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Preface

These are working notes of the workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP) 2009, collocated with the 25th International
Conference on Logic Programming (ICLP) 2009 in Pasadena, California, USA.

Since its introduction in the 1990s, answer set programming (ASP) has been
widely applied to various knowledge-intensive tasks and combinatorial search
problems. ASP was found to be closely related to SAT, which has led to a new
method of computing answer sets using SAT solvers and techniques adapted
from SAT. While so far this has been the most studied relationship, identifying
links between ASP and other computing paradigms, such as constraint satisfac-
tion, quantified Boolean formulas (QBF), first-order logic (FOL), or databases,
to name just a few, is the subject of active research.

The contributions brought about by these studies are manifold: New methods of
computing answer sets are being developed, based on the relation between ASP
and other paradigms, such as the use of pseudo-Boolean solvers, QBF solvers,
and FOL theorem provers. New and improved languages are proposed, inspired
by language constructs found in related paradigms. In a somewhat orthogonal
way, languages or tasks in other research areas are reduced to ASP, one of the
main benefits being that a computational engine is thereby automatically pro-
vided. Furthermore, language and solver integration is facilitated, allowing for
multi-paradigm problem-solving; currently the integration of ASP with descrip-
tion logics (in the realm of the Semantic Web) and constraint satisfaction are
the main focus of this type of activity.

This workshop aims at facilitating the discussion about crossing the boundaries
of current ASP techniques, in combination with or inspired by other computing
paradigms. It is the second workshop of its kind after ASPOCP 2008, which
was also collocated with ICLP in December 2008 in Udine, Italy. Despite the
relatively short period between the first workshop and this second edition, and
despite the submission phase having been in a very busy period of the year,
we are happy to have received 6 submissions, of which 5 were accepted for
presentation. We thank the contributors for their efforts to provide material of
high quality, we thank the program committee members and reviewers for their
valuable help to guarantee and improve the quality of the workshop, and last
but not least the ICLP officials for making this workshop possible and for their
smooth cooperation.

Wishing you all an informative and enjoyable workshop,

Wolfgang Faber, University of Calabria, Italy
Joohyung Lee, Arizona State University, USA
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A Module-Based Framework for
Multi-Language Constraint Modeling?

Matti Järvisalo, Emilia Oikarinen, Tomi Janhunen, and Ilkka Niemelä

Helsinki University of Technology TKK
Department of Information and Computer Science

P.O. Box 5400, FI-02015 TKK, Finland
matti.jarvisalo@tkk.fi,emilia.oikarinen@tkk.fi,
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Abstract. We develop a module-based framework for constraint modeling where
it is possible to combine different constraint modeling languages and exploit their
strengths in a flexible way. In the framework a constraint model consists of mod-
ules with clear input/output interfaces. When combining modules, apart from
the interface, a module is a black box whose internals are invisible to the out-
side world. Inside a module a chosen constraint language (approaches such as
CP, ASP, SAT, and MIP) can be used. This leads to a clear modular semantics
where the overall semantics of the whole constraint model is obtained from the
semantics of individual modules. The framework supports multi-language mod-
eling without the need to develop a complicated joint semantics and enables the
use of alternative semantical underpinnings such as default negation and classical
negation in the same model. Furthermore, computational aspects of the frame-
work are considered and, in particular, possibilities of benefiting from the known
module structure in solving constraint models are studied.

1 Introduction

There are several constraint-based approaches to solving combinatorial search and op-
timization problems: constraint programming (CP), answer set programming (ASP),
mixed integer programming (MIP), linear programming (LP), Boolean satisfiability
checking (SAT) and its extension to satisfiability modulo theories (SMT). Each has
its particular strengths: for example, CP systems support global constraints, ASP re-
cursive definitions and default negation, LP constraints on real-valued variables, and
SAT efficient solver technology. In larger applications it is often necessary to exploit
the strengths of several languages and to reuse and combine available components. For
example, in scheduling problems involving a large amount data and constraints, multi-
language modeling can be very useful (as also exemplified in this paper in Sect. 5).

In this work we develop a module-based framework for modeling complex prob-
lems with constraints using a combination of different modeling languages. Rather than
taking one language as a basis and extending it, we develop a framework for multi-
language modeling where different languages are treated on equal terms. The starting
? This work is financially supported by Academy of Finland under the project Methods for

Constructing and Solving Large Constraint Models (grant #122399).
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point is to use modules with clear input/output (I/O) interfaces. When combining mod-
ules, apart from the interface, a module is a black box whose internals are invisible to
the outside world. Inside a module a chosen constraint language (for example, CP, ASP,
MIP) with its normal semantics can be used. In this way a clear modular semantics is
obtained: the overall semantics of the whole constraint model (consisting of modules)
is obtained by “composing” the semantics of individual modules.

We see substantial advantages of this approach for modeling. The clean module in-
terfaces enable support for multi-language modeling without the need to develop a com-
plicated joint semantics capturing arbitrary combinations of special constraints avail-
able in different languages. It is also possible to use alternative semantical underpin-
nings such as default negation and classical negation in the same model. The module-
based approach brings the benefits of modular programming to developing constraints
models and enables to create libraries to enhance module reuse. It also improves elabo-
ration tolerance and facilitates maintaining and updating a constraint model. Moreover,
extending the approach with further languages is conceptually straightforward.

Computational aspects of the framework are also promising. Module interfaces and
separation of inputs and outputs can be exploited in decision methods, for example, with
more top-down solution techniques where the overall output of the constraint model can
be used to identify the relevant parts of the model. The module-based approach allows
optimizing the computational efficiency of a model in a structured way: a module can
be replaced by another (more optimized) version without altering the solutions of the
model as long as the I/O relation of the module is not changed. Similarly, the framework
supports modular testing, validation, and debugging of constraint models.

This module-based framework for multi-language modeling seems to be a novel
approach. Several approaches to adding modularity to ASP languages [1–5] have been
proposed. However, in these approaches modular multi-language modeling is not di-
rectly supported although the combination of propositional ASP and SAT modules is
studied in [5]. A large number of extended modeling languages have also been previ-
ously proposed. On one hand, ASP languages have been extended with constraints or
other externally defined relations (see [6–11] for examples). On the other hand, Pro-
log systems have been extended with ASP features [12–15]. Extended modeling lan-
guages have been developed also for constraint programming, including ESRA [16],
ESSENCE [17], and Zinc [18]. However, none of the approaches supports modular
multi-language modeling where different languages are treated on equal terms. Instead,
they can all be seen as extensions of a given basic language with features from other
languages.

The rest of this paper is organized as follows. As preliminaries, we first give a
generic definition of a constraint and related notation (Sect. 2). Then constraint mod-
ules, the basic building blocks of module systems, are introduced (Sect. 3). The lan-
guage of module systems, based on composing constraint modules, is discussed in
Sect. 4. Then, in Sect. 5 we discuss how the framework can be instantiated in prac-
tice: A larger application is considered in order to illustrate the issues arising in using a
multi-language modeling approach, and the required language interface for construct-
ing a multi-language module system is sketched. Before conclusions (Sect. 7), com-
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putational aspects, and especially, possibilities of benefiting from the explicit modular
constraint model description when solving such a model are highlighted (Sect. 6).

2 Constraints

In this section we introduce necessary concepts and notation related to the generic con-
cept of constraints applied in this work. These serve as basic building blocks for con-
straint modules which are then combined to form complex constraint models.

Let X be a set of variables. For each variable x ∈ X , we associate a set of values
D(x), called the domain of x. Given a set X ⊆ X of variables, an assignment over X
is a function

τ : X →
⋃
x∈X

D(x),

which maps variables in X to values in their domains. A constraint C over a set of
variables X is characterized by a set Solutions(C) of assignments over X , called the
satisfying assignments of C. We denote by Vars(C) the set X of variables.

It is important to notice that, since the satisfying assignments solely characterize the
constraint, this generic way of describing constraints does not specify how a constraint
should be implemented, i.e. the modeling language and semantics used for realizing the
constraint declaratively remain unspecified.

Example 1. Let C be a constraint over a set of Boolean variables {a, b}, i.e., D(a) =
D(b) = {t, f}, characterized by Solutions(C) = {τ1, τ2}, where τ1 = {a 7→ t, b 7→ f}
and τ2 = {a 7→ f, b 7→ t}. Now, C can be implemented, for example, as a normal logic
program {a ← ∼b. b ← ∼a} or as a disjunctive logic program {a ∨ b ←} in ASP, or
as a conjunctive normal form (CNF) formula {a ∨ ¬b,¬a ∨ b} in SAT.

Given an assignment τ and a set of variables X , the projection πX(τ) of τ on X is
the assignment that maps each variable x ∈ X for which τ(x) is defined to τ(x). For
instance, the projection π{a}(τ1) for τ1 from Example 1 is the assignment π{a}(τ1) =
{a 7→ t} over the set {a}.

Given a constraint C, and an assignment τ over a set X of variables, the restriction
C[τ ] of C to τ is characterized by

Solutions(C[τ ]) = {τ ′ ∈ Solutions(C) | πVars(C)∩X(τ ′) = πVars(C)∩X(τ)}.

For instance, let τ3 = {b 7→ f} be an assignment over {b}. Now, the restriction
C[τ3] of C from Example 1 is a constraint characterized by {τ1} ⊆ Solutions(C), i.e.,
Solutions(C[τ3]) = {τ1}.

Given two constraints C and C′, an assignment τ over Vars(C) is compatible with an
assignment τ ′ over Vars(C′) if πVars(C)∩Vars(C′)(τ) = πVars(C)∩Vars(C′)(τ ′). The union
τ ∪ τ ′ of two compatible assignments, τ and τ ′ over X and X ′, respectively, is the
assignment over X ∪X ′ mapping each x ∈ X to τ(x) and each x ∈ X ′ \X to τ ′(x).

Example 2. Let C′ be a constraint over a set of Boolean variables {b, c} characterized
by Solutions(C′) = {τ ′} such that τ ′ = {b 7→ f, c 7→ f}. Consider C from Example 1.
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The assignment τ1 is compatible with τ ′, because {a, b} ∩ {b, c} = {b} and τ1(b) =
f = τ ′(b). On the other hand, τ2 is not compatible with τ ′, because τ2(b) = t 6= τ ′(b).
The union τ1 ∪ τ ′ = {a 7→ t, b 7→ f, c 7→ f} is an assignment over the set {a, b, c}.

3 Constraint Modules

The view to constructing complex constraint models proposed in this work is based on
expressing such models as module systems. Module systems are built from constraint
modules which are combined together in a controlled fashion. In this section we in-
troduce the generic concept of a constraint module. Constraint modules are based on
a chosen constraint, with the addition of an explicit I/O interface. Our definition for a
constraint module is generic in the sense that it does not insist on a specific implementa-
tion of the constraint on the declarative level. The aim here is to allow implementing the
constraint using different declarative languages, offering the implementer of a module
the possibility to choose the constraint language and the semantics.

Definition 1. A constraint moduleM is a triple 〈C, I,O〉, where

– C is a constraint; and
– I and O define the I/O interface ofM:
• I ⊆ Vars(C) is the input specification ofM,
• O ⊆ Vars(C) is the output specification ofM, and
• I ∩ O = ∅.

A module M is thus a constraint with a fixed I/O interface. In analogy to the
characterization of a constraint, a module M = 〈C, I,O〉 is characterized by a set
Solutions(M) of assignments over I ∪O called the satisfying assignments of the mod-
ule. Given a constraint moduleM = 〈C, I,O〉 and an assignment τI over I, the set of
consistent outputs ofM w.r.t. τI is

SolutionOut(M, τI) := {πO(τ) | τ ∈ Solutions(C[τI ])}.

The satisfying assignments of a module are obtained by considering all possible input
assignments.

Definition 2. Given a constraint moduleM = 〈C, I,O〉, the set Solutions(M) of sat-
isfying assignments ofM is the union of the sets {τO∪τI | τO ∈ SolutionOut(M, τI)}
for all assignments τI over I.

Those variables in Vars(C) which are not in I∪O are local toM; the assignments in
Solutions(M) do not assign values to them. Notice that the possibility of local variables
enables encapsulation and information hiding. A module offers through its I/O interface
to the user a black-box implementation of a specific constraint. The idea behind this
abstract way of defining a module is that, looking from the outside of a module when
using the module as a part of a constraint model, the user is interested in the input-
output relationship, i.e., the functionality of the module. This can be highlighted by
making explicit the conditions under which two modules are considered equivalent.
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Definition 3. Two constraint modules, M1 = 〈C1, I1,O1〉 and M2 = 〈C2, I2,O2〉,
are equivalent, denoted by M1 ≡ M2, if and only if I1 = I2, O1 = O2, and
Solutions(M1) = Solutions(M2).

Example 3. ConsiderM = 〈C, {a}, {b}〉, where a and b are Boolean variables, and let
Solutions(M) = {τ1, τ2} where τ1 = {a 7→ t, b 7→ f} and τ2 = {a 7→ f, b 7→ t}.
Since τ1 and τ2 are the same as in Example 1,M can be implemented using any of the
implementations of the constraint described in Example 1.

Moreover, the set of variables used in implementing C is not limited to {a, b}. For
instance, a logic program module [4] 〈P, I,O〉 = 〈{c ← ∼a. b ← c}, {a}, {b}〉 is
an implementation of C such that Solutions(C) = {τ3, τ4} where τ3 = {a 7→ t, b 7→
f, c 7→ f} and τ4 = {a 7→ f, b 7→ t, c 7→ t}.1 Now, there are two possible assign-
ments over {a}. If τI = {a 7→ t} we obtain SolutionOut(M, τI) = {π{b}(τ3)} since
Solutions(C[τI ]) = {τ3} as τ3(a) = τI(a) = t. For the other possible input assign-
ment τ ′I = {a 7→ f}, we obtain SolutionOut(M, τ ′I) = {π{b}(τ4)}. Finally, note that
τI ∪ π{b}(τ3) = τ1 and τ ′I ∪ π{b}(τ4) = τ2. Thus, Solutions(M) = {τ1, τ2}.

4 Module Systems

In this section we discuss how larger module systems are built from individual con-
straint modules. The idea is that module systems are constructed by connecting smaller
module systems through the I/O interfaces offered by such systems. In other words,
similarly as constraint modules, a module system has an I/O interface, and constraint
modules are seen as primitive module systems. We will start by introducing a formal
language for expressing such systems and then introduce the semantics for module sys-
tems which are well-formed.

Definition 4 (The language of module systems).

1. All constraint modules are module systems.
2. If M is a module system and X is a set of variables, then πX(M) is a module

system.
3. IfM andM′ are module systems, then (M .M′) is a module system.

Notice that Definition 4 is purely syntactical. Our next goal is to define the semantics
for more complex module systems as we have already defined the semantics of individ-
ual constraint modules. This is achieved by formalizing the semantics of operators πX
and .; intuitively, πX offers a way of filtering the output of a module system, whereas
. is used for composing two module systems into one.

Let us denote by Input(M) and Output(M) the input and output of a module
systemM, respectively. We start by defining the conditions under which two module
systems are composable and independent.

1 Notice that unlike other formalisms mentioned so far, the logic program modules in [4] already
facilitate I/O interfaces, and their semantics differs from the standard stable model semantics
since input variables have a classical interpretation.
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Definition 5 (Composable and independent module systems). Two module systems
M1 andM2 are composable if Output(M1)∩Output(M2) = ∅.Module systemM1

is independent from module systemM2 if Input(M1) ∩ Output(M2) = ∅.
The composability property is used to ensure that if two module systems interfere with
each others’ output, they cannot be put together. The independence property allows us
to ensure that two modules are not in cyclic dependency. Note that the independence of
M1 fromM2 does not imply thatM2 is independent fromM1.

When composing module systems, we have to take into account their dependencies.

Definition 6 (Module composition). Given two composable module systemsM1 and
M2, their compositionM1 .M2 is defined if and only ifM1 is independent fromM2.
NowM1 .M2 is a module system that has the following I/O-interface:

– Input(M1 .M2) = Input(M1) ∪ (Input(M2) \ Output(M1))
– Output(M1 .M2) = Output(M1) ∪ Output(M2)

and

Solutions(M1 .M2) = {(τ1 ∪ τ2) | τ1 ∈ Solutions(M1), τ2 ∈ Solutions(M2),
and τ2 is compatible with τ1}.

Notice that in the compositionM1 .M2, module systemsM1 andM2 interact though
the variables in Output(M1) ∩ Input(M2).

Example 4. LetM = 〈C, {a}, {n}〉 andM′ = 〈C′, {n}, {m}〉 be constraint modules
where a is a Boolean variable, D(n) = D(m) = {1, 2, 3}, Solutions(M) = {τ1}, and
Solutions(M′) = {τ2, τ3} where τ1 = {a 7→ f, n 7→ 3}, τ2 = {n 7→ 1,m 7→ 1}, and
τ3 = {n 7→ 3,m 7→ 2}. SinceM is independent fromM′, their compositionM .M′
is defined. Notice that n ∈ Output(M) ∩ Input(M′) provides the connection between
M and M′, i.e., n ∈ Output(M) is the input for M′ because Input(M′) = {n}.
Furthermore, Input(M.M′) = {a}, Output(M.M′) = {n,m}, and Solutions(M.
M′) = {τ1 ∪ τ3}, because τ1 is not compatible with τ2 and τ1 is compatible with τ3.

As a special case, the empty module E is a constraint module such that Input(E) =
Output(E) = ∅ and Solutions(E) = {τe}, where τe is the empty assignment. Note that,
given any module systemM, both E .M andM.E are defined, and E .M≡M.E ≡
M.

Definition 7 (Projecting output of a module system). Given a module system M
and set of variables O, the module system πO(M) is defined if and only if O ⊆
Output(M). Now πO(M) is a module system that has the following I/O interface:
Input(πO(M)) = Input(M), Output(πO(M)) = O, and

Solutions(πO(M)) = {πO∪Input(M)(τ) | τ ∈ Solutions(M)}.
Example 5. Consider the module systemM .M′ from Example 4 and assume that we
are not interested in the values assigned to n. Thus, we consider the projectionMπ =
π{m}(M.M′). Now Input(Mπ) = {a}, Output(Mπ) = {m}, and Solutions(Mπ) =
{τπ} where τπ = π{a,m}(τ1 ∪ τ3) = {a 7→ f,m 7→ 2}.
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We are interested in so called well-formed module systems that respect the condi-
tions for applying . (independence) and πX (projection is focused on output).

Definition 8 (Well-formed module system). A module system is well-formed if each
composition and projection operation is defined in the sense of Definitions 6 and 7.

Determining whether an arbitrary module system is well-formed consists of a syn-
tactic check on the compositionality and compatibility of the I/O interfaces (.) and sub-
set relation (π). From now on we use the term module system to refer to a well-formed
module system. The graph formed by taking into account the input-output dependen-
cies of parts of a module system is directed and acyclic, and is referred to as the module
dependency graph. More precisely, the module dependency graph of a given module
system M has the set of constraint modules appearing in M as the set of vertices.
There is a edge from a constraint moduleM1 to moduleM2 if and only if at least one
output variable ofM1 is an input variable ofM2.

By definition, the semantics of a well-formed module system is compositional: com-
patible solutions for individual parts form a solution for the whole system and a solution
for the module system gives solutions for the individual parts.

Remark 1. Operators for . and πX provide flexible ways for building complex mod-
ule systems. Additional operators useful in practice can be defined as combinations of
these basic operators. For instance, by combining composition with projection we ob-
tainM1 IM2 defined as πOutput(M2)(M1 .M2). One could also be interested in a
non-deterministic choice of solutions for M1 and M2 (denoted M1 ∪M2) or com-
mon solutions forM1 andM2 (denotedM1 ∩M2). In order to defineM1 ∪M2 and
M1 ∩M2, we cannot assume thatM1 andM2 are composable. However, even these
operators can be expressed in terms of composition and projection using an additional
renaming scheme for variables.

5 Module Systems in Practice

We now outline how the framework for module systems developed in the previous sec-
tion can be instantiated in practice. In Section 5.1 we present an example application
from the university timetabling domain in order to point out issues arising in a multi-
language modeling scenario. The example illustrates advantages of using the module-
based framework in such applications. The modularity of the framework supports a
structured modeling approach which enhances the development, maintenance, and up-
dating of the constraint model. Moreover, the approach makes it possible to use multiple
modeling languages in a clean modular way taking advantage of their best features. For
example, ASP languages provide an intuitive way of expressing recursive definitions,
defaults, and exceptions. On the other hand, CP languages offer a wide selection of
global constraints for specific modeling purposes. In Section 5.2 we sketch the required
language interface for constructing a multi-language module system.
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5.1 Modular Representation for the Timetabling Domain

For illustrating multi-language modeling, we describe components involved in a mod-
ular constraint model for university timetabling, variants of which have previously
been formalized, e.g., as a Boolean satisfiability, as a constraint satisfaction problem
(CSP) [19], and as a logic program [20, Appendix].

Designing a feasible weekly schedule for events related to courses in a university
curriculum is a challenging task. The problem is not just about allocation time and
space resources; the interdependencies of courses and the respective events give rise to
a rich body of constraints. When modeling the domain, one needs to express the mutual
exclusion of events as regards, e.g., placing any two events in the same lecture hall at
the same time. A straightforward representation of such a constraint with clauses or
rules may require quadratic space. In contrast, a very concise encoding of this aspect of
the domain can be obtained using global constraints such as all-different or cumulative
typically supported by constraint programming systems which also offer powerful prop-
agation techniques for such constraints. On the other hand, there are features which are
cumbersome to describe in CP. For example, exceptions like the temporary unavailabil-
ity of a particular lecture hall in a timetable are easy to represent with non-monotonic
rules such as those used in ASP. Moreover, rules provide a flexible way of defining new
relations on the basis of existing ones.

eventData resourcesData

event

dataViews

lecturer

allDifferent

...

... ...
maxResource

intint

testAllocation

allocation

resourceOf

occurs ...

session day
roomCapacity

resource

Main

maxEvent
room

Rel(int,int)

Fig. 1. Example of a Module System
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The structure of a modular constraint model for the university timetabling domain
is depicted in Fig. 1. The individual constraint modules involved in the model serve
the following purposes. The two ASP modules at the bottom define relations specific
to a particular problem instance. The first module, eventData, defines which events are
involved in the problem. The second, resourcesData, formalizes the time and space re-
sources available for scheduling. For the sake of simplicity, it is assumed that the five
days of the week subject to scheduling are divided into three 4-hour sessions: morn-
ing, afternoon, and evening. An individual resource is conceptualized as a pair 〈r, s〉
where r is a room and s is a session. The ASP module on top of these two modules,
dataViews, defines a number of subsidiary relations, such as ROOM(r) (available rooms)
and LECTURER(l) (involved lecturers), on the basis of the basic relations provided by
modules eventData and resourcesData which together determine the problem instance
in question. In particular, the dimensions of a problem instance are determined dynam-
ically. To this end, the relations MAXEVENT(n) and MAXRESOURCE(m) are supposed
to hold (only) for the respective numbers of events n and resources m.

After suitable type conversions—represented by the circles in Fig. 1—these two pa-
rameters serve as input for the CP module allDifferent whose purpose is to assign dif-
ferent resources (represented by integers in the range 1 . . .m) to all events (represented
by an array of integers indexed by 1 . . . n). Through such a conversion, a constraint li-
brary implementation of allDifferent which works only on integer-valued variables can
be directly used. The resulting array of assignments of integers, RESOURCEOF, is then
converted to a relation for events e and resources r and the ASP module allocation is
used to restore the representation of resources as integers back to pairs of rooms and
sessions. The outcome relation OCCURS(e, r, s) denotes the fact that an event e takes
place in room r during session s. The topmost module testAllocation ensures that the
given allocation of resources to events, i.e., the relation OCCURS(e, r, s) meets further
criteria of interest. For instance, one could insist on the property that sessions related
with a particular lecture hall are always reserved in a continuous manner, i.e., no gaps
are allowed between reservations in the respective schedule.

5.2 Language Interface for Combining Constraint Modules

Referring to the theory developed in Sect. 3 and 4, we distinguish two types of module
declarations. An individual constraint module is written in a particular constraint lan-
guage accompanied by appropriate I/O interface specifications. The language of each
constraint module is declared using an identifier “SAT”, “ASP”, “CP”, etc. A module
system is effectively a definition of the interconnections between submodules encapsu-
lated by it. Since module systems are not confined to a particular constraint language
the identifier “SYSTEM” is used. In addition, simple type converters are declared when
needed, as outlined above.

In practice, a module system is not described as an expression (recall Definition 4)
using explicitly composition and projection operators. Instead, it is very useful to give
primitive constraint module descriptions as schemata which can be reused by instanti-
ating them with appropriate input and output variables. To support this we follow an ap-
proach which handles module instantiation and composition simultaneously. Modules
are instantiated using a declaration [outputlist]= modulename(inputlist);
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#module ASP dataViews
(Rel(int, string, string, int, string, int) event,
Rel(int, string, int) resource,
Rel(int) session,
Rel(string,int) roomCapacity)

[Rel(int) maxEvent,
Rel(int) maxResource,
Rel(string) room,
Rel(string) lecturer]

% Determine problem dimensions
eventId(I) :- event(I,CC,T,D,L,C).
maxEvent(I) :- eventId(I), not eventId(I+1).
resourceId(I) :- resource(I,R,S).
maxResource(I) :- resourceId(I), not resourceId(I+1).

% Rooms and personnel
room(R) :- resource(I,R,S).
lecturer(L) :- event(I,CC,l,D,L,C), L!=noname.

...

#endmodule

#module SYSTEM main()

% Data (problem instance)
[event] = eventData();
[day,session,resource,roomCapacity] =
resourcesData();

% Different views of data
[maxEvent, maxResource, room, lecturer] =
dataViews(event,resource,session,roomCapacity);

% Allocating resources
[resourceOf] =
allDifferent(indexOfTrueElement(maxEvent),

indexOfTrueElement(maxResource));

% Recover rooms and sessions from resources
[occurs] = allocation(resource,

arrayToRel(resourceOf));

% Checking the feasibility allocation
[] = testAllocation(occurs);

#solve[occurs]

#endmodule

Fig. 2. Examples of a constraint module and a module system as illustrated in Fig. 1

where modulename is the name of the module being instantiated, and inputlist
and outputlist are the lists of input and output variables, respectively. This al-
lows for writing a module composition M1 .M2 as suitable module instantiations:
[x1, x2, . . .] = M1(. . .); [. . .] = M2(x1, x2, . . .); where appropriate output variables
ofM1 are used as input variables ofM2. A module system is described as a sequence
M1;M2; . . . ;Mn; of such instantiation declarations which is acyclic, i.e., output vari-
ables ofMi cannot be used as input variables for anyMj , j ≤ i. This guarantees that
the set of declarations can be seen as a well-formed compositionM′1 . (M′2 . (. . . .
M′n) . . .) whereM′is are the corresponding instantiated constraint modules. The pro-
jection operator is handled implicitly in the instantiation of modules. For the top level of
a module system we provide an explicit projection operator as the #solve[·] directive
for defining the actual output variables of the whole module system.

A simplified example of a constraint module and a module system is given in Fig. 2.
Each module description begins with a header line. The keyword “#module” is fol-
lowed by (i) the language identifier, e.g., SAT, ASP, CP, or SYSTEM, (ii) the name of the
module, and (iii) the specification of input and output variables enclosed in parenthe-
ses “(...)” and brackets “[...]”, respectively. The types of variables are declared
using elementary types (int, string, . . . ) and type constructors such as Rel.2 Lo-
cal variables (if any) and their types are declared with lines that begin with the keyword
#type. A module description ends with a line designated by a keyword #endmodule.
The module instantiation declarations need to be well-typed, i.e., the given input and
output variables must conform to the module interfaces. The top-level module is distin-
guished by the reserved name main and the #solve directive for defining the output
variables of the whole module system can be used only there.

2 Description of a complete typing mechanism is beyond the scope of this paper. For now, we
aim at type specifications which allow for static type checking.
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6 Computational Aspects and Benefits of the Modular Approach

In this section we consider computational aspects related to module systems. First we
analyze how certain computational properties of individual constraint modules are re-
lated to those of more complex module systems. Then we show how the structure of a
module system can be exploited when one is interested in finding a satisfying assign-
ment for a subset of the output variables of the module system.

We describe computational properties of a constraint module under the terms check-
able, solvable, and finite output for fixed input, defined as follows.

Definition 9. A constraint moduleM = 〈C, I,O〉
– is checkable if and only if given any assignment τ over the variables in I ∪ O, it

can be decided whether τ ∈ Solutions(M);
– is solvable if and only if there is a computable function that, given any assignment
τ over the variables in I, returns τ ′ ∈ SolutionOut(M, τ) if such an assignment
exists, and reports unsatisfiability otherwise; and

– has FOFI (finite output for fixed input) if and only if (i) the set SolutionOut(M, τ)
is finite for any assignment τ over the variables in I, and (ii) there is a com-
putable function that, given any assignment τ over the variables in I, outputs
SolutionOut(M, τ).

The knowledge about a specific property for constraint modules M and M′ is not
necessarily enough to guarantee that the property holds for a module system obtained
by composition and/or projection operations fromM andM′. Clearly, ifM andM′
are checkable constraint modules, thenM.M′ is checkable, too. Solvability ofM and
M′ does not, however, imply thatM.M′ is solvable. For instance, letM = 〈C, ∅, {a}〉
and M′ = 〈C′, {a}, {b}〉 be solvable constraint modules such that Solutions(M) =
{{a 7→ 1}, {a 7→ 2}}, Solutions(M′) = {{a 7→ 2, b 7→ 2}}, andM .M′ is defined.
Assume that the computable function for M always returns τ = {a 7→ 1}. Now,
SolutionOut(M′, τ) = ∅, and this would lead us to think that Solutions(M.M′) = ∅.
But this is in contradiction with Solutions(M .M′) = {a 7→ 2, b 7→ 2}. If we in
addition assume thatM andM′ have the FOFI property, thenM.M′ is solvable and,
moreover, has the FOFI property.

For projection, the situation is slightly different. If M is a checkable constraint
module, then πO(M) is not necessarily checkable for O ⊂ Output(M). Given an
assignment τ over Input(M) ∪ O ⊂ Input(M) ∪ Output(M), we cannot decide
whether τ ∈ Solutions(πO(M)) because we do not know the assignment for vari-
ables in Output(M) \ O. If, in addition,M is solvable, then using the projection τ ′ of
τ to Input(M) we can compute τ ′′ ∈ SolutionOut(M, τ ′) and the projection of τ ′′ to
O. Thus πO(M) is solvable (and checkable).

The discussion above is summarized in the following proposition.

Proposition 1. Let M and M′ be constraint modules s.t. M .M′ is defined, and
O ⊆ Output(M). IfM andM′ are checkable, thenM .M′ is checkable. IfM is
solvable, then πO(M) is solvable. IfM andM′ have FOFI, thenM.M′ and πO(M)
have FOFI.
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Next we underline conditions under which parts of a module system can be ne-
glected when solving a constraint model based on that system. Namely, we define the
cone-of-influence reduction for module systems, which is based on the concepts of total
module systems and don’t care variables.

Definition 10. A constraint module M is total if SolutionOut(M, τ) 6= ∅ for all as-
signments τ over Input(M).

IfM1 andM2 are total module systems such thatM1 .M2 is defined, thenM1 .M2

is total. Furthermore πO(M) is total for any totalM and O ⊆ Output(M).
Seen as a black-box entity, testing totality from the outside is hard even on the

level of constraint modules. However, if the declarative implementation of the module
is known, there are easy-to-test syntactic conditions guaranteeing totality. For example,
in Boolean circuit satisfiability, we know that if no gate of a circuit is constrained to a
specific truth value, any module implemented with such a Boolean circuit is total. In
practice, when implementing reusable modules for inclusion in a module library, the
totality of a module could be explicitly declared in the module interface specification.

Definition 11. Given a constraint moduleM, x ∈ Input(M), and y ∈ Output(M),
we say that x is aM-don’t care w.r.t. y, if for any assignment τ over Input(M) \ {x},
{π{y}(τ ′) | τ ′ ∈ SolutionOut(M, τ∪τ1)} = {π{y}(τ ′) | τ ′ ∈ SolutionOut(M, τ∪τ2)}
for all pairs of assignments τ1, τ2 for x.

As in the case of totality, in general checking whether a given input variable is a
don’t care is hard when constraint modules are seen as black-box entities. But again, if
the declarative implementation of the module is known, there are easy-to-test syntactic
conditions which guarantee that a variable is a don’t care. For example, if a CNF for-
mula can be split into two disjoint components, i.e., sets of clauses which do not share
variables. A similar check can be done, e.g., for ASP programs and CSP instances.

In addition to totality and don’t cares, we use the concept of relevant I/O variables.
Let CM(M) denote the set of constraint modules appearing in a module system M.
For instance, ifM = πO(M1 .M2) then CM(M) = {M1,M2}.
Definition 12. Given a module system M and O ⊆ Output(M), the set of relevant
I/O variables inM w.r.t. O, denoted by Rel(M,O), is the smallest set S of variables
that fulfills the following conditions:

– O ⊆ S.
– Input(M′) ⊆ S for each non-totalM′ ∈ CM(M).
– If y ∈ S, then for each totalM′ ∈ CM(M) such that y ∈ Output(M′),
{x ∈ Input(M′) | x is notM′-don’t care w.r.t. y} ⊆ S.
The cone-of-influence reduction is used in disregarding parts of a module system in

the case we are only interested in the values assigned to a subset of the output of the
system.

Definition 13. Given a module systemM and a set X of variables, the module system
reductionM|X is defined as follows.

12



– IfM is a constraint module, then

M|X =
{E (the empty module) , if Output(M) ∩X = ∅ andM is total
M , otherwise.

– IfM is of the formM1 .M2, thenM|X = (M1|X .M2|X).
– IfM is of the form πO(M′), thenM|X = πOutput(M′|X)∩O(M′|X).

Given a module systemM and a set of variables O, the cone-of-influence reduction of
M w.r.t. O is the module systemM|Rel(M,O).

For finding a satisfying assignment for O ⊆ Output(M) of a module systemM,
one needs to consider only the subsystemM|Rel(M,O) ofM.

Proposition 2. Given a module system M and a set of variables O ⊆ Output(M),
then {πO(τ) | τ ∈ Solutions(M)} = {πO(τ) | τ ∈ Solutions(M|Rel(M,O))}.

Example 6. Consider the module systemM = (M1 .M2) . (M3 .M4) illustrated
in Fig. 3. Thus, Input(M) = {a, b, c} and Output(M) = {d, e, f, g}. The constraint
moduleM2 represented with gray in Fig. 3 is not total, while the other constraint mod-
ules in CM(M), i.e.,M1,M3, andM4, are total. Assume that, in addition, it is known
that e and f areM4-don’t cares w.r.t. g. Assume that we are only interested in finding
a satisfying assignment for O = {g}. By Proposition 2 we can exploit the cone-of-
influence reduction. The set of relevant I/O variables Rel(M,O) = X = {a, b, c, d, g}
because O ⊆ Rel(M,O), Input(M2) ⊆ Rel(M,O), d is not M4-don’t care w.r.t.
g ∈ Output(M4), and a and b are notM1-don’t cares w.r.t. d ∈ Output(M1). Using
the set of relevant I/O variables, the cone-of-influence reduction ofM w.r.t. O is

M|Rel(M,O) = (M1 .M2)|X . (M3 .M4)|X
= (M1|X .M2|X) . (M3|X .M4|X)
= (M1 .M2) . (E .M4)
= (M1 .M2) .M4.

M2

d f g e

f

d e

M3

M4

M1

b ca

Fig. 3. A module system
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7 Conclusions

We develop a generic framework for module-based constraint modeling using multiple
modeling languages within the same model. Within the framework, constraint models
are constructed as module systems which are composed of constraint modules each
having a clean input/output interface specification. This approach has many interesting
properties. First of all, individual constraint modules can be implemented using a con-
straint language most suitable for modeling the constraint in question. The approach
paves the way for reusable constraint module libraries and also allows for multiple
modelers to implement parts of a constraint model in parallel. Our framework supports
modular multi-language modeling by treating different constraint languages on equal
terms whereas previous approaches can be seen as extensions of a given basic language
with features from other languages. The modular construction of constraint models as
module systems yields in itself a structured view to the model which can be exploited
when solving the model. We describe a system level cone-of-influence reduction, which
allows parts of the module system to be disregarded when solving a constraint model,
without the need to consider properties specific to the constraint languages employed
in implementing the individual constraint modules.

One of the main goals of this paper is to provide foundations for developing meth-
ods for solving constraint satisfaction problems expressed using the multi-language
framework. A number of interesting approaches can be studied. In a hybrid system
individual constraint modules (or parts of the module system modeled using the same
constraint language) are solved using a solver aimed at the language and the multiple
language specific solvers interact to compute solutions to the whole constraint model. In
a translation-based approach all parts of the model are mapped into a single constraint
language for which highly efficient off-the-shelf solvers are available. For example,
there is interesting recent work on bit-blasting more general CSP models into SAT [21].
Another interesting paradigm is the extension of SAT to Satisfiability Module Theories
(SMT), into which e.g. stable model computation can be very compactly encoded [22].
Additionally, the modular structure of module systems poses interesting research top-
ics such as harnessing the I/O interfaces in developing novel decision heuristics and
devising techniques to instantiate and ground module schemata lazily.
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Abstract In this paper we describe an approach for integrating answer set pro-

gramming (ASP) and constraint programming, in which ASP is viewed as a

specification language for constraint satisfaction problems. ASP programs are

written in such a way that their answer sets encode the desired constraint satis-

faction problems; the solutions of those problems are then found using constraint

satisfaction techniques. Differently from other methods of integrating ASP and

constraint programming, our approach has the advantage of allowing the use of

off-the-shelf, unmodified ASP solvers and constraint solvers, and of global con-

straints, which substantially increases the practical applicability of the approach

to industrial-size problems.

1 Introduction

Answer Set Programming (ASP) [1,2,3] is a declarative programming paradigm with

roots in the research on non-monotonic logic and on the semantics of default negation

of Prolog.

In recent years, ASP has been applied successfully to solving complex problems (e.g.

[4,5]), and the underlying language has been extended in various directions to broaden

its applicability even further (e.g. [6,7]).

Particular interest has been recently devoted to the integration of ASP with Constraint

Logic Programming (CLP) (see [8,9] and the clingcon system1), aimed at combining

the ease of knowledge representation of ASP with the powerful support for numerical

computations of CLP. Such approaches are based on an extension of the ASP language,

and on the use of answer set and constraint solvers modified to work together. Although

the combination of ASP and CLP showed substantial performance improvements over

ASP alone, the restriction of using ad-hoc ASP and CLP solvers limits the practical

applicability of the approach. In fact, programmers can no longer select the solvers

that best fit their needs (most notably, SMODELS, DLV, SWI-Prolog and SICStus Pro-

log), as is instead commonly done in ASP. Another limit for the practical applicability

of the approach is the lack of specific support for global constraints. Without global

constraints, applications’ performance is often heavily impacted by the combinatorial

1 http://www.cs.uni-potsdam.de/clingcon/

16



explosion of the underlying search space, even for relatively small (compared to the

intended application domain) problem instances.

In this paper we describe an approach for integrating ASP and constraint program-

ming, in which ASP is viewed as a specification language for constraint satisfaction

problems. ASP programs are written in such a way that their answer sets encode the

desired constraint satisfaction problems; the solutions to those problems are found us-

ing constraint satisfaction techniques. Both the answer sets and the solutions to the

constraint problems can be computed with arbitrary off-the-shelf solvers, as long as a

(relatively simple) translation procedure is defined from the ASP encoding of the con-

straint problems to the input language of the constraint solver selected. Moreover, our

approach allows the use of the global constraints available in the selected constraint

solver. Compared to the other approaches to the integration of ASP and CLP, our tech-

nique allows programmers to exploit the full power of the state-of-the-art solvers when

tackling industrial-size problems.

The paper is organized as follows. We start by giving background notions of ASP and

constraint satisfaction. In Section 3, we describe our encoding of constraint satisfaction

problems in ASP and define its semantics. In Section 4 we explain how to compute

the solutions to the constraint problems encoded by the answer sets of ASP programs.

Section 5 compares our approach with existing research on integrating ASP and CLP.

In Section 6, we draw conclusions.

2 Background

The syntax and semantics of ASP are defined as follows. Let Σ be a signature contain-

ing constant, function and predicate symbols. Terms and atoms are formed as usual.

A literal is either an atom a or its strong (also called classical or epistemic) nega-

tion ¬a. The sets of atoms and literals formed from Σ are denoted by atoms(Σ) and

literals(Σ) respectively.

A rule is a statement of the form:2

h← l1, . . . , lm, not lm+1, . . . , not ln (1)

where h and li’s are literals and not is the so-called default negation. The intuitive

meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no rea-

son to believe {lm+1, . . . , ln}, has to believe h. We call h the head of the rule, and

{l1, . . . , lm, not lm+1, . . . , not ln} the body of the rule. Given a rule r, we denote its

head and body by head(r) and body(r) respectively.

A program is a pair 〈Σ,Π〉, where Σ is a signature and Π is a set of rules over Σ.

Often we denote programs by just the second element of the pair, and let the signature

be defined implicitly. In that case, the signature of Π is denoted by Σ(Π).

2 For simplicity we focus on non-disjunctive programs. Our results extend to disjunctive pro-

grams in a natural way.
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A set A of literals is consistent if no two complementary literals, a and ¬a, belong to

A. A literal l is satisfied by a consistent set of literals A if l ∈ A. In this case, we write

A |= l. If l is not satisfied byA, we writeA 6|= l. A set {l1, . . . , lk} of literals is satisfied

by a set of literals A (A |= {l1, . . . , lk}) if each li is satisfied by A.

Programs not containing default negation are called definite. A consistent set of literals

A is closed under a definite program Π if, for every rule of the form (1) such that the

body of the rule is satisfied by A, the head belongs to A.

Definition 1. A consistent set of literals A is an answer set of definite program Π if

A is closed under all the rules of Π and A is set-theoretically minimal among the sets

closed under all the rules of Π .

The reduct of a program Π with respect to a set of literals A, denoted by ΠA, is the

program obtained from Π by deleting:

– Every rule, r, such that l ∈ A for some expression of the form not l from the body

for r;

– All expressions of the form not l from the bodies of the remaining rules.

We are now ready to define the notion of answer set of a program.

Definition 2. A consistent set of literals A is an answer set of program Π if it is an

answer set of the reduct ΠA.

To simplify the programming task, variables are often allowed to occur in ASP pro-

grams. A rule containing variables (called a non-ground rule) is then viewed as a short-

hand for the set of its ground instances, obtained by replacing the variables in it by all

the possible ground terms. Similarly, a non-ground program is viewed as a shorthand

for the program consisting of the ground instances of its rules.

Let us now turn our attention to Constraint Programming. In this paper we follow the

traditional definition of constraint satisfaction problem. The one that follows is adapted

from [10]. A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉, where X =
{x1, . . . , xn} is a set of variables, D = {D1, . . . ,Dn} is a set of domains, such that

Di is the domain of variable xi (i.e. the set of possible values that the variable can be

assigned), and C is a set of constraints.3 Each constraint c ∈ C is a pair c = 〈σ, ρ〉
where σ is a list of variables and ρ is a subset of the Cartesian product of the domains

of such variables.

An assignment is a pair 〈xi, a〉, where a ∈ Di, whose intuitive meaning is that variable

xi is assigned value a. A compound assignment is a set of assignments to distinct vari-

ables from X . A complete assignment is a compound assignment to all the variables in

X .

3 Strictly speaking, the use of the same index i across sets X and D in the above definition of

the set of domains would require X and D to be ordered. However, as the definition of CSP is

insensitive to the particular ordering chosen, we follow the approach, common in the literature

on constraint satisfaction, of simply considering X and D sets and abusing notation slightly

in the definition of CSP.
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A constraint 〈σ, ρ〉 specifies the acceptable assignments for the variables from σ. We

say that such assignments satisfy the constraint. A solution to a CSP 〈X,D,C〉 is a

complete assignment satisfying every constraint from C.

Constraints can be represented either extensionally, by specifying the pair 〈σ, ρ〉, or

intensionally, by specifying an expression involving variables, such as x < y. In this

paper we focus on constraints represented intensionally. A global constraint is a con-

straint that captures a relation between a non-fixed number of variables [11], such as

sum(x, y, z) < w and all different(x1, . . . , xk).

One should notice that the mapping of an intensional constraint specification into a

pair 〈σ, ρ〉 depends on the constraint domain. For example, the expression 1 ≤ x < 2
corresponds to the constraint 〈〈x〉, {〈1〉}〉 if the finite domain is considered, while it

corresponds to 〈〈x〉, {〈v〉 | v ∈ [1, 2)}〉 in a continuous domain. For this reason, and

in line with the CLP Schema [12,13], in this paper we assume that a CSP includes the

specification of the intended constraint domain.

3 Representing constraint problems in ASP

Our approach consists in writing ASP programs whose answer sets encode the desired

constraint satisfaction problems (CSPs). The solutions to the CSPs are then computed

using constraint satisfaction techniques.

CSPs are encoded in ASP using the following three types of statements.

– A constraint domain declaration is a statement of the form:

cspdomain(D)

where D is a constraint domain such as fd, q, or r. Informally, the statement states

that the CSP is over the specified constraint domain, thereby fixing an interpretation

for the intensionally specified constraints.

– A constraint variable declaration is a statement of the form:

cspvar(x, l, u)

where x is a ground term denoting a variable of the CSP (CSP variable or con-

straint variable for short), and l and u are numbers from the constraint domain. The

statement informally states that the domain of x is [l, u].4

– A constraint statement is a statement of the form:

required(γ)

where γ is an expression that intensionally represents a constraint on (some of)

the variables specified by the cspvar statements. Intuitively the statement says that

4 As an alternative, the domain of the variables could also be specified using constraints. We use

a separate statement for similarity with CLP languages.
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the constraint intensionally represented by γ is required to be satisfied by any so-

lution to the CSP. For the purpose of specifying global constraints, we allow γ to

contain expressions of the form [δ/k]. If δ is a function symbol, the expression

intuitively denotes the sequence of all variables formed from function symbol δ
and with arity k, ordered lexicographically.5 For example, if given CSP variables

v(1), v(2), v(3), [v/1] denotes the sequence 〈v(1), v(2), v(3)〉. If δ is a relation

symbol and k ≥ 1, the expression intuitively denotes the sequence 〈e1, e2, . . . , en〉
where ei is the last element of the ith k-tuple satisfying relation δ, according to

the lexicographic ordering of such tuples. For example, given a relation r′ defined

by r′(a, 3), r′(b, 1), r′(c, 2) (that is, by tuples 〈a, 3〉, 〈b, 1〉, 〈c, 2〉), the expression

[r′/2] denotes the sequence 〈3, 1, 2〉.

Example 1. The following sets of statements encode simple CSPs:

A1 =
{cspdomain(fd),
cspvar(v(1), 1, 3), cspvar(v(2), 2, 5), cspvar(v(3), 1, 4),
required(v(1) + v(2) ≤ 4), required(v(2)− v(3) > 1),
required(sum([v/1]) ≥ 4)}

A2 =
{cspdomain(fd),
cspvar(start(j1), 1, 100), cspvar(start(j2), 25, 100),
cspvar(start(j3), 30, 80), cspvar(start(j4), 45, 150),
required(serialized([start/1], [duration/2]))}

In the rest of this paper, we consider signatures that contain:

– relations cspdomain, cspvar, required;

– constant symbols for the constraint domains FD, Q, andR
– suitable symbols for the variables, functions and relations used in the CSP;

– the numerical constants needed to encode the CSP.

Let A be a set of atoms formed from relations cspdomain, cspvar, and required. We

say that A is a well-formed CSP definition if:

– A contains exactly one constraint domain declaration;

– The same CSP variable does not occur in two or more constraint variable declara-

tions of A;

– Every CSP variable that occurs in a constraint statement from A also occurs in a

constraint variable declaration from A.

5 The choice of a particular order is due to the fact that global constraints that accept multiple

lists often expect the elements in the same position throughout the lists to be in a certain

relation. More sophisticated techniques for the specification of lists are possible, but, according

to our analysis of the use of global constraints in constraint satisfaction, this method should

work well in most cases.
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Example 2. The following is not a well-formed CSP definition:

{cspdomain(fd), cspvar(x, 1, 2), required(x < y)}.

On the other hand, the sets of atoms from Example 1 are well-formed CSP definitions.

Let A be a well-formed CSP definition. The CSP defined by A is the triple 〈X,D,C〉
such that:

– X = {x1, x2, . . . , xk} is the set of all CSP variables from the constraint variable

declarations in A;

– D = {D1,D2, . . . ,Dk} is the set of domains of the variables from X . The domain

Di of variable xi is given by arguments l and u of the constraint variable declaration

of xi in A, and consists of the segment between l and u in the constraint domain

specified by the constraint domain declaration from A.

– C is a set containing a constraint γ′ for each constraint statement required(γ) of

A. Constraint γ′ is obtained by:

1. Replacing the expressions of the form [f/k], where f is a function symbol, by

the list of variables from X formed by f and of arity k, ordered lexicographi-

cally;

2. Replacing the expressions of the form [r/k], where r is a relation symbol and

k ≥ 1, by the sequence 〈e1, . . . , en〉, where, for each i, r(t1, t2, . . . , tk−1, ei)
is the ith element of the sequence, ordered lexicographically, of atoms from A
formed by relation r;

3. Interpreting the resulting intensionally specified constraint w.r.t. the constraint

domain specified by the constraint domain declaration from A.

Example 3. Set A1 from Example 1 defines the CSP 〈X1,D1, C1〉:

– X1 = {v(1), v(2), v(3)}
– D1 = {{1, 2, 3}, {2, 3, 4, 5}, {1, 2, 3, 4}}
– C1 =

{
v(1) + v(2) ≤ 4, v(2)− v(3) > 1,
sum(v(1), v(2), v(3)) ≥ 4

}
Consider A2 from Example 1 and

I = {duration(j1, 20), duration(j2, 10),
duration(j3, 50), duration(j4, 60)}.

Set A2 ∪ I defines the CSP 〈X2,D2, C2〉:

– X2 = {start(j1), start(j2), start(j3), start(j4)}
– D2 = {{1, 2, . . . , 100}, {25, . . . , 100}, . . .}
– C2 =
{serialized([start(j1), start(j2), start(j3), start(j4)],

[20, 10, 50, 60])}
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Let A be a set of literals. We say that A contains a well-formed CSP definition if the

set of atoms from A formed by relations cspdomain, cspvar, and required is a well-

formed CSP definition. We also say that a CSP is defined by a set of literals A if it is

defined by the well-formed CSP definition contained in A. Notice that, if a set A of

literals does not contain a well-formed CSP definition, A does not define any CSP. For

simplicity, in the rest of the discussion we omit the term “well-formed” and simply talk

about CSP definitions.

Definition 3. A pair 〈A,α〉 is an extended answer set of program Π iff A is an answer

set of Π and α is a solution to the CSP defined by A.

Example 4. Consider set A1 from Example 1. An extended answer set of A1 is:

〈A1, {(v(1), 1), (v(2), 3), (v(3), 1)}〉.
Example 5. Consider the program:

P1 =



index(1). index(2). index(3). index(4).

cspdomain(fd).

cspvar(v(I), 1, 10)← index(I).

required(v(I1)− v(I2) ≥ 3)←
index(I1), index(I2),
I2 = I1 + 1.

An extended answer set of P1 is:

〈{index(1), . . . , index(4), cspdomain(fd),
cspvar(v(1), 1, 10), . . . , cspvar(v(4), 1, 10),
required(v(1)− v(2) ≥ 3), . . . ,
required(v(3)− v(4) ≥ 3)},
{(v(1), 10), (v(2), 7), (v(3), 4), (v(4), 1)}〉

Example 6. Consider the riddle:

“There are either 2 or 3 brothers in the Smith family. There is a 3 year difference

between one brother and the next (in order of age). The age of the eldest brother is

twice the age of the youngest. The youngest is at least 6 years old.”

A program, P2, that finds the solutions to the riddle is:

% There are either 2 or 3 brothers in the Smith family.

num brothers(2)← not num brothers(3).
num brothers(3)← not num brothers(2).

index(1).index(2).index(3).

is brother(B)←
index(B), index(N),
num brothers(N),
B ≤ N.

eldest brother(1).

22



youngest brother(B)←
index(B),
num brothers(B).

cspdomain(fd).

cspvar(age(B), 1, 80)← index(B), is brother(B).

% 3 year difference between one brother and the next.

required(age(B1)− age(B2) = 3))←
index(B1), index(B2),
is brother(B1), is brother(B2),
B2 = B1 + 1.

% The eldest brother is twice as old as the youngest.

required(age(BE) = age(BY ) ∗ 2)←
index(BE), index(BY ),
eldest brother(BE),
youngest brother(BY ).

% The youngest is at least 6 years old.

required(age(BY ) ≥ 6)←
index(BY ),
youngest brother(BY ).

An extended answer set of P2 is:

〈{num brothers(3),
cspvar(age(1), 1, 80), . . . , cspvar(age(3), 1, 80), . . .},
{(age(1), 12), (age(2), 9), (age(3), 6)}〉,

which states that there are 3 brothers, of age 12, 9, and 6 respectively. Notice that there

is no extended answer set containing num brothers(2).

4 Computing Extended Answer Sets

To compute the extended answer sets of a program, we combine the use of answer set

solvers and constraint solvers. The algorithm is as follows:

Algorithm Alg1
Input: program Π
Output: the set of extended answer sets of Π

1. E := ∅
2. Let A be the set of answer sets of Π containing a CSP definition.

3. For each A ∈ A:

(a) Select a constraint solver solveD for the constraint domain D specified by the

constraint domain declaration from A.

(b) Translate the CSP definition from A into an encoding χDA suitable for solveD.
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(c) Let S = {α1, . . . , αk} be the set of solutions returned by solveD(χDA).
(d) For each α ∈ S, E := E ∪ 〈A,α〉.

4. Return E .

As can be seen from step (3b), the algorithm relies on the correctness of the translation

from the CSP definition to the encoding for the constraint solver. More precisely:

Definition 4. A translation algorithm Trans from CSP definitions to encodings suit-

able for a constraint solver solve is correct if α is a solution to the CSP defined by A
iff α is one of the answers returned by solve(Trans(A)).

The following theorems deal with the soundness and completeness of Alg1. Their

proofs are not difficult, and are omitted to save space.

Theorem 1. Let Π be a program and Trans be a translation algorithm as above. If

〈A,α〉 ∈ Alg1(Π) and Trans is correct, then 〈A,α〉 is an extended answer set of Π .

Theorem 2. Let Π be a program and Trans be a translation algorithm as above. If

〈A,α〉 is an extended answer set of Π , Trans is correct, and the solver selected for A
at step (3a) of the algorithm is complete for χDA , then 〈A,α〉 ∈ Alg1(Π).

A convenient way to compute the solutions of the CSPs at step (3c) is to use the con-

straint solvers embedded in CLP systems. Therefore, we describe an algorithm to trans-

late from a CSP definition to a CLP program. The translation algorithm assumes that the

constraint variables that occur in the CSP definition being translated are legal ground

terms for the CLP system, or that a suitable mapping to legal terms has implicitly taken

place, and that the CLP system can handle all the constraint domains of interest. The

algorithm is based on the CLP Schema [12,13].

Algorithm ψ
Input: a CSP definition A
Output: a CLP program P

1. P := ∅
2. ν := ∅ { CLP variables for the encoding of the CSP }
3. θ := ∅ { body of the top-level clause of P }
4. Retrieve atom cspdomain(D) from A.

5. Add to P a directive:6

: − use module(library(cs))
where cs is a suitable constraint solver for constraint domain D (e.g. clpfd, clpr).

6. For each cspvar(x, l, u) ∈ A:

(a) ν := ν ∪ {Vx}, where Vx is a fresh CLP variable.

(b) θ := θ ∪ {Vx ≥ l, Vx ≤ u}.
7. For each required(γ1) ∈ A:

(a) Obtain γ2 from γ1 by replacing every expression of the form [f/k] in γ1,

where f is a function symbol, with the list of all the CSP variables of the form

f(t1, t2, . . . , tk) declared in A, ordered lexicographically.

6 We use the syntax of SICStus [14]. The translation for other CLP systems is similar.
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(b) Obtain γ3 from γ2 by replacing every expression of the form [r/k] in γ2, where

r is a relation symbol and k ≥ 1, by the list [e1, . . . , en], where, for each i,
r(t1, t2, . . . , tk−1, ei) is the ith element of the list, ordered lexicographically,

of atoms from A formed by r.

(c) Obtain γ4 from γ3 by replacing every occurrence of a CSP variable x in γ3 by

the corresponding Vx from ν.

(d) θ := θ ∪ {γ4}.
8. θ := θ ∪ {labeling(ν)}.7
9. λ := {(x, Vx) |x ∈ ν}.

10. P := P ∪ {solve(λ) : − θ}.
11. Return P .

Example 7. Consider the CSP definition

A3 =

 cspdomain(fd).
cspvar(x, 1, 5). cspvar(y, 1, 5).
required(x < y).

Its translation into CLP is:

ψ(A3) =



: − use module(library(clpfd)).

solve([(x, Vx), (y, Vy)]) : −
Vx ≥ 1, Vx ≤ 5,
Vy ≥ 1, Vy ≤ 5,
Vx < Vy,
labeling([Vx, Vy]).

Example 8. The CSP definition

A4 =


cspdomain(fd).
cspvar(var(a), 1, 5). cspvar(var(b), 2, 8).
duration(var(a), 4). duration(var(b), 2).
required(serialized([var/1], [duration/2])).

is translated by ψ into:

ψ(A4) =



: − use module(library(clpfd)).

solve([(var(a), Vx), (var(b), Vy)]) : −
Vx ≥ 1, Vx ≤ 5,
Vy ≥ 2, Vy ≤ 8,
serialized([Vx, Vy], [4, 2]),
labeling([Vx, Vy]).

The following theorem ensures the correctness of the translation.

7 To simplify the notation, we allow sets to occur in CLP programs, although, strictly speaking,

they would have to be encoded as Prolog lists.
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Theorem 3. The translation algorithm ψ is correct.

Proof. (Sketch)

According to Definition 4, we have to prove that, if A is a CSP definition, then α is

a solution to the CSP defined by A iff there exists a derivation from goal solve(S) in

ψ(A) that succeeds with substitution S|α.

Left-to-right. Let α be a solution to the CSP defined by A and let us prove that there

exists a derivation from goal solve(S) in ψ(A) that succeeds with substitution S|α.

Because the value assigned by α to each variable x is by definition within the domain

of the variable, the conditions added to the body of the clause for solve in step (6b)

are satisfied. Also, by definition α satisfies every constraint from the CSP defined by A.

Hence, it is not difficult to see that the conditions added to the body of the clause in step

(7d) are satisfied. Because all the conditions are satisfied by α, the call to predicate

labeling is bound to succeed, and the derivation is indeed successful.

Right-to-left. Now let α be such that goal solve(S) in ψ(A) succeeds with substitution

S|α, and let us prove that α is a solution to the CSP defined by A. First of all, notice

that, if goal solve(S) succeeds with substitution S|α, then all the conditions in the body

of the clause for solve must be satisfied. Since the call to labeling succeeds, all the Vx

variables are instantiated in α. Hence, α is a compound assignment, and moreover it

is a complete assignment by construction. Because the conditions added by step (6b)

are all satisfied, all the variables are guaranteed to have values within the respective

domains as specified in A. Finally, because the conditions added by step (7d) are all

satisfied, it is not difficult to conclude that the constraints from A are satisfied by α.

Hence, α is a solution to the CSP defined by A.

Q.E.D.

5 Related Work

The clingcon system8 integrates the answer set solver Clingo and the constraint solver

Gecode. The system thus differs significantly from ours in that programmers cannot

arbitrarily select the most suitable ASP and constraint solvers for the task at hand. As

the system is very recent, too little documentation is currently available about the system

for a thorough analysis.

The approach proposed by Mellarkod, Gelfond and Zhang [15,9] is based on an ex-

tension, AC(C), of the syntax and semantics of ASP and CR-Prolog allowing the use

of CSP-style constraints in the body of the rules. The assignment of values to the con-

straint variables is denoted by means of special atoms occurring in the body of the rules.

Such atoms are treated as abducibles, and their truth determined by solving a suitable

CSP. For example, an AC(C) program solving the same problem as the CSP defined in

8 http://www.cs.uni-potsdam.de/clingcon/
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Example 5 is:
val(1). val(2). . . . val(10).
#csort(val).

index(1). index(2). index(3). index(4).
var(v(I))← index(I).
#mixed has value(var, val).

← V 1− V 2 < 3,
has value(v(I1), V 1), has value(v(I2), V 2),
index(I1), index(I2), I2 = I1 + 1.

Because constraint-related atoms (e.g. V 1−V 2 < 3 above) are allowed to occur in the

body of the rules, in a sense this approach allows feeding the results of solving CSPs

back into the ASP computation, allowing for further inference. For example in [9] the

authors show an ASP program containing the rules:

acceptable time(T )← 10 ≤ T ≤ 20.
acceptable time(T )← 100 ≤ T ≤ 120.

¬occurs(A, S)← at(S, T ), not acceptable time(T ).

where the application of (one of the ground instances of) the last rule depends on the

solutions to the constraints in the first two rules.

In practice, though, many problems can be solved by first generating a partial answer

using (non-extended) ASP, and then completing the answer by solving a CSP. It is

remarkable that most of the examples of use of AC(C) from [9] are structured in this

way.

Problems that combine planning and scheduling are particularly good candidates for

this approach. In Example 2 from [9] the authors solve such a problem by dividing the

program in a planning and a scheduling part. The planning part is written with the usual

ASP planning techniques, while the scheduling part introduces the assignment of (wall-

clock) times to the steps of the plan and imposes suitable constraints. The problem can

be easily solved using our approach by replacing the scheduling part from [9] with the

following rules:

cspdomain(fd).

cspvar(at(S), 0, 1440).

required(at(S0) ≤ at(S1))←
next(S1, S0).

required(at(S)− at(0) ≤ 60)←
goal(S).

required(at(S0)− at(S1) ≤ −20)←
next(S1, S0),
occurs(go to(john, home), S0),
holds(at loc(john, office), S0).
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In fact, there is a whole subclass ofAC(C) programs that can be automatically translated

into “equivalent” ASP programs encoding suitable CSPs, as we show next.

Let us consider the class of AC0 programs without consistency restoring rules (from

now on simply called AC0 programs). We will show that these programs can be trans-

lated into ASP programs whose extended answer sets correspond to the answer sets of

the original programs.

We start by defining a translation from AC0 programs to ASP programs. For sim-

plicity, we assume that all mixed predicates in Π have a single constraint parame-

ter (extending to multiple constraint parameters is not difficult). Given a mixed atom

m(t1, t2, . . . , tk−1, tk) where ti’s are terms, we call functional representation of the

mixed atom the expression m(t1, t2, . . . , tk−1). For example, the functional represen-

tation of at(S0, T0) is at(S0).

Let Π be an AC0 program. The ASP-translation, Π ′, of Π is obtained from Π by:

– Adding a fact cspdomain(D), where D is an appropriate constraint domain.

– Replacing each declaration #mixed m(p1, p2, . . . , pk−1, pk) by a rule:

cspvar(m(X1,X2, . . . ,Xk−1), l, u)←
p1(X1), p2(X2), . . . , pk−1(Xk−1).

where l and u are the lower and upper bounds of constraint sort pk and Xi’s are

variables.9

– Replacing each denial in the middle part of Π of the form:

← Γ, c (2)

where c is the constraint literal, by a rule required(¬c′)← Γ ′, where c′ is obtained

by replacing every variable in c by the functional representation of the correspond-

ing mixed atom and Γ ′ is the set of regular literals from Γ . Notice that ¬c′ can

be typically simplified by replacing the comparison symbol in c′ appropriately. For

example, the denial, d1:

← goal(S), at(0, T1), at(S, T2), T2− T1 > 60

is replaced by the rule:

required(at(S)− at(0) ≤ 60)← goal(S).

In the rest of the discussion, the expression c(d) will denote the constraint, c, from

the body of a denial d of the form (2). For example, given denial d1 above, c(d1) is

T2− T1 > 60.

Notice that the semantics of AC0, differently from that of ASP programs, is defined for

possibly non-ground programs. In fact, because of the intended use of constraint atoms,

9 The bounds can be easily extracted from the definition of sort pk in Π . If the domain does not

consist of a single interval, extra constraints can be added to the CSP definition, but we will

assume a single interval for simplicity.
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one would typically expect variables to be used for the constraint parameters of mixed

literals and the corresponding arguments in the constraints. Therefore, we assume that

in Π variables are used for the constraint parameters of mixed predicates.

We say that a partial-ground rule is a rule where the only variables occur as constraint

parameters of the mixed predicates and as arguments of the constraint atoms. The par-

tial grounding of a rule r is obtained by grounding all the variables of r, except those

that occur as constraint parameters of mixed predicates. The set of partial-ground rules

obtained this way is denoted by pground(r).

We say that a ground denial d of the form (2) is constraint-blocked w.r.t. set of ground

literals A if Γ is satisfied by A. The following is an important property of constraint-

blocked ground denials.

Proposition 1. Let Π be an AC0 program. For every answer set A of Π and every

ground mixed-part denial d, if d is constraint-blocked w.r.t. A, then its constraint c(d)
is not satisfied.

We say that a partial-ground denial d of the form (2) is constraint-blocked w.r.t. A if

some ground instance of d is constraint-blocked w.r.t. A.

Theorem 4. Every AC0 program Π can be translated into an ASP program whose

extended answer sets are in one-to-one correspondence with the answer sets of Π .

Proof. Because of space restrictions, we omit the complete proof. However, we believe

that it is useful to show the mapping that the proof is based upon.

Let Π be an AC0 program and Π ′ be its translation, as described above. We define a

mapping µΠ from a set A of literals from the signature of Π into a pair 〈A′, α〉, where

A′ is a set of literals and α is an association of values to CSP variables. The mapping

is defined as follows:

– For each ground mixed atom m(t1, t2, . . . , tk−1, tk) from A, α maps the CSP vari-

able denoted by m(t1, t2, . . . , tk−1) to value tk.

– A′ ⊇ (A \mixed(Π)).
– A′ includes an atom cspdomain(D), whereD is an appropriate constraint domain.

– For every ground mixed atom m(t1, . . . , tk−1, tk) ∈ A, A′ includes an atom

cspvar(m(t1, . . . , tk−1), l, u) where l and u are the lower and upper bounds of

the constraint sort of the last argument of predicate m.

– For every denial d from the middle part of Π and every partial-grounding d∗ of d
that is constraint-blocked w.r.t. A, A′ includes the atom required(¬c′), where c′ is

obtained from the constraint atom c of d∗ by replacing every variable in c by the

functional representation of the corresponding mixed atom from body(d∗).

6 Conclusions

In this paper we have shown how ASP and constraint satisfaction can be integrated

by viewing ASP as a specification language for constraint satisfaction problems. This

approach allows a useful integration of the two paradigms without the need to extend
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the language of ASP, without the need for ad-hoc solvers, and with support for global

constraints. The last two features seem particularly appealing for the development of

industrial-size applications. The paper also contains results showing that an important

subclass of AC(C) programs can be automatically rewritten using our method.

Although space restrictions prevented us from discussing it here, our experiments have

also shown that our technique produces programs that are significantly more compact

and easy to understand than similar programs written in CLP alone, but with comparable

performance. We plan to discuss this further in an extended paper.
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Abstract. We introduce the fixpoint definitions, which is a reformula-
tion of fixpoint logic constructs. We define the logic FO(FD), an exten-
sion of first order logic with fixpoint definitions. We illustrate the relation
between fixpoint definitions and non-monotone inductive definitions in
FO(ID), which is developed as an integration of ASP and classical logic.
We investigate the satisfiability problem, SAT(FD), of the propositional
fragment of FO(FD). We also demonstrate how to extend existing SAT
solvers to become SAT(FD) solvers.

1 Introduction

It is well-known that, in general, inductive definitions cannot be expressed in first
order logic (FO). Yet, inductively defined concepts are often useful in practice.
The lack of expressive power of FO logic to represent recursion (including recur-
sion through negation) has motivated its extension with fixpoint constructs. For
example, the µ-calculus [12, 22], a class of temporal logics with explicit fixpoints,
provides a conceptually advantageous framework for specifying and reasoning
about Real-Time Systems [10]. In the context of databases, query languages
have been extended with fixpoint constructs to represent inductively definable
concepts [3, 1]. Also, description logics have been extended with such fixpoint
constructs [4]. These logics can be viewed as well-behaved fragments of FO logic
with fixpoints [18, 19]. The availability of explicit least and greatest fixpoint con-
structs in these logics allows inductive and coinductive concepts to be expressed
in a natural way. Also in these logics, several forms of induction have been mod-
elled: e.g. monotone induction, partial fixpoint induction, inflationary fixpoint
induction.

The language FO(ID) [6, 7] is a knowledge representation language that uses
the well-founded semantics of logic programming (LP) [23] to extend classical
first order logic with a new “inductive definition” primitive. In the resulting
formalism, all kinds of definitions regularly found in mathematical practice –
e.g., monotone inductive definitions, non-monotone inductive definitions over
a well-ordered set, and iterated inductive definitions – can be represented in
a uniform way. FO(ID) represents these definitions in the same way as they
typically appear in mathematical texts, i.e., as an enumeration of a set of cases in
which the defined relation(s) holds; in FO(ID), each of these cases is represented
by a rule. 31



The origins of FO(ID) lie in the area of logic programming. In particular,
FO(ID) is very closely related to the Answer Set Programming (ASP) paradigm.
The precise relation between FO(ID) and ASP is discussed in detail in [14]. One
of the main contributions that FO(ID) provides to this area is to show how a
tight integration of logic programming rules into classical logic can be achieved
in a conceptually clean way.

The work in this paper is inspired by work on FO(ID) to integrate LP-style
rules into fixpoint logic constructs. In this paper, we introduce a concept of fix-
point definitions (FDs), which is a reformulation of fixpoint logic constructs by
applying the rule-based syntactic sugar. The fixpoint definitions use the format
of LP-like rules which will enable us more easily to link it with logic program-
ming notation and the notation for inductive definitions in FO(ID). We define
the logic FO(FD), which is an extension of first order logic with fixpoint defini-
tions. In the resulting logic, almost all kinds of inductions can be expressed as
well. We investigate the connections between the fixpoint definitions and non-
monotone inductive definitions in FO(ID) by presenting equivalence preserving
transformations of non-monotone inductive definitions to fixpoint definitions.
It turns out that all kinds of inductive definitions in FO(ID) can be expressed
in FO(FD). Meanwhile, due to the allowance of greatest fixpoints in FO(FD),
co-induction can be represented in FO(FD). Thus, some concepts, e.g., infinite
structures and co-recursion [2], which can not be defined in FO(ID) through the
well-founded way, can be handled naturally in FO(FD).

On the computational level, the SAT problem, deciding the satisfiability of
propositional logic (PC) theories, is a major research topic. An important re-
search direction is to develop SAT solvers for extension of PC, e.g., SMT [17].
The use of extended languages leads to broader applicability of SAT-like systems,
facilitates the modelling of applications, and may substantially reduce the size of
encodings. All these benefits also hold for PC(FD), the propositional fragment
of FO(FD). This paper presents a SAT solver for PC(FD). The satisfiability
problem of PC(FD) is called the SAT(FD) problem.

Our approach to the SAT(FD) problem is by encoding the FDs into propo-
sitional logic formulae [20]. In this work, we show how SAT(FD) solvers can
be built by extending SAT solvers with an additional propagation mechanism
suitable for reasoning on fixpoint definitions. The obvious advantage from this
approach is that the SAT(FD) solver benefits from any improvement made to
the underlying SAT solver. In particular, it has the same performance on pure
propositional problems as the underlying solver. A further advantage is that by
separating the two propagation mechanisms (one for propositional theories and
one for FDs), we also strongly simplify the description of a SAT(FD) solver.
According to our knowledge, SAT(FD) is the first model generator for fixpoint
logics, which can be viewed as one of the main contributions of this paper.

The paper is organized as follows. In Section 2, we introduce the fixpoint
definitions and the logic FO(FD). We present the inductive definitions of FO(ID)
and illustrate the relationship between non-monotone inductive definitions and
fixpoint definitions in Section 3. We introduce SAT(FD) and present a high level
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overview of the requirements for the algorithm of SAT(FD) in Section 4. We
present the detailed SAT(FD) algorithm in Section 5. We finish with conclusions,
related and further work.

2 Fixpoint Definitions and FO(FD)

In this section, we introduce the fixpoint definitions (FD), which is basically a
new formalism of fixpoint constructs using rule-like syntactic sugar. We present
the logic FO(FD), which is the extension of first order logic with fixpoint defi-
nitions.

We assume familiarity with classical logic. A vocabulary Σ consists of a
set of predicate and function symbols. Propositional symbols and constants are
0-ary predicate symbols, respectively function symbols. Terms and FO formu-
lae are defined as usual, and are built inductively from variables, constant and
function symbols and logical connectives and quantifiers. Note that predicate
symbols occurring in a fixpoint definition are viewed as predicate constants but
not predicate variables.

A rule is an expression of the form ∀x̄(P (x̄) ← Ψ [x̄]), where Ψ [x̄] is a first
order formula. The defined predicate of the rule is P . Ψ [x̄] is known as the body
of the rule. The connective ← is called definitional implication and is to be dis-
tinguished from material implication ⊃. We say that a predicate symbol occurs
positively (negatively) in a formula if it occurs in the scope of an even (odd)
numbers of negations. A rule is positive in a set σ of predicate symbols if these
symbols occur only positively in Ψ .

For a set R of rules, we denote def(R) as the set of defined predicates of its
rules, and we denote open(R) as the set of all other symbols occurring in R.

Without loss of generality, we assume from now on, that rule sets contain for
each of its defined predicates exactly one rule of the form ∀x̄(P (x̄) ← ϕP [x̄]).
Indeed, any set of rules {∀x̄(P (x̄) ← ϕ1[x̄]), . . . , ∀x̄(P (x̄) ← ϕn[x̄])} can be
transformed into a single rule ∀x̄(P (x̄)← ϕ1[x̄] ∨ . . . ∨ ϕn[x̄]).

Let Σ be a vocabulary, I a Σ-interpretation and σ̄ a tuple of symbols not
necessarily in Σ. I[σ̄ : v̄] is a Σ ∪ σ̄-interpretation, which is the same as I
except symbols σ̄ are interpreted by values v̄ within the domain of I. Given a Σ-
interpretation I and Σ′ ⊆ Σ, the restriction of I to the symbols of Σ′ is denoted
I|Σ′ . Given a Σ-interpretation I and a Σ′-interpretation I ′ with Σ∩Σ′ = ∅, the
Σ ∪Σ′-interpretation mapping each P ∈ Σ to I(P ) and each P ′ ∈ Σ′ to I ′(P ′)
is denoted by I + I ′.

With a set of rules R and a Σ-interpretation I interpreting at least all open
symbols and no defined symbols (Σ ∩ def(R) = ∅ and open(R) ⊆ Σ), there is a
standard way of associating an operator ΓRI on the set of def(R)-interpretations
with the domain of I. For two such interpretations J,K, we define ΓRI (J) = K
if for every P ∈ def(R), K(P ) = {d̄|I + J |= ϕP [d̄]}.

If each defined symbol in def(R) has only positive occurrences in the body
of a rule in R, the operator ΓRI is monotone with respect to the standard truth
order on interpretations and hence, it has least and greatest fixpoints in this set
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denoted lfp(ΓRI ), respectively gfp(ΓRI ). Importantly, if I(P ) ≤ I ′(P ) for every
symbol P ∈ open(R) with only positive occurrences in rule bodies of R, then
lfp(ΓRI ) ≤ lfp(ΓRI′ ) and gfp(ΓRI ) ≤ gfp(ΓRI′ ).

Definition 1. We define a least fixpoint definition (LFD), respectively greatest
fixpoint definition (GFD) over vocabulary Σ by simultaneous induction, as a
finite expression D of the form⌊R,∆1, . . . ,∆m,∇1, . . . ,∇n

⌋
, respectively

⌈R, ∆1, . . . , ∆m,∇1, . . . ,∇n
⌉

with 0 ≤ n,m such that:

1. R is a set of rules over Σ.
2. Each ∆i is a least fixpoint definition and each ∇j is a greatest fixpoint defi-

nition.

To express the remaining conditions, we need some auxiliary concepts and no-
tations. For such an expression D, we say that a predicate P is locally defined
in D if P ∈ def(R), and that P is defined in D if P is locally defined in D or
defined in any of its subdefinitions ∆1, . . . ,∇n. The set of defined predicates of
D is denoted def(D). A symbol is open in D if it occurs in D and is not defined
in it. The set of open symbols of D is denoted open(D).

3. Every defined symbol of D has only positive occurrences in bodies of rules in
D.

4. Each symbol P ∈ def(D) has exactly one local definition in D. Formally,
{def(R), def(∆1), . . . , def(∇n)} is a partition of def(D).

5. For every subdefinition D′ of D, open(D′) ⊆ open(D)∪def(R). In particular,
a symbol defined in another subdefinition D′′ 6= D′, does not occur in D′.

A fixpoint definition is either a least fixpoint definition or a greatest fixpoint
definition. ut

Both LFD and GFD expressions are defined as trees with nodes containing
rule sets and two types of children, namely LFD’s and GFD’s. Each defined
predicate of the expression is locally defined in exactly one node of this graph.
Moreover, a predicate locally defined in one node, has only positive occurrences
in rule bodies in the node, its ancestors and its descendants, and does not occur
at all in a sibling of the node or the siblings descendants.

Example 1. The following expression is a fixpoint definition of the sets of even
and odd numbers on the structure of the natural numbers with zero and the

successor function:
⌊∀x(E(x)← x = 0 ∨ ∃y(x = s(y) ∧O(y)))
∀x(O(x)← ∃y(x = s(y) ∧ E(y)))

⌋
Example 2. We represent a transition graph on a set of vertices representing
states by a binary predicate T . Let R represent a property of states, i.e., it is a
unary predicate on vertices. We want P to represent the set of states which have
an (infinite) path which passes an infinite number of times through a state satis-

fying R. This set is defined by:


∀x (P (x)← Q(x))⌊∀x (Q(x)← R(x) ∧ ∃y(T (x, y) ∧ P (y)))
∀x (Q(x)← ∃y(T (x, y) ∧Q(y)))

⌋.
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An FO(FD) formula is either an FO formula or a fixpoint definition. An
FO(FD) theory is a set of FO(FD) formulae without free variables.

The semantics of the FO(FD) is an integration of standard FO semantics
with fixpoint semantics of definitions.

We firstly define the semantics of LFD’s and GFD’s. Given an expression D
which might be a LFD or an GFD, and a Σo-interpretation I interpreting at
least all open symbols of D and no defined ones. We define an operator ΓDI on the
set of def(D)-interpretations with domain UI . This operator is monotone with
respect to the standard truth order on interpretations and hence, it has least and
greatest fixpoints in this set. We define ΓDI (J) inductively as the interpretation
K +K ′ where

– K is the (def(D) \ def(R))-interpretation such that, for J ′ = I + J |def(R)
:

K|def(∆i) = lfp(Γ∆iJ′ )

K|def(∇j) = gfp(Γ∇jJ′ )

Observe that J ′ interprets all open symbols in every subdefinition of ϕ.
– K ′ is the def(R)-interpretation ΓRK (J |def(R)

).

Let D be a fixpoint definition and I a Σ-interpretation such that Σ contains
all symbols in D. If D is a LFD, then I satisfies D iff I|def(D) = lfp(ΓDI|open(D)

).

If D is a GFD, then I satisfies D iff I|def(D)
= gfp(ΓDI|open(D)

). As usual, this is

denoted I |= D. A Σ-interpretation I satisfies an FO(FD) theory T if I satisfies
every ϕ ∈ T .

Example 3. In Example 2, the i’th iteration of the operator D computes P as the
set of states with a path containing at least i states satisfying R. The fixpoint
consists of nodes with a path containing infinitely many states satisfying R.

3 Generalized Inductive Definitions

In this section, we present the notation for inductive definitions in the logic
FO(ID) [6, 7]. We also illustrate the relationship between fixpoint definitions
and non-monotone inductive definitions.

Definition 2. A (generalized) inductive definition (GID) is a finite set of rules.
Its sets of defined symbols def(D), respectively open symbols open(D) are defined
as usual.

We do not insist on defined predicate to occur positively in rule bodies in a
general inductive definition, meaning that non-monotone inductive definitions
are allowed. A model of a GID is a two-valued well-founded model [8, 7].

Example 4. Consider the following non-monotone inductive definition of even
and odd numbers over the structure of the natural numbers with zero and the
successor function:{∀x(Even(x)← x = 0 ∨ ∃y(x = s(y) ∧ ¬Even(y)))

∀x(Odd(x)← ∃y(x = s(y) ∧ Even(y)))

}
.
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Indeed, an arbitrary (non-monotone) inductive definition can be transformed
into an equivalent (up to the original vocabulary) least fixpoint definition. We
demonstrate it as follows.

Let D be a generalized inductive definition. For each of its defined predicates
P , we introduce a new predicate symbol of the same arity P¬. For each formula
ϕ, let ϕ denote the formula obtained by substituting each negative occurrence
P (t̄) of a defined predicate P by ¬P¬(t̄). Using this concept, define two sets of
rules, RD = {∀x̄(P (x̄)← ϕP )|P ∈ def(D)} and RdD = {∀x̄(P¬(x̄)← ¬ϕP )|P ∈
def(D)}. Now define ∆D =

⌊RD, ⌈RdD ⌉⌋. Note that this is a well-formed ex-
pression.

Example 5. {∀x(Even(x)← x = 0 ∨ ∃y(x = s(y) ∧ ¬Even(y)))
∀x(Odd(x)← ∃y(x = s(y) ∧ Even(y)))

}
translates into

∀x(Even(x)← x = 0 ∨ ∃y(x = s(y) ∧ Even¬(y)))
∀x(Odd(x)← ∃y(x = s(y) ∧ Even(y)))⌈∀x(Even¬(x)← x 6= 0 ∧ ∀y(x = s(y) ⊃ Even(y)))
∀x(Odd¬(x)← ∀y(x = s(y) ⊃ Even¬(y)))

⌉
 .

Theorem 1. Let D be a generalized inductive definition over Σ. Let ∆D be a
fixpoint definition over Σ∪{P¬ | P ∈ def(D)} obtained from D by the translation
mentioned above. Then there is a one-to-one mapping between the models I of
D and the models I ′ of ∆D with I ′|Σ = I and I ′(P¬) = ¬I(P ) for every P¬.

4 Theory of SAT(FD)

4.1 PC(FD) and SAT(FD)

In this section, we introduce PC(FD), the propositional fragment of FO(FD),
and SAT(FD), the satisfiability problem of PC(FD). We assume familiarity with
propositional logic.

A propositional vocabulary Σ is a set of propositional atoms. A literal is an
atom p or its negation ¬p. An atom p is called a positive literal, ¬p a negative
one. For a literal l, we identify ¬¬l with l. For a set S of literals, we denote by
¬S the set {¬l | l ∈ S}, and by Ŝ the set S ∪ ¬S.

A propositional logic theory is a set of propositional formulae. Without loss
of generality, we assume from now on, that propositional logic theories are in
conjunctive normal form (CNF): all propositional formulae are disjunctions of
literals, called clauses. A propositional logic theory T is satisfiable if it has a
model: an interpretation I that satisfies every clause of T , denoted I |= T . SAT
is the problem of deciding whether a given theory is satisfiable.

A propositional fixpoint definition is a fixpoint definition such that all sym-
bols occurring in it are propositional symbols.

6

36



Example 6. Consider the propositional fixpoint definition D =


p← q ∨ r
q ← p
r ← p
s← t ∨ a
t← s



.

It is obvious that a is the only open atom in this fixpoint definition. There are
only two interpretations satisfying D, namely, I1 = {a 7→ f, p 7→ f, q 7→ f, r 7→
f, s 7→ t, t 7→ t} and I2 = {a 7→ t, p 7→ f, q 7→ f, r 7→ f, s 7→ t, t 7→ t}. The
construction of I1 is illustrated as follows: I1

1 = {a 7→ f, p 7→ f, q 7→ f, r 7→ t, s 7→
t, t 7→ t}, I2

1 = {a 7→ f, p 7→ f, q 7→ f, r 7→ f, s 7→ t, t 7→ t}, which is the limit of
the iterations and thus, I1 = I2

1 .

A PC(FD) theory is a set of propositional formulae and propositional fixpoint
definitions. A propositional fixpoint definition D is in definitional normal form
(DefNF) if for any p ∈ Σ, the fixpoint definition contains at most one rule
p ← ϕp, and either ϕp =

∨
Bp or ϕp =

∧
Bp, where Bp is a set of literals

called the body literals. A PC(FD) theory is in DefNF if it contains only one
propositional fixpoint definition, which is in DefNF, and its set of formulae is in
conjunctive normal form (CNF). There exists a linear transformation from an
arbitrary PC(FD) theory T over Σ to a DefNF theory T ′ over Σ′ ⊃ Σ such that
there is a one-to-one correspondence between models M of T and models M ′ of
T ′. Hence without loss of generality, we can from now on assume that PC(FD)
theories are in DefNF.

An interpretation I satisfies a PC(FD) theory if it satisfies every formula
and every definition of the theory. The SAT(FD) problem is the satisfiability
problem for PC(FD) theories.

SAT solving is the practice of answering the SAT problem. Although other
solving techniques exist, the current state of the art solvers are based on DPLL [5]
augmented with the two watched literal scheme (2WL) and with clause learn-
ing [16, 21]. The propagation method that drives this search is unit propagation,
whereby a literal is interpreted true if it occurs as the only non-false literal in a
clause. For more details we refer the reader to [16].

Definition 3. The completion of a rule p ← ϕp is given by the clausal form
of p ≡ ϕp. The completion of a propositional fixpoint definition D, denoted by
comp(D), is the union of the completions of all rules in D.

An important property, though, is that I |= D implies I |= comp(D). The
converse is not true, D has fewer models than comp(D). Hence, D can cause
extra constraints that result in more propagations than in comp(D). Our work
is to extend a SAT solver with these propagations.

4.2 Justifications

In this section, we introduce the notion of a justification, and use it to provide
an alternative characterization of the semantics of fixpoint definitions. We then
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return to the satisfiability for PC(FD), following an approach suggested by this
new characterization.

For a directed graph G = (V,E) and an element v ∈ V , we denote by ChG(v)
the set {w | (v, w) ∈ E}. If V is a set of literals, we call a cycle in G positive or
negative if it contains respectively only positive or negative literals.

Definition 4 (Justification). A justification J for D is a directed graph (Σ̂, E)
such that: (a) for every conjunctive rule c ← c1 ∧ . . . ∧ cn ∈ D, ChJ(c) =
{c1, . . . , cn} and ChJ(¬c) = {¬ci} for some i ∈ [1, n], and (b) for every disjunc-
tive rule d← d1 ∨ . . . ∨ dn ∈ D, ChJ(¬d) = {¬d1, . . . ,¬dn} and ChJ(d) = {di}
for some i ∈ [1, n], and (c) for every l 6∈ d̂ef(D), ChJ(l) is empty. The sub-
justification of J starting in a literal l, denoted Sub(J, l), is the subgraph of J
consisting of all paths starting in l.

Example 7. Consider Example 6. For the disjunctive rule defining p one can
choose ChJ (p) as either q or r. Similarly ChJ(s) is either t or a. This results in
four possible justifications for D, one of which is shown as follows.

r

²²

s

²²

¬p //

²²

¬rjj ¬a

p // qgg t

GG

¬q

HH

¬s

OO

// ¬tjj

Let J be a justification of D. It is easy to see that for each cycle in J , there
exists a unique subdefinition D′ of D (possibly D′ = D) such that all literals
occurring in the cycle are defined in D′ and at least one literal in the cycle is
locally defined in D′. We call such a cycle D′-cycle. Note a cycle in a justification
of D is either positive or negative, due to the positivity of rule bodies. A path
in J is called a D′-path if all literals occurring in the path are defined in D′ and
at least one literal in the path is locally defined in D′.

To formalize the notion that a defined atom is assigned a truth value in
accordance with a justification, we introduce the notion of support.

Definition 5 (Support). Let J be a justification for the fixpoint definition D
and I a Σ-interpretation. Then J supports I if for each l ∈ d̂ef(D), I(l) =
I(
∧
ChJ(l)).

Definition 6 (Witness). Let J be a justification for D and I a Σ-interpretation.
Then J is a D-witness for I iff (a) J supports I, and (b) for each LFD subdefi-
nition D′ of D, J contains no positive D′-cycle, and for each GFD subdefinition
D′ of D, J contains no negative D′-cycle. The second condition is called J is
cycle-safe.

Define ©= {p | either p is locally defined in an LFD subdefinition D′ of
D and for any justification J for D, Sub(J, p) contains a positive D′-cycle or
p is locally defined in a GFD subdefinition D′ of D and for any justification
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J for D, Sub(J,¬p) contains a negative D′-cycle }. Those atoms in © which
are locally defined in LFD subdefinitions, respectively locally defined in GFD
subdefinitions, have to be false, respectively, true in any model. Defining D 6© as
the fixpoint definition obtained by replacing in D the rule p← ϕp by p← ⊥ for
each p ∈© which is locally defined in some LFD subdefinition and the rule p← ϕp
by p← > for each p ∈© which is locally defined in some GFD subdefinition.

Example 8. Consider Example 6. Then p, q are locally defined in the least fix-
point definition D and p, q are part of a positive D-cycle in any justification
while s, t are locally defined in a GFD subdefinition D′ of D and ¬s,¬t are part

of a negative D′-cycle in any justification. Hence, D 6© =


p← ⊥
q ← ⊥
r ← p
s← >
t← >



.

The following proposition follows easily:

Proposition 1. D ≡ D 6©.

A witness for an interpretation I reflects a reasoning for the truths in I and the
following theorem holds:

Theorem 2. Let I be a Σ-interpretation and D a fixpoint definition on Σ.
I |= D iff there exists a D 6©-witness for I.

Example 9. Continuing from Examples 6, 7, 8, we search a model I of D that
extends I ′ = {a 7→ t}. The only justification for D 6© does not contain any cycles,
hence it can be a D 6©-witness for I. For the justification to be a D 6©-witness
of I, it should support I, hence we have that I(p) = I(q) = I(r) = f and
I(s) = I(t) = t, i.e., I = I2.

In other words, if we have a partial interpretation I ′, we can strengthen it
(propagate) by making p, q, r false and s, t true, based on the above reasoning.

The above theorem suggests the following structure for a SAT(FD) algorithm:

– initialize to find D 6©,
– apply SAT on comp(D 6©) (and on the propositional part of the theory),
– maintain a witness for the interpretation found by the SAT solver.

5 SAT(FD) Algorithm

The algorithm of SAT(FD) presented here is based on the algorithm of SAT(ID)
solver from [15]. However, due to the difference between the justification seman-
tics of fixpoint definitions and that of general inductive definitions, the algorithm
of SAT(FD) varies considerably.

The purpose of the initialisation step is to identify the atoms of © and to
construct D 6©. © can be easily obtained by marking literals with a stratification
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level. A cycle-safe justification of D 6© can now be derived by assigning to J(d) an
atom in the body with a smaller stratification level for each disjunctively defined
atom d which is locally defined in an LFD subdefinition and to J(¬c) a negative
literal in the body for ¬c with a smaller stratification level for each ¬c that is
the negation of a conjunctively defined atom c and is locally defined in a GFD
subdefinition.

Recall from Section 4 that the goal is to apply SAT on comp(D 6©), and to
maintain during the search a witness for the current interpretation. We start
with a high level description of the procedure and then elaborate on the details.

The main procedure iterates over the following steps until either a solution
is found (a total interpretation and a witness for it) or the search space is ex-
hausted.

1. Select a cycle-safe justification Jcs.
2. Use the SAT solver to update the current interpretation by performing unit

propagation on comp(D 6©) (and on the propositional part of the theory).
3. Use the state of SAT solver to construct a supporting justification Js.
4. If Js is not a witness then:

4a Use Jcs to adjust Js so that it becomes a witness. In case this fails,
a set Cycle is obtained of defined literals that cannot have a witness
under the current interpretation. Cycle consists of two kinds of defined
literals, namely positive defined atoms which are locally defined in LFD
subdefinitions and negative defined literals which are locally defined in
GFD subdefinitions. In every supporting justification it holds that for
each p ∈ Cycle such that p is locally defined in an LFD subdefinition
D′, the subjustification of p has a positive D′-cycle, and for each ¬p ∈
Cycle such that ¬p is locally defined in a GFD subdefinition D′, the
subjustification of ¬p has a negative D′-cycle.

4b If Js is still not a witness, make sure that all positive atoms in Cycle
which are locally defined in LFD subdefinitions will be set to be false
and all negative literals which are locally defined in GFD subdefinitions
will be set to be false as well in the next iteration.

Step 1: Selection of a cycle-safe justification. In the first iteration, the cycle-safe
justification Jcs is constructed with the procedure described in the beginning
of this section. In later iterations, the most recent witness is used as cycle-safe
justification, i.e., the supporting justification Js of the previous iteration becomes
the cycle-safe justification when it is a witness.

Step 2: SAT solving. This is a propagation step by the underlying SAT-solver.
Note that this includes clause learning and backtracking when propagation leads
to the detection of a conflict.

Step 3: Construct a Supporting Justification. We assume here that SAT solver
we are extending implements unit propagation using 2WL scheme. This scheme
keeps clauses satisfiable by maintaining for each clause an invariant on its two
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watched literals. Let W1(c) and W2(c) be the watched literals of clause c and I
the current interpretation, then the invariant is as follows: either I(W1(c)) = t
or W1(c) is not interpreted in I and I(W2(c)) 6= f.

We use the watching literals to construct a supporting justification Js. This
requires to set Js(d) for every disjunctively defined atom d and to set Js(¬c)
for every ¬c that is the negation of a conjunctively defined atom c. Let d ←
d1∨. . .∨dn be the rule defining d. comp(D) contains the clause ¬d∨d1∨. . .∨dn; let
W1 and W2 be the watched literals of this clause. If W1 = ¬d then Js(d) = W2,
otherwise Js(d) = W1. Let c ← c1 ∧ . . . ∧ cn be the rule defining c. comp(D)
contains the clause c ∨ ¬c1 ∨ . . . ∨ ¬cn; let W1 and W2 be the watched literals
of this clause. If W1 = c, then Js(¬c) = W2, otherwise Js(¬c) = W1. Knowing
that the current interpretation is the result of a propagation step, one can easily
verify that Js is a supporting justification.

Step 4a: Find a witness. The supporting justification can have positive D′-cycles
where D′ is an LFD subdefinition and negative D′-cycles where D′ is a GFD
subdefinition. Because Jcs is cycle-safe, it must be the case that each positive
D′-cycle where D′ is an LFD subdefinition contains at least one disjunctively
defined atom d with Js(d) 6= Jcs(d) and each negativeD′-cycle whereD′ is a GFD
subdefinition contains at least one ¬c, which is the negation of a conjunctively
defined atom c, with Js(¬c) 6= Jcs(¬c). Let us call such literals cycle sources.
Cycle sources belong to the set of literals on which both justifications disagree:
DS = {l | Js(l) 6= Jcs(l)}. The overall strategy is to check for each element cs
in DS whether it is a cycle source, and if so, to perform local adjustments on
the supporting justification so that cs is no longer part of a positive D′-cycle
where D′ is an LFD subdefinition or part of a negative D′-cycle where D′ is a
GFD subdefinition (“justifying cs”). Obviously, the smaller DS, the less work
this step requires.

The further processing then consists of justifying each element cs in DS until
either DS is empty and hence Js is a witness of the current interpretation or
some cs could not be justified, in which case a set Cycle as described in the high
level algorithm is returned.

Analyse(cs) (We omit the case that cs is a disjunctively defined atom due to the
space restrictions. Actually it is quite similar to the case that cs is the negation
of a conjunctively defined atom, which will be presented as follows.)

The negative defined literal cs, which is the negation of a conjunctively de-
fined atom in the definition, is not false in the current interpretation and possibly
belongs to a negative D′-cycle in the supporting justification Js where D′ is a
GFD subdefinition.

In an initialisation step, the procedure marks all negative literals as unsafe
that are defined in some GFD subdefinition D′ and are on a D′-path in Js that
leads to cs. This means that all negative literals that belong to an eventual
negative D′-cycle are marked as unsafe; however, also other negative literals can
be marked as unsafe. If Js(cs) is not marked, then there is no negative D′-cycle
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passing through cs and we are done. Otherwise, cs is a cycle source and Js has
to be adjusted.

By “to justify the negation ¬c of a conjunctively defined atom c” we mean
setting Js(¬c) such that ¬c is no longer part of a negative D′-cycle through cs;
“to justify the negation ¬d of a disjunctively defined atom d” means showing
that negations of all body literals of d are justified. The purpose of the algorithm
is to justify cs.

The negation ¬c of a conjunctively defined atom c can be justified either by
setting Js(¬c) to a literal that is not marked unsafe, or by setting it to a negative
literal that in turn can be similarly justified. To this end, a working queue Q,
initialised with cs, is maintained: Q contains literals that can still be tried to be
justified.

The algorithm also maintains a set Cycle, initialised with cs, of literals that
are waiting to be justified. If the algorithm fails, then the elements of Cycle have
not been justified.

Literals are popped from Q and processed, until either it is ensured that cs
is no longer part of a negative D′-cycle or Q is empty, in which case Cycle is
returned. Let ¬c be the popped element. If it is no longer marked as unsafe, it has
already been justified and the next element can be popped. Otherwise, two cases
are distinguished. They rely on a procedure Justify(¬q) described afterwards.

¬c is the negation of the conjunctively defined atom c. LetBc be the body
of the defining rule for c. If ¬Bc has a negative literal ¬b that is neither
marked nor false, then set Js(¬c) = ¬b (¬c is not false under the current
interpretation, hence, to preserve support, ¬b has to be non false as well)
and perform Justify(¬c). Note that ¬c is now justified: ¬b is not marked and
hence has no D′-path to cs. Furthermore, it has no D′-path to ¬c either, be-
cause all negative literals with a D′-path to ¬c in Js are marked. Therefore
adding the edge ¬c→ ¬b cannot create a new negative D′-cycle.
If all non false literals in ¬Bc are marked (they are negative literals as
positive atoms cannot be marked), the ones that are not yet in Cycle are all
pushed on Q and added to Cycle: justifying any of them suffices to justify
¬c (Justify will take care of doing that).

¬c is the negation of the disjunctively defined atom c. LetBc be the body
of the defined rule for c. If ¬Bc has no marked literal, ¬c is justified (not part
of a negative D′-cycle through cs), so Justify(¬c) is performed. Otherwise,
a marked negative defined literal ¬q is selected from ¬Bc (preferably one
already in Cycle) and, if not yet in Cycle, added to it and pushed on Q. The
negative literal ¬q is called the guard of ¬c. Adding only this guard to Q (or
none if already in Cycle), instead of all marked negative body literals, has
the advantage that no computation time will be lost on other negative body
literals in case this guard cannot be justified. In case it can, Justify(¬q) will
add ¬c to Q again for reconsideration.

Justify(¬q) The “unsafe” mark is removed from the negative literal ¬q and the
negative literal is removed from Cycle. Moreover, if it is an element from DS
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then it can be removed from DS as well, as it can no longer be a cycle source.
Finally, if it is cs itself, we are done and can start with processing the next
element in DS. If it is not cs, we have to continue:

– For every ¬c ∈ Cycle, which is the negation of a conjunctively defined atom
c, with ¬q ∈ ¬Bc, set Js(¬c) = ¬q and perform Justify(¬c). Indeed, if ¬q
is no longer part of the negative D′-cycle through cs, then so is ¬c in the
changed Js.

– For every ¬c that is the negation of a disjunctively defined atom c and has
¬q as guard, ¬c is pushed on Q.

If Q becomes empty before cs could be justified, some negative literals (at
least cs itself) are still in Cycle, and all possible supporting subjustifications for
them have been exhaustively searched; none has been found that does not have
negative D′-cycle through cs. These implies that these negative literals cannot
have a witness, hence it is correct to add the learning clauses in step 4b.

Step 4b: Learning clauses from the Cycle-set . When the supporting justifica-
tion cannot be adjusted into a cycle-safe supporting justification, the set Cycle
of defined literals that cannot have a witness subjustification is returned. The
positive atoms in the set that are locally defined in an LFD subdefinition have
to be set false in the current interpretation and the negative literals in the set
that are locally defined in a GFD subdefinition have to be set false as well in the
current interpretation. To properly integrate this with the SAT solver and its
backtracking search, this is achieved by extending the theory with an appropriate
learned clause for each of these literals.

Define Ante = (
⋃
d∈Cycle,d positive,d disjunctively definedBd ∪⋃

¬c∈Cycle,¬c negation of c,c conjunctively defined ¬Bc)\Cycle. The falsity of those lit-
erals forces the falsity of the literals in the cycle set. A so-called loop formula∨
Ante ∨ ¬(

∨
Cycle) captures this (adapted from [13]); its CNF contains one

reason clause for each literal in Cycle.

Overview of the main procedure of the algorithm. To a standard contem-
porary DPLL-based SAT solver, we add a phase of “definitional propagations”,
to be executed after the unit propagations on the clauses of the theory as well as
on comp(D 6©). For this phase we introduce a new data structure: a justification
J that is certainly cycle-safe in D 6©.

The phase starts by finding a supporting justification J ′; in case of a 2WL
implementation JW is used for this. The set of cycle sources CS is then initial-
ized: the literals on which J and J ′ differ. The Analyse algorithm is then applied
on literals cs ∈ CS, one by one, whereby J ′ changes, and CS may be decreased.
If the algorithm terminates with a non-empty set Cycle, the definitional prop-
agation phase adds the corresponding loop formulae and then terminates, after
which standard unit propagations are resumed. Otherwise, CS will eventually
be emptied, and we can then set J := J ′: this justification is both cycle-safe and
supporting. Also, W can be adapted to J ′ such that JW = J ′, so that on later
occasions the set of cycle sources will likely be smaller.
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6 Conclusions and Related Work

In this paper, we introduced the fixpoint definitions, which is an alternative ex-
pression of fixpoint constructs, and the logic FO(FD), which is an extension of
first order logic with fixpoint definitions. We investigated the correspondence
between fixpoint definitions and non-monotone inductive definitions in FO(ID),
which is a knowledge representation language integrating ASP-style logic pro-
gramming and classical logic. We presented PC(FD), which is the propositional
fragment of FO(FD), and demonstrated how to extend existing SAT solvers to
become SAT(FD) solvers.

Related work is provided by Gupta et al. in [11]. They introduced coinduc-
tion, which corresponds to the greatest fixpoint constructor, into logic program-
ming to obtain the coinductive logic programming. They discussed applications
of coinductive logic programming into programming verification, model check-
ing and non-monotonic reasoning, in particular its manifestation as answer set
programming. However, in the coinductive logic programming, naively mixing
coninduction and induction leads to contradictions. This contradiction is re-
solved by stratifying inductive and coinductive predicates in a program. Indeed,
arbitrary cyclical nesting of least and greatest fixpoint expressions is allowed in
FO(FD).

We are currently implementing the algorithm of SAT(FD) as an extension
to the SAT(ID) solver MiniSat(ID) [15], which is a SAT solver for PC(ID), the
propositional fragment of FO(ID). MiniSat(ID) is built based on the popular
SAT solver MiniSat [9]. The comparison between MiniSat(ID) and the best ASP
solvers is discussed in detail in [15]. We intend to integrate the SAT solver for
PC(FD) into MiniSat(ID) and the resulting solver MiniSat(ID,FD) will hopefully
exhibit the expected benefits.
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Abstract. We extend the notions of completion and loop formulas of normal
logic programs with functions to a class of nested expressions that properly in-
clude disjunctive logic programs. We show that answer sets for such a logic pro-
gram can be characterized as the models of its completion and loop formulas.
These results provide a basis for computing answer sets of disjunctive programs
with functions, by solvers for the Constraint Satisfaction Problem. The poten-
tial benefit in answer set computations for this approach has been demonstrated
previously in the implementation called FASP, for normal logic programs with
functions. We also present a formulation of completion and loop formulas for
disjunctive logic programs with variables. This paper focuses on the theoretical
development of these extensions.

1 Introduction

Logic programming based on stable model/answer set semantics, called answer set pro-
gramming (ASP), has been considered a promising paradigm for declarative problem
solving. The general idea is to encode a problem by a logic program such that the an-
swer sets of the program correspond to the solutions of the problem [1, 20, 21]. With
the state-of-the-art ASP solvers such as CLASP, CMODELS, SMODELS, and DLV, ASP
has been applied to a number of practical domains [1].

ASP has been extended in several directions, one of which is to logic programs
with nested expressions (or just nested expressions) [16]. More recently, nested expres-
sions have been extended to quantified equilibrium logic [22] and arbitrary first-order
sentences [8].

Another direction is the idea of computing answer sets of logic programs by utiliz-
ing off-the-shelf solvers from other constraint solving formalisms, e.g., by SAT solvers
[18, 9], by pseudo boolean solvers [19], and by CSP solvers [17]. The idea is that if a
program has no positive loops, or is tight on a set which is a model of completion hence
a supported model of the program [7], the model is then an answer set. Otherwise,
loop formulas can be used to eliminate models of completion that are not answer sets,
and more importantly, perform conflict-driven learning and generate non-chronological
backtracking. The loop formulas approach has been extended to disjunctive logic pro-
grams [12].

In the third direction, ASP has recently been extended with functions. There are
two different approaches to accommodating functions. One of them treats functions
over Herbrand interpretations [2, 13, 23, 5], in which, just like Horn clause logic pro-
gramming, functions are interpreted by fixed mappings, and are language symbols used
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to define recursive data structures. This approach yields a language which is more ex-
pressive than the standard function-free ASP language.

In the other approach, to economically and naturally encode problems in ASP, Lin
and Wang considered adding functions into normal logic programs in which functions
are taken for mappings over finite, non-Herbrand domains together with the unique
name assumption [17]. They extended the notions of completion and loop formulas and
show that through program completion and loop formulas, a normal logic program with
functions can be transformed to a Constraint Satisfaction Problem (CSP). Thus, off-
the-shelf CSP solvers can be used as black boxes in computing answer sets. The system
FASP4 is such an implementation.

In the approach by Lin and Wang, a program with functions will be grounded to a
finite ground program for the answer set computation. Thus it doesn’t deal with infinite
domains of any sort. Its aim is at providing a flexible knowledge representation language
enabling both relations and functions. The approach is closely related to the functional
logic language of [4]. A main difference is in [4], functions are partial, while in [17]
they must be total.

In this paper, we consider further adding functions into nested logic programs with
rules of the form

a1; . . . ; an ← b1, . . . , bm, G

where ai are atoms, bj are atoms or equality atoms, and G is a nested formula in which
every occurrence of an atom occurs in the scope of the negation-as-failure operator
“not ”. Following [12], these programs with nested expressions are called disjunctive
logic programs.

Disjunctive logic programs of this kind can be seen to represent nested expressions
as defined in [16] in the following sense. First, since nested expressions can be trans-
formed to disjunctive logic programs with negation-as-failure in the head [3], the latter
can be viewed as a normal form for nested expressions. Also in [16], it was shown that
a negative literal in the head of such a disjunctive rule can be moved to the body by
adding a not to it (i.e., not a in the head becomes not not a in the body).

In this paper, we define answer sets for nested expression with functions, and then
formulate completion and loop formulas for disjunctive logic programs with functions.
We show that loop formulas, along with program completion, capture answer sets of
disjunctive logic programs with functions. This can be seen as a generalization of the
main results of [17]. It turns out that, in order to incorporate functions, the notions
of completion, dependency graphs, loops, and loop formulas all require a nontrivial
generalization.

In general, a logic program may have an exponential number of loops and loop for-
mulas [15]. To avoid computing similar loops, first-order loops and loop formulas were
proposed for normal logic programs with variables [6], which are recently extended to
arbitrary first-order sentences [11]. Since the language of disjunctive logic programs
with functions is a many-sorted first-order language and an encoding in it is often writ-
ten with variables, this motivated us to extend first-order loops and loop formulas to
disjunctive logic programs with functions. This can be regarded a generalization of nor-
mal logic programs [6] and disjunctive logic programs [11] to include functions.

4 http://www.cse.ust.hk/fasp/

47



We begin in the next section with a review of the definitions of answer sets for nested
expressions. In Section 3 we add functions into nested expressions and extend these
definitions to the new context. Then in Section 4, we formulate first-order loops and
loop formulas for these programs. Related work is commented in Section 5. Section 6
contains final remarks and a discussion of future work.

2 Preliminary

The concept of atom is defined as in propositional logic. Elementary formulas are atoms
and special symbols ⊥ (“false”) and > (“true”).5 Formulas are built from elementary
formulas using the unary connective not (negation as failure) and the binary connec-
tives “,” (conjunction) and “;” (disjunction). A rule with nested expressions is an ex-
pression of the form

F ← G (1)

where both G and F are formulas. A logic program with nested expressions (or called
nested logic program) is a finite set of rules with nested expressions.

For any formula F,G and H , we may write

F → G; H

to stand for the formula
(F,G); (not F, H)

which reads like an if-then-else statement.
Let F be a formula and Z a set of atoms. That Z satisfies F , written Z |= F , is

defined as follows:

– for an atom a, Z |= a if a ∈ Z
– Z |= >
– Z |= (F,G) if Z |= F and Z |= G
– Z |= (F ; G) if Z |= F or Z |= G
– Z |= not F if Z 6|= F .

Note that, since ⊥ is not an atom, it follows that Z 6|= ⊥, for any set of atoms Z.
Z satisfies a logic program P if for every rule of the form (1) in P , Z |= F whenever

Z |= G. The reduct FZ of a formula F w.r.t. a set of atoms Z, is defined recursively as

– for elementary F , FZ = F
– (F,G)Z = (FZ , GZ)
– (F ; G)Z = (FZ ; GZ)

– (not F )Z =

{
⊥, if Z |= FZ

>, otherwise
– (F ← G)Z = (FZ ← GZ).

5 The syntax defined in [16] allows classical negation. Classical negation can be eliminated by
introducing auxiliary atoms [14].
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The reduct of a logic program P w.r.t. a set Z of atoms is the following set:

{(F ← G)Z : F ← G ∈ P}.

A set of atoms Z is an answer set of a nested logic program P not containing not if
Z is a minimal set satisfying P . For a nested logic program P , Z is an answer set of P
if Z is an answer set of the reduct PZ .

For example, consider the logic program P

a← not not a. (2)

The reduct of P w.r.t. Z is a ← > if a ∈ Z, and a ← ⊥ otherwise. Thus P has two
answer sets ∅ and {a}.

3 Nested Expressions with Functions

Now, we assume that the underlying language L is a many-sorted first-order language
which may have pre-interpreted function symbols like the standard arithmetic functions
such as “+”, “−” and so on. Elementary formulas are atoms, equality atoms (written
s = t)6, and special symbols ⊥ (“false”) and > (“true”), and formulas are built from
elementary formulas using “not”, “,” and “;” as before. By abuse of notation, we may
write s 6= t for not (s = t). A nested logic program with functions (a logic program or
just a program) is a finite set of rules of the form

H ← F (3)

where H and F are formulas of L, together with a set of type definitions, one for each
type τ used in the logic program, of the form

τ : D (4)

where D is a finite nonempty set of elements, called a domain7. Here we require that
if a constant c of type τ occurs in a rule of a program P then c must be contained in
the domain of τ . Recall that L is a many-sorted first-order language. A logic program
with variables is taken as the shorthand for the instantiated ground program; i.e., if a
variable x is of type τ and the domain of τ is D according to the type definitions, then
x is instantiated by elements in D. Thus we equate a logic program with variables with
its grounded program unless otherwise stated.

Recall that once a variable in a rule is replaced by objects of a domain, the grounded
rules may have symbols not in the original language L. In the following, we let LP be
the language that extends L by introducing a new constant for each object in the domain

6 Unless explicitly stated otherwise, an atom refers to a non-equality atom, of the form p(t),
where p is a predicate symbol. We distinguish atoms from equality atoms for convenience.

7 We require domains to be finite for the practical implementation reason, since we will define
loop formula for ground programs later, if using an infinite domain, a ground program may be
infinite, in this case, loop formulas may be not well-defined.
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of a type, but not a constant in L. These new constants will have the same type as their
corresponding objects. Now the fully instantiated rules will be in the language LP .

An interpretation of a program not only assigns truth values to ground instances of
relations, but also assigns a mapping to each function symbol. Formally, an interpreta-
tion I of a logic program P , which is a first-order structure of LP , is a mapping such
that

– The domains of I are those specified in the type definitions of P .
– A constant is mapped to itself.
– If R is a relation of arity τ1 × · · · × τn, and the type definitions τi : Di, 1 ≤ i ≤ n,

are in P , then I assigns a relation to R, denoted RI , such that RI ⊆ D1×· · ·×Dn.
– If f is a function of type τ1 × · · · × τn → τn+1, n ≥ 1, and the type definitions

τi : Di, 1 ≤ i ≤ n + 1, are in P , then I assigns a mapping to f , denoted f I , from
D1 × · · · ×Dn to Dn+1.

Note that pre-interpreted functions follow their standard interpretations, which do not
change from one interpretation to another.

Notice also that the notion of interpretation here is defined for a logic program
instead of the underlying language L. In the following, whenever we talk about in-
terpretations of a formula, we assume that the formula under discussion occurs in the
underlying logic program, where the type definitions are fixed.

Let I be an interpretation. The interpretation of a constant c under I , denoted cI , is c.
Inductively, if s = f(t1, ..., tn) is a term, and each ti, 1 ≤ i ≤ n, is already interpreted,
denoted tIi , then sI denotes the constant mapped from the vector 〈tI1, ..., tIn〉 by f I . This
notation naturally extends to vectors of terms. In addition, for an n-ary predicate p and
an n-vector t, we will write pI(t) to denote the valuation of p(t) under I .

We now define satisfaction for formulas with functions. Below, we only define it
for elementary formulas. Along with the definition given in Section 2, the definition of
satisfaction can be extended straightforwardly to all formulas. Let F be an elementary
formula and I an interpretation. We say I satisfies F , written I |= F , if

– F = >;
– F = p(t), and pI(t) holds under I , where p is a predicate;
– F is an equality atom t = t′, and tI = t′I (i.e., t and t′ are mapped to the same

constant).

To extend the notion of reduct to logic programs with functions, it is sufficient to
define it for elementary formulas as well. Let F be an elementary formula and I an
interpretation. The reduct of F w.r.t. I , written F I , is defined as

– p(tI) if F = p(t);
– > if F = > or F is an equality atom such that I |= F ;
– ⊥ if F = ⊥ or F is an equality atom such that I 6|= F .

With this, the notion of reduct as introduced in Section 2 naturally extends to logic
programs with functions. Let P I be the reduct of a program P w.r.t. I . Evidently, P I

mentions no functions, equalities and the negation as failure operator “not”. Answer
sets for such logic programs have been defined before: a set of atoms M is an answer
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set of such a program P if M is a minimal set satisfying P . We now extend it to logic
programs with functions.

In the following, given an interpretation I , we write Ia to denote the set of atoms
that contain no functions and they are true under I .

Definition 1. Let P be a nested logic program with functions and I an interpretation
of P . I is an answer set of P if Ia is an answer set of P I .

Example 1. Consider the logic program P :

f : τ → τ, p : τ, τ : {0, 1},
(p(1); f(0) 6= f(1))← (f(0) = 1→ not p(1); p(0)). (5)

Notice that the types of the predicate p and the function f are part of the given language,
not the program P ; we write them in P for clarity. The rule (5) stands for

(p(1); f(0) 6= f(1))← (f(0) = 1, not p(1)); (f(0) 6= 1, p(0)). (6)

Consider the following interpretation for P :

– I1 with f I1(0) = f I1(1) = 0, pI1(0) and pI1(1) are false. P I1 consists of a single
rule

p(1);⊥ ← (⊥,>); (>, p(0))

which is equivalent to
p(1)← p(0).

Since Ia
1 = ∅ and ∅ is an answer set of P I1 , thus I1 is an answer set of P .

Traditionally, two logic programs are said to be equivalent if they have the same set
of answer sets. For nested expressions, Lifschitz et al. [16] propose a stronger notion
of equivalence: Two formulas F and G are equivalent if, for any two interpretations I1

and I2, I1 |= F I2 iff I1 |= GI2 .
We adopt the same notion of equivalence for nested logic programs with functions.

Proposition 1. For any formulas F and G, the rule F ; t = t′ ← G is equivalent to
F ← G, t 6= t′.

Lifschitz et al. also showed a number of results (cf. Propositions 3–7 in [16]). We
can easily extend these results to nested logic programs with functions. Particularly
relevant to this paper, we can show that any rule of the form (3) is equivalent to

– a finite set of rules of the form

a1; . . . ; an ← G (7)

where G is a formula;
– a finite set of rules of the form8

a1; . . . ; an ← b1, . . . , bm, G (8)
8 It is known that for a polynomial time transformation new propositional symbols may need to

be used, e.g., to convert a conjunctive normal form to a disjunctive normal form (for transfor-
mation of nested expressions see, e.g., [24]).
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where ai(1 ≤ i ≤ n) and bj(1 ≤ j ≤ m) are atoms or equality atoms of L, and G is a
formula of L in which every occurrence of an atom is in the scope of the negation-as-
failure operator “not ”. For convenience, we abbreviate a rule of the form (8) by

F ← B,G (9)

where F stands for “a1; . . . ; an” and B stands for “b1, . . . , bm”. In the following, a
logic program consisting of rules of the form (9) is called a disjunctive logic program
with functions (or a disjunctive logic program, or just a program if no confusion arises).

It is important to mention that though functions can enrich the language for knowl-
edge representation, they are not absolutely necessary semantically speaking. As shown
in [17], functions can be eliminated as follows.

Let P be a logic program that may have functions. For each function f : τ1 × · · · ×
τn → τ in P , we introduce two corresponding relations fr and fr. They both have the
arity τ1 × · · · × τn × τ , and informally fr(x1, ..., xn, y) stands for f(x1, ..., xn) = y
and fr(x1, ..., xn, y) for f(x1, ..., xn) 6= y. Now let F(P ) be the union of the rules
obtained by grounding the following rules for each function f in P using the domains
in the type definitions of P :

← fr(x1, . . . , xn, y1), fr(x1, . . . , xn, y2), y1 6= y2,

fr(x1, . . . , xn, y)← not fr(x1, . . . , xn, y),

fr(x1, . . . , xn, y)← fr(x1, . . . , xn, z), y 6= z.

Let R(P ) be the set of rules obtained from the rules in P by the following transfor-
mation:

– evaluate all terms that mention only constants and pre-interpreted functions to con-
stants;

– repeatedly replace each functional term f(u1, . . . , un), where each ui is a simple
term in which it does not mention a function symbol, by a new variable x and
add fr(u1, . . . , un, x) to the body of the rule as a conjunctive term where the term
appears;

– instantiate all the rules obtained in the previous step, please note that, equality atom
will be replaced with > if it is of the form c = c, and ⊥ if it is of the form c = c′

where c and c′ are two distinct constants.

F(P ) ∪R(P ) is a logic program without functions and equality, and there is a one-
to-one correspondence between it and P :

Theorem 1. Let P be a nested logic program with functions. An interpretation I for P
is an answer set of P iff R(I) is an answer set of F(P ) ∪ R(P ), where R(I) is the set
of atoms that are true in I:

R(I) = {p(c) | pI(c) holds} ∪ {fr(c, a) | f I(c) = a} ∪ {fr(c, a) | f I(c) 6= a}.
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3.1 Completion

We now define completion for nested logic programs with functions, which generalizes
that of [12] due to the incorporation of functions.

Let P be a logic program. An atom p(c1, . . . , ck) is said to reside in P if p is a
predicate of type τ1 × . . .× τn in P , τi : Di is in the type definitions of P and ci ∈ Di

for each i(1 ≤ i ≤ n). By Atoms(P ) we denote the set of atoms residing in P .
Given a formula F , we denote by pa(F ) the set of the positive atoms in F . An atom

p(t) is said to be positive in F if there is at least one occurrence of p(t) in F that is not
in the scope of negation as failure.

In the following, we identify a nested formula with a classical formula by replacing
“,” with “∧”, “;” with “∨” and “not ” with “¬”. Also, when we talk about the completion
of a logic program, we always assume the rules in the program are of the form (7).

Let P be a logic program whose rules are of the form (7). The completion of P ,
written COMP (P ), is defined as the set of classical formulas:

– for each rule of the form (7) in P

G ⊃
∨

1≤i≤n

ai (10)

– and for each atom p(c) ∈ Atoms(P ),

p(c) ⊃
∨

1≤i≤n


Gi ∧

(∧
q(s)∈pa(Fi)

¬q(s)
)

∧
(∨

p(t)∈pa(Fi)
c = t

)
∧
(∧

p(t)∈pa(Fi)
(c = t ∨ ¬p(t))

)
 (11)

where
• (F1 ← G1), . . . , (Fn ← Gn) are the rules of P such that the atom p(t) occurs

in Fi(1 ≤ i ≤ n) for some t,
• q(s) is an atom such that q is distinct from p, and
• c = t if the two vectors have the same length and their corresponding compo-

nents are all equal.

Intuitively, the equation (11) says that any atom, that holds under some interpretation,
must have some supports. Note that the definition generalizes that of [12] since the
formulas in the second and third lines of (11) are equal to > if the underlying language
of P is propositional.

Example 2. Consider the following logic program P

p, q : τ, f : τ → τ, τ : {0, 1},
p(f(0)); p(f(1)); f(0) = f(1)← p(0), not q(f(0)). (12)

By Proposition 1, any head equality atom can be moved to the body and negated. We
thus consider, equivalently, the following rule instead:

p(f(0)); p(f(1))← p(0), not q(f(0)), f(0) 6= f(1) (13)

53



Note that Atoms(P ) = {p(0), p(1), q(0), q(1)}. COMP (P ) consists of

p(0) ∧ ¬q(f(0)) ⊃ p(f(0)) ∨ p(f(1)) ∨ f(0) = f(1),
q(0) ⊃ ⊥,

q(1) ⊃ ⊥,

p(0) ⊃ (p(0) ∧ ¬q(f(0)) ∧ f(0) 6= f(1)) ∧ (0 = f(0) ∨ 0 = f(1))∧
(0 = f(0) ∨ ¬p(f(0))) ∧ (0 = f(1) ∨ ¬p(f(1))),

p(1) ⊃ (p(0) ∧ ¬q(f(0)) ∧ f(0) 6= f(1)) ∧ (1 = f(0) ∨ 1 = f(1))∧
(1 = f(0) ∨ ¬p(f(0))) ∧ (1 = f(1) ∨ ¬p(f(1))).

Suppose I is an interpretation of P such that f I(0) = 0, f I(1) = 1, and pI(0) holds.
The reduct P I consists of a unique rule

p(0); p(1);⊥ ← p(0),>

whose answer set is ∅ while Ia = {p(0)}. Thus I is not an answer set of P . However,
we can verify that I is a model of COMP (P ).

3.2 Loops and Loop Formulas

Recall in [17], we say that an atom p(t1, . . . , tn) can cover an atom p(c1, . . . , cn) in
Atoms(P ) if for each 1 ≤ i ≤ n,

– if ti mentions only constants and pre-interpreted functions, then ti can be evaluated
to ci,

– if ti is f(s) and cannot be evaluated independently of interpretations, then ci has
the same type as the range of f .

Intuitively, this means that p(t1, . . . , tn) may become p(c1, . . . , cn) under some assign-
ment to functions.

Given a logic program P , the positive dependency graph of P , written GP , is the di-
rected graph (V,E), where V = Atoms(P ), and for any p(c), q(d) ∈ V , (p(c), q(d)) ∈
E if there is a rule F ← G in P such that

– there is an atom p(t) ∈ pa(F ) that can cover p(c),
– there is an atom q(s) ∈ pa(G) that can cover q(d),
– if the ith element in the above t and the kth element in the above s are syntactically

identical, then the ith element in c and the kth element in d are also syntactically
identical.

A nonempty subset L ofAtoms(P ) is a loop of P if GP has a non-zero length cycle
that goes through only and all the nodes in L. In the following, to define loop formulas,
we assume that every rule has the form (9). Let L be a loop of a logic program P ,
and an atom p(c) ∈ L. The external support formula of p(c) relative to L, written
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ES(p(c), L, P ), is the following formula:

∨
1≤i≤n


Bi ∧Gi ∧

(∨
p(t)∈pa(Fi)

c = t
)

∧
(∧

q(d)∈L
q(t)∈pa(Bi)

t 6= d

)
∧
(∧

q(t)∈pa(Fi)

((∧
q(d)∈L t 6= d

)
⊃ ¬q(t)

))
 (14)

where (F1 ← B1, G1), . . . , (Fn ← Bn, Gn) are all of the rules of P such that, for
each i(1 ≤ i ≤ n), there exists an atom p(t′) ∈ pa(Fi) that can cover p(c), Bi is
in the form of conjunction of atoms or equality atoms, and Gi is a formula in which
every occurrence of each atom is in the scope of “not ”. The intended meaning of (14)
is implied by its name, i.e., an atom that holds under an interpretation must have at least
one support which does not depend on any atom in the loop L.

The loop formula of L in P , written LF (L,P ), is then the following formula:∨
A∈L

A ⊃
∨

A∈L

ES(A,L, P ). (15)

This definition clearly generalizes the one for disjunctive loop formulas [12].

Example 3. (Continue with Example 2) L = {p(0)} is a unique loop of P . LF (L,P )
is the following formula

p(0) ⊃ (p(0) ∧ ¬q(f(0)) ∧ f(0) 6= f(1)) ∧ (0 = f(0) ∨ 0 = f(1))
∧(0 = f(0) ∨ ¬p(f(0))) ∧ (0 = f(1) ∨ ¬p(f(1)))

∧(0 6= 0)

which is equivalent to p(0) ⊃ ⊥ and then ¬p(0). Clearly, the interpretation I of P in
Example 2 does not satisfy LF (L,P ). Consequently I is not an answer set of P .

Theorem 2. Let P be a nested logic program with functions. An interpretation I for P
is an answer set of P iff I is a model of COMP (P ) ∪ LF (P ) where LF (P ) is the set
of loop formulas of P .

To compute answer sets of normal logic programs with functions, through comple-
tion and loop formulas, FASP requires no function occurring in predicates and functions
as an argument. For this purpose, a transformation T was introduced [17]. Similarly, it
is not difficult to transform a nested logic program with functions into one that contains
no function in any predicate and function.

4 First-Order Loop Formulas

In the section, we assume that a logic program contains a finite set of rules possibly
with variables. We further assume that every rule of a logic program is of the form (9),
and through variable renaming, no two rules share common variables.
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Recall that, the underlying language L is a many-sorted first-order language. Thus
every predicate has an arity that specifies the number of arguments the predicate has and
the type (sort) of each argument, and similarly for constants and functions. Variables
also have types associated with them, and when they are used in formulas, their types
are normally clear from the context [17].

Let D be a collection of domains in which there is a unique domain corresponding
to each type τ , denoted by Dτ . Given a typed first-order sentence ϕ, the instantiation
of ϕ on D, written ϕ|D, is a formula defined inductively as follows:

– if ϕ does not have quantifications, then ϕ|D is the result of replacing d = d by >
and d1 = d2 by ⊥ in ϕ, where d is any constant, and d1 and d2 are any two distinct
constants;

– ∃xτ .ϕ|D is
(∨

d∈Dτ
ϕ(xτ/d)

) |D;
– (ϕ1 ∨ ϕ2)|D is ϕ1|D ∨ ϕ2|D;
– (¬ϕ)|D is ¬(ϕ|D).

Let r be a rule of the form (9). We say r is not in normal form if there is an atom in
pa(F ) containing at least one constant. Otherwise, we say r is in normal form. A logic
program is in normal form if every rule of the logic program is in normal form. Obvi-
ously, we can turn every logic program to normal form using equality. In the following,
we assume every logic program is in normal form unless stated otherwise.

A binding is an expression of the form α/tτ where α is a variable of type τ or a
function term f(t) whose range is of the type τ , tτ a variable or constant of type τ . A
substitution is a set of bindings containing at most one binding for each variable and
functional term.

Given a logic program P (with variables), the completion of P , denoted by comp(P ),
is the set of formulas defined as

– for each rule of the form (9) in P ,

∀x(∃y.(B ∧G) ⊃ F ) (16)

where x is the tuple of variables occurring in F and y is the tuple of variables
occurring in B or G but not in F ;

– for each predicate p,

∀x.p(x) ⊃
∨

1≤i≤n

∃yi.


(Bi ∧Gi) ∧

(∧
q(s)∈pa(Fi)

¬q(s)
)

∧
(∨

p(t)∈pa(Fi)
x = t

)
∧
(∧

p(t)∈pa(Fi)
(x = t ∨ ¬p(t))

)
 (17)

where
• q is a predicate different from p;
• x is a tuple of distinct variables that are not in P , and match p’s arity;
• (F1 ← B1, G1), . . . , (Fn ← Bn, Gn) are the rules in P whose head mentions

the predicate p;
• for each 1 ≤ i ≤ n, yi is the tuple of variables occurring in Bi, Gi or Fi but

not in x.
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In particular, if a predicate p does not occur in the head of any rule in P , then we have
∀x.¬p(x) in the completion of P .

Given a logic program P , its (first-order) dependency graph GP can be defined
similar to that of [6, 11]. Formally, let σ(P ) be the signature consisting of object and
predicate constants occurring in the rules of P . Now GP is the directed graph (V,E),
where

– V is a set of non-equality atoms formed from σ(P ), along with an infinite supply of
typed variables; please note that there is no atom in V mentioning function symbols.

– (p(t)θ, q(t′)θ) is in E if there is a rule of the form (9) in P such that p(t) ∈ pa(F ),
q(t′) ∈ B and θ is a substitution.

A finite non-empty subset L of V is a (first-order) loop of P if there is a non-zero
length cycle in GP that goes through only and all the nodes in L. Please note that, since
σ(P ) has nothing to do with the type definitions of P , loops of P are independent of
the domains of P .

Let P be a logic program, L a loop of P and p(t) ∈ L. The (first-order) external
support formula of p(t) with respect to L, written es(p(t), L, P ), is the disjunction of

∨
θ:p(t)∈pa(Fθ)

∃y.


(Bθ ∧Gθ)

∧
(∧

q(s)∈L

q(s′)∈pa(Bθ)
s′ 6= s

)
∧
(∧

q(s)∈pa(Fθ)

((∧
q(s′)∈L s′ 6= s

)
⊃ ¬q(s)

))
 (18)

for all rules of the form (9) in P , where θ is a substitution that maps the variables
occurring in t to terms appearing in F , y is a tuple of variables occurring in Bθ, Gθ, or
Fθ but not in t. The (first-order) loop formula of L for P , written lf(L,P ), is then the
following formula:

∀x.

( ∨
A∈L

A ⊃
∨

A∈L

es(A,L, P )

)
(19)

where x is the tuple of variables occurring in L.

Example 4. Consider the following logic program P :

f : τ → τ, p, q : τ,

p(f(a))← p(a), f(a) 6= a,

q(x); p(f(a))← q(f(a)), f(x) = a.

We firstly turn its rules to normal form

p(y1)← p(a), f(a) 6= a, y1 = f(a),
q(z1); p(z2)← q(f(a)), f(z1) = a, z1 = x, z2 = f(a).

From the first rule, we can see that a is a constant of the type τ . The completion of P
consists of the formulas

∀y1.(p(a) ∧ f(a) 6= a ∧ y1 = f(a) ⊃ p(y1)),
∀z1, z2.(∃x.(q(f(a)) ∧ f(z1) = a ∧ z1 = x ∧ z2 = f(a)) ⊃ q(z1) ∨ p(z2),
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∀y2.p(y2) ⊃


∃y1.((p(a) ∧ f(a) 6= a ∧ y1 = f(a)
∧y1 = y2 ∧ (y1 = y2 ∨ ¬p(y1))))

∨(∃x, z1, z2.(q(f(a)) ∧ f(z1) = a ∧ z1 = x ∧ z2 = f(a)∧
¬q(z1) ∧ (z2 = y2) ∧ (z2 = y2 ∨ ¬p(z2))))

 ,

∀y2.q(y2) ⊃
[

(∃x, z1, z2.(q(f(a)) ∧ f(z1) = a ∧ z1 = x ∧ z2 = f(a)∧
¬p(z2) ∧ (z1 = y2) ∧ (z1 = y2 ∨ ¬q(z1))))

]
.

It is easy to see that {p(a)}, {q(a)}, and {q(x1), . . . , q(xn)} are loops of P . The loop
formula lf({p(a)}, P ) is

p(a) ⊃
[

(p(a) ∧ f(a) 6= a ∧ a = f(a) ∧ a 6= a ∧ (a 6= a ∨ ¬p(a)))∨
(∃x, z1.(q(f(a)) ∧ f(z1) = a ∧ z1 = x ∧ a = f(a) ∧ (a 6= a ∨ ¬p(a))))

]
.

Let’s consider the domain D = {a, b} in D for type τ . lf({p(a)}, P )|D equals to

p(a) ⊃ (q(f(a)) ∧ f(a) = a ∧ ¬p(a) ∧ (f(a) = a ∨ f(a) = b)).

Theorem 3. Let P be a logic program in normal form and D is a collection of type
definitions such that, for each type τ used in P , there is a finite and non-empty domain
D ∈ D and D contains all τ -type constants occurring in P . An interpretation I of
P ∪ D is an answer set of P ∪ D if and only if I is a model of (comp(P ) ∪ lf(P ))|D
where lf(P ) is the set of loop formulas of P .

This theorem can be seen a generalization of Theorem 1 of [6], Theorem 2 of [17]
and Proposition 1 of [11] for disjunctive logic programs.

5 Related Works

Functions are widely used in logic formalism stemming from first-order logic. In the
ASP community, functions have already been considered in the general theory of stable
models [8] and in Quantified Equilibrium Logic (QEL) [22]. The two theories general-
ize logic programs with nested expressions. In QEL, an equilibrium model is a Kripkle
structure, for which no algorithm for computing answer sets is given. In the general
theory of stable models, the answer set semantics is defined by translating first-order
sentences into second-order ones. Lee and Meng proposed the notions of first-order
loop formulas for disjunctive logic programs and arbitrary sentences. However they fo-
cused on Herbrand interpretations only. They also considered loop formulas in second-
order logic for arbitrary first-order sentences. However, the notion of loops depends on
a given interpretation in advance [11].

Calimeri et al. considered integrating functions into disjunctive logic programs and
implemented it into DLV [5]. Again, they considered Herbrand models instead of non-
Herbrand ones. To our knowledge, a closely related work is due to Cabalar [4]. A main
difference is that functions in [4] are partial while in our case they are total. This dif-
ference has impact on how knowledge is represented. More importantly, the totality of
functions enables a translation of programs to instances of CSP. Lee also defined the no-
tions of loop formulas for nested logic programs directly. However, only propositional
case is considered, i.e., function symbols are excluded [10].
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6 Conclusion and Future Work

We have considered adding functions to disjunctive logic programs and formulated
completion, loops and loop formulas, thus generalizing the main results of [17] to nested
logic programs with functions. This enable us to extend FASP for such disjunctive logic
programs in the future.

We have also shown how to extend the first-order loops and loop formulas to these
programs. In general, an arbitrary program with variables and negation may be sensitive
to the change of domains. Some restriction, like safety, has been proposed to guarantee
domain independence [11]. It is worthwhile to investigate the same problem under non-
Herbrand interpretations.
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Abstract This paper introduces the notion of Answer Set Programming (ASP)

Machine, which is loosely inspired to Turing’s Oracle Machines. The aim of this

research is to use ASP “oracles” and ASP-represented transition systems to al-

low programmers to use exclusively ASP to solve problems that are beyond the

expressive power of the basic language, rather than having to resort to auxiliary,

often procedural programs. The advantage of our approach is a more uniform

level of abstraction throughout the programs used to solve the problem, greater

elaboration tolerance, as well as simplified proofs of the properties of programs,

such as soundness and completeness.

1 Introduction

Answer Set Programming (ASP) [1,2] is a powerful programming paradigm that fea-

tures sophisticated knowledge representation and reasoning capabilities.

In recent years, ASP has been used for a number of successful applications (e.g.

[3,4,5,6]). One hurdle that programmers often face when using ASP, is that normal

programs1 can only solve NP-complete problems [7]. Whenever a problem of higher

computational complexity is to be solved, either a suitable extension of ASP has to be

selected (e.g. disjunctive programs, CR-Prolog [8], weak constraints [9]), or ad-hoc so-

lutions have to be devised, such as writing an auxiliary, often procedural, program. In

this second approach, the problem is reduced to computing the answer sets of a suit-

able sequence of ASP programs. For example, to find shortest plans, one can use the

#minimize statement of LPARSE/SMODELS [10], or (in particular to have more con-

trol on the search strategy) write a normal program that solves the decision problem,

and an auxiliary program that solves the optimization problem by selecting at each step

a different plan length limit, and by checking if the normal program together with a

specification of the given limit is consistent.

Unfortunately, it is often not easy to find suitable extensions of ASP that can be used in a

natural way to solve the problem at hand. In that case, programmers are forced to write

auxiliary programs. As we mentioned above, in other cases, one resorts to the use of

auxiliary programs to have more control on the search strategy and increase efficiency.

1 That is, logic programs with negation as failure but no disjunction.
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Such auxiliary programs are typically relatively conceptually simple, but they still sub-

stantially complicate the task of proving properties of the overall program, such as

soundness and completeness. Moreover, from a practical point of view, these auxiliary

programs, being often procedural, require a substantial shift of perspective, and their

writing involves the rather error-prone and cumbersome task of writing specifications

at a substantially different level of abstraction compared to the ASP programs at the

core of the application.

An additional motivation to the exclusive use of ASP stems from the recent observation

[11,12] that describing an algorithm using a transition system instead of pseudocode

makes it easier to prove its properties, compare it with other algorithms, and design

new algorithms.

In this paper we explore an extension of the ASP paradigm that exploits these observa-

tions. Our approach to solving problems of high complexity is indeed based on reducing

the task to computing the answer sets of a suitable sequence of ASP programs, but we

use ASP to form such sequence. Although we do not suggest that our approach be used

indiscriminately for general-purpose programming, we believe that it can be useful in

simplifying the task of writing many ASP-based applications, as well as for testing

search strategies before implementing with more efficient paradigms.

The paper is structured as follows. In Section 3 we describe our framework and show

its application to a well-known NP-hard problem. In Section 4 we show how to the

computations involved in our framework can be automated. In Section 5 we discuss

related work. Finally, in Section 6 we draw conclusions and discuss future work.

2 Background

The syntax and semantics of answer set programming [1,2] are defined as follows. Let

Σ be a signature containing constant, function and predicate symbols. Terms and atoms

are formed as usual. A literal is either an atom a or its strong (also called classical or

epistemic) negation ¬a. The sets of atoms and literals formed from Σ are denoted by

atoms(Σ) and literals(Σ) respectively.

A rule is a statement of the form:2

[r] h← l1, . . . , lm, not lm+1, . . . , not ln (1)

where r is an optional name of the rule (a label useful when talking about the

rule), h and li’s are literals and not is the so-called default negation. The intuitive

meaning of the rule is that a reasoner who believes {l1, . . . , lm} and has no rea-

son to believe {lm+1, . . . , ln}, has to believe h. We call h the head of the rule, and

{l1, . . . , lm, not lm+1, . . . , not ln} the body of the rule. Given a rule r, we denote its

head and body by head(r) and body(r) respectively.

2 For simplicity we focus on non-disjunctive programs. Our results extend to disjunctive (and

other) programs in a natural way.
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Often, rules of the form h ← not h, l1, . . . , not ln are abbreviated into ←
l1, . . . , not ln, and called constraints. The intuitive meaning of a constraint is that its

body must not be satisfied.

An ASP program (or program for short) is a pair 〈Σ,Π〉, where Σ is a signature and

Π is a set of rules over Σ. Often we denote programs by just the second element of

the pair, and let the signature be defined implicitly. In that case, the signature of Π is

denoted by Σ(Π).

A set A of literals is consistent if no two complementary literals, a and ¬a, belong to

A. A literal l is satisfied by a consistent set of literals A if l ∈ A. In this case, we write

A |= l. If l is not satisfied by A, we write A 6|= l. A set {l1, . . . , lk} of literals is satisfied

by a set A of literals (A |= {l1, . . . , lk}) if each li is satisfied by A.

Programs not containing default negation are called definite. A consistent set of literals

A is closed under a definite program Π if, for every rule of the form (1) such that the

body of the rule is satisfied by A, the head belongs to A.

Definition 1. A consistent set of literals A is an answer set of definite program Π if

A is closed under all the rules of Π and A is set-theoretically minimal among the sets

closed under all the rules of Π .

The reduct of a program Π with respect to a set of literals A, denoted by ΠA, is the

program obtained from Π by deleting:

– Every rule, r, such that l ∈ A for some expression of the form not l from the body

for r;

– All expressions of the form not l from the bodies of the remaining rules.

We are now ready to define the notion of answer set of a program.

Definition 2. A consistent set of literals A is an answer set of program Π if it is an

answer set of the reduct ΠA.

To simplify the programming task, variables are often allowed to occur in ASP pro-

grams. A rule containing variables (called a non-ground rule) is then viewed as a short-

hand for the set of its ground instances, obtained by replacing the variables in it by all

the possible ground terms. Similarly, a non-ground program is viewed as a shorthand

for the program consisting of the ground instances of its rules.

Later, we will also need the following notation. Given a program Π and a literal l, we

say that Π entails l, and write Π |= l, if, for every answer set A of Π , A |= l. We say

that Π does not entail l, and write Π 6|= l, if there exists one answer set A of Π such

that A 6|= l.

3 ASP Machines and Execution Traces

Our approach is loosely inspired to the notion of Oracle Turing Machines [13], and

consists in reducing the computation needed to solve a problem to a sequence of calls to

63



an “oracle” Ω, such that both the oracle and the program that generates the sequence of

calls can be written in ASP. At this stage of the investigation, we focus on NP-complete

oracles, as they can be implemented directly using ASP normal programs. Hence, from

now on we identify an oracle with the normal program that implements it.

We denote the signature of an oracle Ω by ΣΩ , and the set of literals, formed from

ΣΩ according to the usual conventions, by litΩ . An input to Ω is a consistent subset of

litΩ .3

Given an input I , invoking oracle Ω is reduced to computing the answer sets of I ∪Ω.

To simplify dealing with situations in which I ∪ Ω is inconsistent, we work under the

convention that, for every input I , every answer set of I ∪ Ω is non-empty.4 Thus, an

output of Ω (for input I) is an answer set of I ∪Ω, or ∅ if I ∪Ω is inconsistent. Notice

that, generally speaking, I ∪ Ω may have multiple answer sets. We denote the set of

outputs of Ω for I by Ω(I) (if I ∪Ω is inconsistent, it follows that Ω(I) = {∅}).
The computation that leads to calling the oracle is modeled as a sequence of transitions.

Because of the similarity with the domain of reasoning about actions and change (see

e.g. [14]), we call fluents the properties of interest of the states of the computation,

whose truth value typically varies with state transitions. A fluent literal is either a fluent

f or its negation ¬f . A state of the computation is a consistent set of fluent literals.5

A configuration is a pair 〈σ, ρ〉, where σ is a state of the computation and ρ is a con-

sistent subset of litΩ . Intuitively, σ is the current state of the computation and ρ is one

output from the latest call to the oracle. The initial configuration is 〈σi, ∅〉, where σi

is a pre-determined initial state. Our goal is to use ASP to model a transition function

that takes as input a configuration 〈σ, ρ〉 and returns a pair 〈σ′, π′〉, where σ′ is the

next state of the computation and π′ is the input to the next call to the oracle. The next

configuration will then be 〈σ′, ρ′〉, for some ρ′ ∈ Ω(π′) (there may be multiple next

configurations). The computation terminates when it reaches a terminal configuration,

which we will define using ASP. A terminal configuration may be successful, or failed,

meaning that the configuration does not lead to a solution.

The formalization is as follows. Notice that, because here we focus on using a nor-

mal program to model the transition function, we restrict our attention to NP-complete

transition functions. Given oracle Ω, let Στ be a signature such that:

– all constant and function symbols of ΣΩ occur also in Στ ;

– all the fluent literals of interest can be formed from function and constant symbols

of Στ ;6

– all relation symbols of ΣΩ are function symbols in Στ ;7

3 Although here we use a different approach, one might also view Ω as an lp-function [14].
4 This can be trivially achieved by ensuring that the oracle contains at least one fact.
5 Although it is possible to require states of the computation to be also complete sets of fluent

literals, that does not appear to play a major role in the formulation of our approach.
6 As often done in the literature, we assume that either terms can contain strong negation, or a

suitable function symbol and axioms are introduced to allow writing negative fluent literals.
7 That is, we reify the relations of ΣΩ .
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– unary relation symbols state, next state, param, result, and zero-ary relation

symbols terminal and failed belong to Στ , and are called fixed relations.

Literals of Στ are denoted by litτ and are formed according to the usual conventions.

Notice that the conditions above, together with the normal assumption that function and

relation symbols in a signature are disjoint, imply that the relation symbols of ΣΩ and

of Στ are disjoint. In the rest of the paper, we use the term Ω-literals to refer to both

the literals formed from ΣΩ and to the corresponding terms formed from Στ . The fixed

relations of Στ are used to encode the transition function and to provide an interface

with the oracle. Intuitively:

– state(L) says that fluent literal L holds in the current state of the computation;

– next state(L) says that fluent literal L will hold in the next state of the computa-

tion;

– terminal says that the current configuration is terminal;

– failed says that the current configuration does not lead to a solution;

– param(I) says that Ω-literal I is part of the input for the next call to oracle Ω;

– result(O) says that Ω-literal O is part of an output of the latest call to Ω.

Given a relation r and a set of literals A, A|r (called restriction of A to r) denotes the

set of literals of A formed by relation r. If r is a unary relation, by A ↓r we denote the

set of arguments of the atoms from A|r. For example, {r(a), r(c)} ↓r= {a, c}. We also

denote by A ↑r the set of atoms formed by unary relation r, with the elements of A as

arguments. For example, {a, c} ↑r= {r(a), r(c)}.
A configuration 〈σ, ρ〉 is encoded in ASP by means of relations state and result.
For example, the configuration 〈{f1, f2}, {r1, r2}〉 is encoded by the set of atoms

{state(f1), state(f2), result(r1), result(r2)}. We denote the ASP encoding of a con-

figuration γ by α(γ). More precisely, α(〈σ, ρ〉) = (σ ↑state) ∪ (ρ ↑result).

The transition function is encoded by a program τ , over signature Στ

Definition 3. Program τ over Στ is a transition program if, for every configuration γ:

– if some answer set of α(γ)∪τ entails terminal, then α(γ)∪τ has a unique answer

set;

– for every answer set A of α(γ) ∪ τ , A |= failed implies A |= terminal.

For simplicity, in this paper we focus on deterministic transitions, and consequently, for

every configuration γ, α(γ) ∪ τ has a unique answer set (but recall that the oracle may

have multiple answer sets).

Definition 4. An ASP machine is a tuple 〈τ, σi, Ω〉, where τ is a transition program,

Ω is an oracle, and σi is the initial state of the computation.

To simplify the notation, we adopt the convention that the initial state of the computa-

tion is the set {initial}, where initial is a suitable fluent literal from Στ . In that case,

an ASP machine is denoted simply by the pair 〈τ,Ω〉.
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Definition 5. An execution trace for ASP machine 〈τ, σi, Ω〉 from configuration

〈σ0, ρ0〉 is a (possibly infinite) sequence:

〈σ0, ρ0, π1, σ1, ρ1, π2, σ2, ρ2, π3, σ3, ρ3, . . .〉,

where σi’s are states of the computation, and πi’s, ρi’s are subsets of litΩ , such that:

– α(〈σi, ρi〉) ∪ τ |= terminal iff σi, ρi are the last two elements of the sequence;

– for every i such that α(〈σi, ρi〉) ∪ τ 6|= terminal, there exists an answer set A of

α(〈σi, ρi〉)∪ τ such that: (i) σi+1 = A ↓next state, (ii) πi+1 = A ↓param, and (iii)

ρi+1 ∈ Ω(πi+1).

It follows from the definition that a configuration γ0 = 〈σ0, ρ0〉 is an execution trace

from γ0 for ASP machine 〈τ, σi, Ω〉 if α(〈σ0, ρ0〉)∪τ |= terminal. By execution trace

for an ASP machine 〈τ, σi, Ω〉, without any reference to a configuration, we mean an

execution trace of the ASP machine from its initial configuration 〈σi, ∅〉.
We distinguish between finite execution traces and infinite execution traces. In a fi-

nite execution trace 〈σ0, ρ0, . . . , πn, σn, ρn〉, the pair formed by its last two elements,

〈σn, ρn〉, is called the terminal configuration. We also distinguish between successful

(finite) execution traces and failed (finite) execution traces. A finite execution trace s
is failed if its terminal configuration 〈σn, τn〉 is such that α(〈σi, ρi〉) ∪ τ |= failed.

Otherwise, s is successful.

It is not difficult to check that every finite execution trace has 2 + 3k elements for some

k ≥ 0. We call k the number of transitions in the execution trace.

Definition 6. A set σ ∪ ρ is a hyper answer set of an ASP machine 〈τ, σi, Ω〉 if 〈σ, ρ〉
is a terminal configuration for some successful execution trace for 〈τ, σi, Ω〉.

To better illustrate the framework developed so far, let us demonstrate how it can be

applied to the task of solving the Traveling Salesman Problem (TSP). Given a directed

graph G with edges labeled by weights (representing the cost of traveling from one

vertex to the other) and an initial vertex v0, the goal, in the TSP, is to find a Hamiltonian

cycle C from v0 such that the sum of the weights of the edges traversed by C (also

called cost) is minimal. The TSP is known to be NP-hard, while the decision problem

version of TSP is NP-complete. Although the TSP can be solved quite naturally with

some extensions of ASP, such as the #minimize statement of LPARSE/SMODELS [10]

or weak constraints from DLV [9], we chose this problem because it is well-known and

has a simple structure. Furthermore, to demonstrate the programmer’s control on the

search strategy, we implement the transition program so that it performs binary search.

We use an oracle ΩH to solve the decision problem version of TSP. That is, ΩH finds a

Hamiltonian cycle C from v0 such that the cost of C is less than or equal to some given

limit l.
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A possible ASP program for ΩH is:8

% Path P visits every vertex V at most once.

← vertex(V 2), vertex(V 1), vertex(V ),
in(V 1, V ), in(V 2, V ), V 1 6= V 2.

← vertex(V 2), vertex(V 1), vertex(V ),
in(V, V 1), in(V, V 2), V 1 6= V 2.

% Path P must visit every vertex of the graph.

reached(V 2)← vertex(V 1), vertex(V 2), init(V 1), in(V 1, V 2).
reached(V 2)← vertex(V 1), vertex(V 2), reached(V 1), in(V 1, V 2).

← vertex(V ), not reached(V ).

{in(V 1, V 2) : edge(V 1, V 2)}.

% Edge cost – cost of a selected edge.

[r1] ecost(V 1, V 2, L)←
vertex(V 1), vertex(V 2), in(V 1, V 2), length(V 1, V 2, L).

[r2] cost(T )←
T [ecost(V 1, V 2, C) : vertex(V 1) : vertex(V 2) : ldom(C) = C]T,
ldom(T ).

% Path P must have a cost no greater than the current limit.

← ldom(T ), ldom(L), cost(T ), limit(L), T > L.

The input to the oracle is provided as follows: the list of vertexes is specified by relation

vertex; the initial vertex is specified by relation init; an edge from v1 to v2 is specified

by an atom edge(v1, v2); the weight of the edge from v1 to v2 is specified by an atom

length(v1, v2, l);9 the limit to the cost of the Hamiltonian cycle is specified as limit(l);
relation ldom specifies the domain for the weights and path cost.10

The first 6 rules use well-know techniques to find Hamiltonian cycles. Rule r1 deter-

mines the cost of each selected edge. Rule r2 uses a special LPARSE/SMODELS [10]

construct to compactly specify that cost(T ) must hold if T is the cost of the selected

Hamiltonian cycle. Finally, the last constraint discards any cycles whose cost is greater

than the given limit.

8 The program shown here is an extension of the one described at

http://www.cs.ttu.edu/∼mgelfond/FALL02/asp.pdf. To increase read-

ability, the program is written using constructs available in LPARSE/SMODELS [10].

Converting to the language described in Section 2 is not difficult.
9 More compact representations are also possible, which avoid using two separate relations edge

and length, but we prefer this encoding as it allows us to build incrementally on top of the

existing ASP solutions to the problem of finding Hamiltonian cycles in non-weighted graphs.
10 The use of ldom is required only for proper grounding by LPARSE. We include it here to make

the program directly executable with LPARSE+SMODELS [10].
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Consider the problem instance PTSP encoded by:

ldom(0..50).

vertex(s0; s1; s2; s3).
init(s0).

length(s0, s1, 6). length(s1, s2, 5). length(s2, s3, 4).
length(s3, s0, 3). length(s0, s2, 2). length(s1, s3, 1).

% Edges oriented in the opposite direction, same weights.

length(s1, s0, 6). length(s2, s1, 5). length(s3, s2, 4).
length(s0, s3, 3). length(s2, s0, 2). length(s3, s1, 1).

edge(V 1, V 2)← length(V 1, V 2, L).

It is not difficult to check that ΩH ∪PTSP ∪ {limit(25)} has an answer set containing

the atoms {in(s0, s1), in(s1, s3), in(s3, s2), in(s2, s0), cost(13)}, encoding the solu-

tion to the decision problem corresponding to path 〈s0, s1, s3, s2, s0〉, of cost 13.

A transition function that performs binary search is encoded by program, τH , consisting

of the rules described next. The general idea is to maintain, as part of the state of the

computation, an encoding of the current search interval and of its midpoint, used as the

limit value for the next call to the oracle. Fluents of interest are, thus, latest min(V ),
latest max(V ) and latest limit(V ). The first set of rules from τH detects terminal

configurations, checks if a Hamiltonian cycle was found by the latest call to the oracle,

and detects failed execution traces.

terminal←
ldom(T ),
state(latest min(T )), state(latest max(T )).

hamcycle found←
ldom(T ), result(cost(T )).

failed←
terminal, not hamcycle found.

The next set of rules uses information about the current state to determine the next

search interval and its midpoint, and encode them using auxiliary relations, as follows:11

new interval(dom min, dom max)← state(first run).

new interval(X,Y )←
ldom(X), ldom(Y ),
hamcycle found, state(latest limit(Y )), state(latest min(X)).

11 The search could be made more efficient by taking into account, in the determination of the

next search interval, the cost of the Hamiltonian cycle just found by the oracle. For illustrative

purposes, however, we use the simpler technique described here.
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new interval(X + 1, Y )←
ldom(X), ldom(Y ),
not hamcycle found, state(latest limit(X)), state(latest max(Y )).

selected limit(T )←
ldom(X), ldom(Y ), ldom(T ), new interval(X,Y ), T = ((X + Y )/2).

In the rules above, dom min and dom max are predefined constants that define the

range of interest for the search. Also notice how hamcycle found is used, above, to

select either the left or right subinterval of the current search interval. The next set

of rules determines the next state of the computation from the auxiliary relations just

defined:

next state(latest min(X))← ldom(X), ldom(Y ), new interval(X,Y ).

next state(latest max(Y ))← ldom(X), ldom(Y ), new interval(X,Y ).

next state(latest limit(T ))← ldom(T ), selected limit(T ).

The final set of rules defines the parameters to be passed to the oracle, and in particular

the value of the limit for the decision problem:

param(limit(V ))← ldom(V ), selected limit(V ).
param(ldom(X))← ldom(X).
param(vertex(V ert))← vertex(V ert).
param(init(V ert))← init(V ert).
param(edge(V 1, V 2))← edge(V 1, V 2).
param(length(V 1, V 2, L))← length(V 1, V 2, L).

Let us now focus on constructing an execution trace 〈σ0, ρ0, π1, σ1, ρ1, . . .〉 for the

ASP machine 〈τH ∪ PTSP , ΩH〉 from the initial configuration γ0 = 〈{initial}, ∅〉.
To save space, we will construct the relevant portions of the answer sets of the

various programs by using the informal meaning of the ASP rules, rather than

mathematical proofs. Let dom min, dom max be respectively 0 and 50. It is

not difficult to show that α(γ0) ∪ τH has a unique answer set A0 containing

new interval(0, 50), selected limit(25), param(limit(25)), and the correspond-

ing definition of relation next state. According to our definition of execution trace,

π1 = A0 ↓param= {limit(25), vertex(s0), . . .} = PTSP ∪ {limit(25)} and σ1 =
{latest min(0), latest min(50), latest limit(25)}. Next, let us consider ρ1. By defi-

nition, ρ1 ∈ ΩH(π1). Notice that ΩH ∪π1 has possibly multiple answer sets. One such

answer set encodes the solution to the decision problem with cost(13) shown earlier.

Let us select that solution for the execution trace considered in this example. Hence,

ρ1 = {in(s0, s1), in(s1, s3), in(s3, s2), in(s2, s0), . . .}. Let γ1 denote 〈σ1, ρ1〉. The

next step consists in determining σ2 and π2 from the answer set, A1, of α(γ1) ∪ τH .

It can be shown that A1 contains atoms new interval(0, 25) and selected limit(12).
Hence, σ2 = {latest min(0), latest max(25), latest limit(12)} and π2 = PTSP ∪
{limit(12)}. Set ΩH(π2) contains two answer sets, both encoding solutions with cost

11. Let us pick arbitrarily one such answer set as ρ2. At this point, σ3 and π3 can
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be found as above: σ3 is {latest min(0), latest max(12), latest limit(6)}, while π3

is PTSP ∪ {limit(6)}. Because no Hamiltonian cycle exists of cost 6 or less for the

given instance, ΩH(π3) = {∅}. Hence, ρ3 = ∅. Let us now consider the answer set,

A3, of α(〈σ3, ρ3〉). Obviously, hamcycle found 6∈ A3. That causes the right search

subinterval to be selected, that is A3 ⊇ {new interval(7, 12), selected limit(9)}.
Thus, π4 = PTSP ∪ {limit(9)}. As the shortest Hamiltonian cycle for the

problem instance considered here has cost 11, once again ΩH(π4) = {∅}. The

search proceeds along these lines until subinterval [11, 11] is selected. In other

words, it is not difficult to show that there exists some index k such that σk =
{latest min(11), latest max(11), latest limit(11)} and πk = PTSP ∪{limit(11)}.
Set ΩH(πk) contains two answer sets, both encoding solutions with cost 11. Let us se-

lect:

ρk = {in(s0, s2), in(s2, s1), in(s1, s3), in(s3, s0), cost(11), . . .}.
Let us now consider Ak = α(〈σk, ρk〉). Clearly terminal ∈ Ak. More-

over, hamcycle found ∈ Ak, which implies that failed 6∈ Ak. Therefore,

〈σ0, ρ0, π1, . . . , σk, ρk〉 is a successful execution trace, and σk ∪ ρk is a hyper answer

set of the ASP machine. The hyper answer set encodes the solution, of cost 11, corre-

sponding to the path 〈s0, s2, s1, s3, s0〉.

4 Computing Execution Traces

An algorithm that computes a successful finite execution trace for an ASP machine

〈τ,Ω〉 from configuration 〈σ0, ρ0〉 is shown below (Algorithm 1).

Algorithm 1: FindSuccessfulTrace

Input: ASP machine 〈τ, Ω〉
A configuration 〈σ0, ρ0〉

Output: A successful finite execution trace 〈σ0, ρ0, π1, σ1, ρ1, . . . , σn, ρn〉 or ⊥ if none

was found.

A := the answer set of τ ∪ α(〈σ0, ρ0〉)1

if {terminal, failed} ⊆ A then return ⊥2

if terminal ∈ A then return 〈σ0, ρ0〉3

π := (A ↓param)4

σ := (A ↓next state)5

O := Ω(π)6

while O 6= ∅ do7

ρ := an arbitrary element of O8

O := O \ {ρ}9

s := FindSuccessfulTrace(〈τ, Ω〉, 〈σ, ρ〉)10

if s 6= ⊥ then return 〈σ0, ρ0, π〉 ◦ s11

end12

return ⊥13
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Given a configuration γ0 = 〈σ0, ρ0〉, algorithm FindSuccessfulTrace starts by checking

whether γ0 is failed. That is accomplished, as per the definition of execution trace, by

checking whether the answer set A of τ ∪ α(〈σ0, ρ0〉) contains {terminal, failed}. If

γ0 is failed, the algorithm returns⊥. Next, FindSuccessfulTrace checks if γ0 is terminal,

and if so returns it. Otherwise, the algorithm extracts from A the next state of the com-

putation, σ, and the parameters for the call to the oracle, π. The oracle is then invoked,

and its outputs are stored in O. Notice that, by definition, O is guaranteed to be non-

empty. Next, the algorithm attempts to construct a successful trace using each output of

the oracle. To do that, an arbitrary element ρ of O is selected and removed from O. The

algorithm is called recursively, to attempt to find a successful execution trace s from the

new configuration 〈σ, ρ〉. If the attempt succeeds, the algorithm prepends to s the initial

configuration as well as the parameters used in the call to the oracle and returns the

resulting execution trace. Otherwise, the algorithm selects another output from the call

to the oracle, and iterates. If all the attempts fail at constructing a successful execution

trace from the configuration obtained from σ and an output of the oracle, the algorithm

returns ⊥. Let us now discuss soundness and completeness of the algorithm.

Lemma 1. For every ASP machine 〈τ,Ω〉 and every configuration 〈σ0, ρ0〉, if

FindSuccessfulTrace(〈τ,Ω〉, 〈σ0, ρ0〉) returns a sequence s 6= ⊥, then the first two

elements of s are σ0 and ρ0; that is,

s = 〈σ0, ρ0, . . . , 〉.
It is not difficult to show that every sequence (that is, every result except for ⊥) re-

turned by FindSuccessfulTrace has 2 + 3k elements, for some k ≥ 0. Therefore,

let us extend the notion of number of transitions to the sequences returned by algorithm

FindSuccessfulTrace. We denote the number of transitions in such a sequence s by

|s|.
Theorem 1. For every ASP machine 〈τ,Ω〉 and every configuration 〈σ0, ρ0〉, if

FindSuccessfulTrace(〈τ,Ω〉, 〈σ0, ρ0〉) returns a sequence s 6= ⊥, then s is a suc-

cessful execution sequence for 〈τ,Ω〉 from 〈σ0, ρ0〉.
Proof. We proceed by induction on the number of transitions in the sequence returned

by algorithm FindSuccessfulTrace.

Base case: |s| = 0.

If |s| = 0, then by definition s contains two elements, that is, by Lemma 1, s = 〈σ0, ρ0〉.
Hence, s was returned at step 3 of the algorithm, which implies that τ ∪α(〈σ0, ρ0〉) en-

tails terminal, but it does not entail failed. By Definition 5, s is a successful execution

trace.

Inductive step.

Let us assume that, if FindSuccessfulTrace(〈τ,Ω〉, 〈σ, ρ〉) returns a sequence s
with n − 1 transitions, then s is a successful execution trace, and let us prove that, if

FindSuccessfulTrace(〈τ,Ω〉, 〈σ, ρ〉) returns a sequence s′ with n transitions, then

s′ is a successful execution trace.

Because |s′| ≥ 1, s′ contains at least 2 + 3 · 1 = 5 elements. Hence, the final result

of algorithm FindSuccessfulTrace must have been returned by step 11. Let σ1, ρ1,
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π1 denote the values of variables σ, ρ, and π at the moment of the execution of step

11, and notice that those variables had the same values at step 10. Consequently, there

exists s such s = FindSuccessfulTrace(〈τ,Ω〉, 〈σ1, ρ1〉) and s′ = 〈σ0, ρ0, π1〉 ◦ s.

By Lemma 1, the first two elements of s are σ1 and ρ1; that is, s = 〈σ1, ρ1, . . .〉.
Because |s′| = n, |s| = n−1. By inductive hypothesis, s is a successful execution trace

from 〈σ1, ρ1〉.
To prove the thesis, we need to show that the conditions of Definition 5 are satisfied.

Because s has already been shown to be a successful execution trace, the conditions

simplify to:

1. α(〈σ0, ρ0〉) ∪ τ entails neither terminal nor failed;

2. the answer set, A, of α(〈σ0, ρ0〉) ∪ τ is such that:

(a) σ1 = A ↓next state;

(b) π1 = A ↓param;

(c) ρ1 ∈ Ω(π1).

The fact that α(〈σ0, ρ0〉) ∪ τ entails neither terminal nor failed follows from the

observation that, if that were not the case, steps 2 and 3 of the algorithm would have

returned either ⊥ or a sequence with 0 transitions.12

The fact that the other conditions hold is demonstrated as follows. Notice that the value

of variable π does not change between step 4 and step 11. We have already established

that the value of π at step 11 is π1. Hence, step 4 guarantees that π1 = A ↓param. With

a similar reasoning, we conclude that σ1 = A ↓next state and ρ1 ∈ Ω(π1).

Therefore, s′ is an execution trace by Definition 5. The fact that it is finite follows

from the fact that s is finite. Finally, s′ is successful because, if step 2 detects a failed

execution sequence, the algorithm returns ⊥ instead of a sequence.

Obviously, the algorithm is not complete, as it finds only one successful execution trace.

What is more important, however, is that not even termination is guaranteed: in fact,

if an infinite execution trace exists, nothing prevents the algorithm from attempting

to construct it. To make guarantees about termination, we need to consider a more

restricted class of ASP machines.

Definition 7. An ASP machine µ = 〈τ,Ω〉 is finite if every execution trace of µ is finite.

Finite ASP machines allow one to guarantee not only termination, but also a weak

notion of completeness.

Theorem 2. For every finite ASP machine µ = 〈τ,Ω〉:
1. FindSuccessfulTrace(µ, 〈σi, ∅〉) terminates;

2. If a successful execution trace exists for µ, FindSuccessfulTrace(µ, 〈σi, ∅〉) re-

turns a successful execution trace.

Proof. Both statements can be proven by induction similarly to Theorem 1.

12 Regarding step 2, the fact that τ is a transition program guarantees that, if failed is entailed

by α(〈σ0, ρ0〉) ∪ τ , then terminal is also entailed.
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It is possible to extend FindSuccessfulTrace into an algorithm that returns a set of

successful finite execution traces, as shown below (Algorithm 2). Not only the extended

algorithm is sound, but, for finite ASP machines, it can also be shown to terminate and

be complete.

Algorithm 2: FindAllSuccessfulTraces

Input: ASP machine 〈τ, Ω〉
A configuration 〈σ0, ρ0〉

Output: A (possibly empty) set of successful finite execution traces.

A := the answer set of τ ∪ α(〈σ0, ρ0〉)1

if {terminal, failed} ⊆ A then return ∅2

if terminal ∈ A then return {〈σ0, ρ0〉}3

π := (A ↓param)4

σ := (A ↓next state)5

H := ∅6

O := Ω(π)7

while O 6= ∅ do8

ρ := an arbitrary element of O9

O := O \ {ρ}10

S := FindAllSuccessfulTraces(〈τ, Ω〉, 〈σ, ρ〉)11

if S 6= ∅ then H := H ∪ {〈σ0, ρ0, π〉 ◦ s | s ∈ S}12

end13

return H14

5 Related Work

In [11] and [12], it is argued that describing an algorithm using a transition system

instead of pseudocode makes it easier to prove its properties, compare it with other

algorithms, and design new algorithms.

The fact that ASP provides a convenient framework to represent state transitions was

highlighted by the research on using ASP for reasoning about actions and change, see

e.g. [15,14,4].

Several extensions of the language of ASP allow one to deal with problems of complex-

ity higher than NP-complete, e.g. [1,9,8,16].

The GnT system [17] finds answer sets of disjunctive logic programs by computing the

answer sets of two normal programs automatically derived from the original program.

Our approach is more general than [17] in that the oracle and the transition program are

independently programmed, rather than obtained from automatic translation, and thus

our technique can be applied to solve a variety of problems besides just the computation

of the answer sets of disjunctive programs.
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In [7], an ASP program is used to simulate a non-deterministic Turing machine. Hence,

the encoding presented there is at a considerably lower level of abstraction than the

one we discussed. Furthermore, [7] is focused upon a single ASP program, while in

the present work a considerable effort was devoted to developing a suitable framework

allowing the interaction between two ASP programs.

6 Conclusions and Future Work

In this paper we have explored the use of answer set programming to solve problems

that cannot be solved with a normal program. Although extensions of ASP exist that

allow solving some of these problems, for practical applications often programmers

are forced to resort to writing auxiliary (often procedural) programs, which reduce the

task of solving the problem to that of computing the answer sets of a suitable sequence

of ASP programs. The rather different level of abstraction used in the auxiliary pro-

grams, compared to the ASP programs at the core of the application, causes various

difficulties, and makes it hard to prove properties of the overall program. Our approach

is based on the consideration that algorithms can be represented by transition systems,

and that ASP has been proven to be a useful tool for representing state transitions. By

using ASP to encode the auxiliary algorithms needed to solve problems of complexity

beyond NP-complete, we remove the problems introduced by the use of different levels

of abstraction, and simplify proving the properties of the overall program.

This paper has been focused upon solving problems by calling an NP-complete oracle.

However, our definitions extend to more powerful oracles, ultimately allowing to use

an ASP machine as an oracle to another ASP machine. Another interesting extension

consists in allowing the use of multiple oracles, with the transition program determining

which oracles to execute at each transition.

Finally, although here we have mostly focused on finite execution sequences, we believe

that infinite execution sequences deserve attention. In fact, infinite execution sequences

appear to be useful in the specification of closed-loop algorithms, such as agent control

loops. In this area, ASP machines might provide an interesting middle-ground between

the fully-logical specifications (e.g. [18]) and the mixed procedural/logical specifica-

tions (e.g. [19]) of control loops.
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