal with Gaussian samples we need to introduce other two probability distributions.

Definition

Let {ξi}ni=1 be a collection of N (0, 1) i.i.d. r.v’s. The probability distribution of the r.v.

ζ :=
n∑
i=1

ξ2
n

is called χ2-distribution with n degrees of freedom
(
ζ ∈ χ2

n

)
.

Definition

Let ζ ∈ χ2
n and ξ ∈ N (0, 1) be stochastically independent r.v’s. The probability distribution of

the r.v.

η :=
ξ
√
ζ

is called (Student) t-distribution with n degrees of freedom (η ∈ Tn) .
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Let our data sample CN (X) be the outcome of a collection
{
ξXi
}N
i=1

of N (µ, σ) i.i.d.r.v’s. The
statistics we will consider are:

the empirical mean

ξ̄XN :=
1

N

N∑
i=1

ξXi

whose possible outome is the sample mean and whose probability distribution is Gaussian
with parameter µ and σ√

N
;

the empirical variance

(
SXN

)2
:=

1

N − 1

N∑
i=1

(
ξXi − ξ̄XN

)2

=
1

N − 1

N∑
i=1

[(
ξXi

)2
−
(
ξ̄XN

)2
]

whose possible outcome is the sample variance and whose expectation value is σ2.

Furthermore the probability distribution of the r.v. (N−1)

σ2

(
SXN
)2

is a χ2-distribution with
N − 1 degrees of freedom.

Remark

We remark that the expectation value of the empirical mean and of the empirical variance is
always respectively the expectation value and the variance of ξX . Moreover, in the Gaussian case,
these two r.v’s are stochastically independent.
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The Pearson χ2 test

How can we understand if the data sample we have produced is composed by the outcomes of a
collection of Gaussian i.i.d.r.v’s?
Here is a criterion to establish if the data sample CN (X) issued from our experiment is or not
compatible with the hypothesis of being an outcome of a collection of N i.i.d.r.v’s N (x̄, sX) .
Let us partiton R in 2 (K + 1) disjoint intervals setting

R = (−∞, x̄] ∪ (x̄,+∞) ;

∀k = 0, ..,K − 1,

Ak+1 := (x̄+ ksX , x̄+ (k + 1) sX ] ,

A−(k+1) := (x̄− (k + 1) sX , x̄− ksX ] ;

AK+1 := (x̄+KsX ,+∞) , A−(K+1) := (−∞, x̄−KsX) .

Hence,

(x̄,+∞) =

K−1⋃
k=0

Ak+1

⋃
AK+1 , (−∞, x̄] =

K−1⋃
k=0

A−(k+1)

⋃
A−(K+1) .
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The Pearson χ2 test (continued)

Then,∀l ∈ {− (K + 1) , ..,−1} ∪ {1, ..,K + 1}, let

Ol := |{x ∈ CN (X) : x ∈ Al}| =
N∑
i=1

1Al (xi)

be the observed frequencies of the data subsamples of CN (X) associated to the elements of the
partition {Ak}k∈{−(K+1),..,−1}∪{1,..,K+1} of R. Let also,
∀k ∈ {− (K + 1) , ..,−1} ∪ {1, ..,K + 1},

Ek := N

∫
Ak

dxg (x|x̄, sX) .

remark

By the symmetry of the Gaussian probability density function

g (x− x̄|x̄, sX) = g (− (x− x̄) |x̄, sX) ,

∀k = 1, ..,K + 1, Ek = E−k so it sufficient to compute just the Ek’s.

Michele GianfeliceDepartment of MathematicsUniversity of CalabriaPonte Pietro Bucci - Cubo 30BI-87036 Arcavacata di Rende (CS)gianfelice@mat.unical.it ()Introduction to Statistics February the 3rd, 2011 33 / 37



The Pearson χ2 test (continued)

If we choose K such that:

1 K ≥ 1 and is smaller than N ;
2 the Ok are always positive;

we can define the quantity

χ̄2 :=
1

2 (K + 1)− 3

K∑
k=1

[
(Ok − Ek)2

Ek
+

(O−k − E−k)2

E−k

]
called normalized χ2 which is the outcome of the statistic [2 (K + 1)− 3]X2 which, for large size
of the sample N is distributed as χ2 with 2 (K + 1)− 3 degrees of freedom r.v.. Hence, if the
deviation of Ok from Ek is small enough χ̄2 will be close to 0 and the hypothesis of CN (X)
being generated by the outcome of a N (x̄, sX) r.v. will be plausible.

TEST Given a data sample of size N, the hypothesis that the data are the outcomes of
a r.v. N (x̄, sX) is accepted if χ̄2 ≤ 1 otherwise is rejected.

Exercise

Test the hypothesis that the following data sample is N (x̄, sX) .

16 20 21 23 34 38 22 33 23 18
17 34 49 55 60 49 45 45 44 41
44 34 38 35 20 23 22 33 46 22
29 24 38 18 35 26 20 36 28 39
17 31 26 32 16 40 32 27 28 17
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The t-test

We want to test the hypothesis that our data sample CN (X) represents the outcomes of a
Gaussian r.v. N (µ, σ) where µ is equal to a given value µ0. Hence,

H0 : µ = µ0 .

Let t denote the observed value of the test statistic T =

√
N(ξ̄XN−µ0)

SX
N

∈ TN−1. Then compute

the probability that |T | would exceed |t| . This is called p-value of the test. The test then calls for
rejection at all significance levels α higher than the p-value and acceptance at all lower
significance levels.

Exercise

Given the data sample

31 33 35 39 41 43 45 47 51 53
55 57 61 63 65 67 69 71 75 77
79 81 87 89 91 97 29 59 73 49

test the hypothesis H0 : µ = 62.

Michele GianfeliceDepartment of MathematicsUniversity of CalabriaPonte Pietro Bucci - Cubo 30BI-87036 Arcavacata di Rende (CS)gianfelice@mat.unical.it ()Introduction to Statistics February the 3rd, 2011 35 / 37



Test on the variance of a Gaussian sample

We want to test the hypothesis that our data sample CN (X) represents the outcomes of a
Gaussian r.v. N (µ, σ) where σ is equal to a given value σ0. Hence,

H0 : σ2 = σ2
0 .

Let s denote the observed value of the test statistic S = (N − 1)
(SXN )2

σ2
0
∈ χ2

N−1. Then compute

the probabiliy that S is smaller than s. The quantity

p = 2 (P {S < s} ∧ 1− P {S < s})

is called p-value of the test. The test then calls for rejection at all significance levels α higher
than the p-value and acceptance at all lower significance levels.

Exercise

Given the data sample of the previous exercise, test the hypothesis H0 : σ2 = 361.
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