
Third ASP Competition

File and language formats

The Competition Organizing Committee

Università della Calabria

1 Standard Language Principles . 2
2 Language Overview . 2
3 ASP-Core and ASP-RfC Language Syntax . 2

Rules. 2
Literals. 3
Atoms. 3
Terms, constants, variables. 4
Queries. 4

4 Semantics . 4
Herbrand universe. 5
Substitutions and instances. 5
Ground program. 6
Satisfaction of literals. 6
Satisfaction of rules. 7
Gelfond-Lifschitz reduct. 7

5 Semantic Restrictions . 7
5.1 Safety. 7
5.2 Programs with Function symbols and integers . 8
5.3 Restrictions on disjunction . 9

6 Reasoning Tasks for the System competition . 9
Model generation (Search). 9
Querying. 9

7 EBNF Grammar for ASP-Core and ASP-RfC . 9
8 Lexical matching table . 11
9 Instance Input and Output Formats . 12

Input Specification. 12
Output Specification. 12

2

1 Standard Language Principles

The System competition will be held over the two language formats ASP-Core and ASP-

RfC. The two languages have been conceived according to the following goals:

1. Include no less than the constructs appearing in the original A-Prolog language as
formulated in [7], and be compliant with the LPNMR 2004 core language draft [1].

2. Include, as an extension, a reduced number of features which are seen both as highly
desirable and have now maturity for entering a standard language for ASP;

3. The above extensions should be appropriately chosen, in a way such that the cost
of alignment of the input format would be fair enough to allow existing and future
ASP solvers to comply with.

4. Have a non-ambiguous semantics over which widespread consensus has been reached;

2 Language Overview

According to goal 1, ASP-Core includes a language with disjunctive heads and strong
and NAF negation, and does not require domain predicates; according to goals 2 and
3, ASP-RfC includes ASP-Core as a fragment, with the conservative addition, as native
features, of non-recursive aggregates, both with set and multiset semantics, and function
symbols. The chosen aggregates are #sum, #count, #max and #min. Choices on the design
of the ASP-RfC format allow also to comply with goal 4.

ASP-Core is a conservative extension to the non-ground case of the SCore language
adopted in the First ASP Competition, complies with the core language draft specified
at LPNMR 2004 [1], and includes constructs which are nowadays common in current
ASP parsers.

The ASP-RfC format comes in the form of a “Request for Comments” from the ASP
community, and extends ASP-Core with function symbols and a limited number of pre-
defined aggregate functions.

A limited number of problems specified in ASP-RfC will be selected for the System
competition. We do expect the ASP-RfC format will foster discussion in the community
and feed useful material to the foreseen forthcoming constitution of an ASP standard
language working group.

3 ASP-Core and ASP-RfC Language Syntax

We define in the following programs written in ASP-Core: additions in the ASP-RfC

format are explicitly described in framed boxes.
For the sake of readability, the language specification is herein given in the traditional

mathematical notation. A lexical matching table from the following notation to the actual
raw input format prescribed for participants is provided in Section 8.

An ASP-Core program P is constituted by a set of rules.

Rules. A rule r is in the form

a1 ∨ . . . ∨ an ← b1, . . . , bk, o1, . . . , ol,not n1, ...,not nm.

where n, k, m, l ≥ 0, and at least one of n,k and m is greater than 0.

3

a1, . . . , an, b1, . . . , bk, and n1, . . . , nm are classical literals, while o1, . . . , ol are builtin
atoms.

a1 ∨ . . . ∨ an constitutes the head of r, while b1, . . . , bk,not n1, ...,not nm is the
body of r. As usual, whenever k = m = 0, we omit the “←” sign. We call r a fact if
n = 1, k = m = 0 or a constraint if n = 0.

Literals. A classical literal is either −a (negative classical literal) or a (positive classical
literal) for a a predicate atom. A naf-literal is either a positive naf-literal a or a negative
naf-literal not a, for a a classical literal.

ASP-RfC

In ASP-RfC, the notion of naf-literal is redefined to include aggregate lit-
erals. An ASP-RfC naf-literal is either an ASP-Core naf-literal or an aggregate literal.
An aggregate literal, is either not a or a, for a an aggregate atom.

ASP-RfC

Atoms. An atom is either

– a predicate atom in the form p(X1, . . . , Xn) for p a predicate name and X1, . . . , Xn

terms, for n (n ≥ 0) the fixed arity associated to p1, or
– a built-in atom in any of the two forms X≺ Y ⋄Z and X≺ Y , for X, Y and Z terms,

“≺” one of “<”, “≤”, “=”, “ 6=”, “>” and “≥”, and “⋄” one of “+”,“−”,“∗” and “/”.

ASP-RfC

Aggregate atoms. An aggregate atom a is in the form #aggr S ≺ v or
v ≺ #aggr S, where:

– S is either a set term or a multi-set term; accordingly, we call a a set aggregate
if S is a set term, and a multiset aggregate otherwise;

– “≺” is one among “<”, “≤”, “=”, “ 6=”, “>” and “≥”;
– #aggr is an aggregate function name: allowed values for #aggr are #sum,

#count, #max and #min, and
– v is either a variable or an integer constants.

A set term is in the form {s}, while a multiset term is in the form [s]. In both
cases, s is either a symbolic set or a ground set. A symbolic set is a pair Vars :Conj ,
where Vars is a list of variables and Conj is a conjunction of predicate and builtin
atoms.

A ground set is a list of pairs of the form 〈t :Conj 〉, where t is a list of constants
and Conj is a ground (variable free) conjunction of predicate atoms.

Syntactic shortcuts. An aggregate atom in the form l ≺1 #aggr S ≺2 u is a
syntactic shortcut for the conjunction l ≺1 #aggr S, #aggr S,≺2 u, where ≺1 and

1 Atoms referring to a predicate q of arity 0, can be stated either in the form q() or q. Negative
literals and naf-literals cannot be built on top of built-in atoms.

4

≺2 are both either leftward operators or rightward operators. A rightward operator
is either “>” or “≥”; a leftward operator is either “<” or “≤”.

Non-normative syntactic shortcuts. If omitted, “≺1” and “≺2” are assumed
to be both set to “≤”. If #aggr is omitted, it is assumed to be #sum for multiset
aggregates, and #count for set aggregates.

A symbolic set in the form Conj is a syntactic shortcut for {Vars : Conj } in
which V ars is the list of all the variables appearing in Conj.

ASP-RfC

Terms, constants, variables. Terms are either constants or variables.
Constants can be either symbolic constants (strings starting with lowercase letter),

strings (quoted sequences of characters) or integers; variables are denoted as strings start-
ing with an uppercase letter (for the exact lexical matching of constants and variables,
see Sec. 8). As a syntactic shortcut, the special variable is intended as replaced by a
fresh variable name in the context of the rule at hand.

ASP-RfC

In ASP-RfC terms can be functional. A functional term is either a term
or a structure in the form f(t1, . . . , tm) for f a functor (the function name), and
t1, . . . , tm functional terms.

ASP-RfC

Queries. A program P can be coupled with a ground query in the form q?, where q is a
ground atom.

ASP-RfC

In ASP-RfC queries can be built over non-ground atoms.
ASP-RfC

4 Semantics

As a reference, we herein give the full model-theoretic semantics of ASP-Core and ASP-

RfC. As for non-ground programs, the semantics of both languages is mostly based on
the traditional notion of Herbrand interpretation, taking care of the fact that all integers
are part of the Herbrand universe. The semantics of propositional programs is based on
[7] for ASP-Core, while it is based on [5] for what ASP-RfC is concerned. We understand
that the semantics of aggregate atoms is currently subject of debate in the community:
nonetheless, for the sake of the Competition, we recall that ASP-RfC programs are re-
stricted to programs containing non-recursive aggregates (see Section 5), for which the
general semantics herein presented is in substantial agreement with all other propos-
als for adding aggregates to ASP [8,15,9,13,4,6,14,3,12,10,11]. Other restrictions to the
family of allowed programs apply: these are listed in Section 5.

5

Herbrand universe. Given a program P , the Herbrand universe of P , denoted by UP ,
consists of all (ground) terms that can be built combining constants and functors appear-
ing in P , and integers. The Herbrand base of P , denoted by BP , is the set of all ground
literals obtainable from the atoms of P by replacing variables with elements from UP .

Substitutions and instances. A consistent substitution θ for a rule r ∈ P is a mapping
from the set of variables of r to the set UP of ground terms, such that each built-in atom
appearing in r is true with respect to the value assigned to variables by θ, according to
Table 1. A ground instance of a rule r is obtained applying a consistent substitution to
r and removing built-in atoms. Given a substitution θ and a object Obj (rule, set, etc.),
we denote by θ(Obj) the object obtained by replacing each variable X in Obj by θ(X).

Built-in atoms consistency.

For a triple of values x, y, z ∈ UP , “≺” ranging over the operators “<”, “≤”, “=”, “6=”,
“>” and “≥” and ⋄ ranging over “+”,“−”,“∗”,“/”, we say that

– x≺ y ⋄ z is true if x, y and z are integers and x≺ y ⋄ z is satisfied in the canonical way
over the domain of integers, for “/” being the division operation rounded to the lowest
integer. x ≺ y ⋄ z is false in all other cases;

– x ≺ y is true if x and y are of the same type (i.e. x and y are both integers, both
constants or both quoted constants), and x≺ y is true according to the respective do-
main; for strings and quoted strings we assume a total order given by the lexicographic
precedence enforced by the character encoding of the input format (see Section 8 for
details). x≺ y is false in all other cases.

Table 1. Criteria for built-in atoms satisfaction.

ASP-RfC

Global and local variables. A local variable of a rule r is a variable
appearing in a aggregate atom only; all other variables are global variables.

Instantiation. A consistent substitution from the set of global variables of a rule
r (to UP) is a global substitution for r; a substitution from the set of local variables
of a symbolic set S (to UP) is a local substitution for S.

Given a symbolic set without global variables S = {Vars : Conj }, the instantia-
tion of S is the following ground set of pairs inst(S):

{〈γ(Vars) : γ(Conj)〉 | γ is a local substitution for S}

A ground instance of a rule r is obtained in two steps: (1) a global substitution
σ for r is first applied over r; (2) every symbolic set S in σ(r) is replaced by its
instantiation inst(S).

ASP-RfC

6

Ground program. Given a program P the instantiation (grounding) grnd(P) of P is
defined as the set of all ground instances of its rules. Given a ground program P , an
interpretation I for P is a subset of BP . A consistent interpretation is such that {a,−a} 6⊆
I for each ground atom a. We deal in the following with consistent interpretations.

Satisfaction of literals. A positive naf-literal l = a (resp., a naf-literal l = not a), for a
a predicate atom, is true w.r.t. I if a ∈ I (resp., a /∈ I); it is false otherwise.

ASP-RfC

Aggregate functions. We associate to each aggregate function name #f
a corresponding aggregate function f , mapping multisets to integer values. For a
multiset S, let Π(S) its corresponding set.

Let I be an interpretation. A standard ground conjunction is true (resp. false)
w.r.t I if all its literals are true.

The valuation I(S) of S w.r.t. I is the multiset of the first constant of the elements
in S whose conjunction is true w.r.t. I. More precisely, let

I(S) denote the multiset

[t1 | 〈t1, ..., tn :Conj 〉∈S ∧ Conj is true w.r.t. I]

The valuation V (I, S) of an instantiated set aggregate atom A = v ≺ #f{S} is
defined as f(Π(I(S))). The valuation V (I, S) of an instantiated multiset aggregate
atom v ≺ #f [S] is defined as f(I(S)).

An instantiated aggregate atom either in the form A = v ≺ #f{S} or A = v ≺
#f [S] is true w.r.t. I if:

– (i) V (I, S) 6= ⊥, and,
– (ii) v ≺ V (I, S) holds; otherwise, A is false.

An instantiated aggregate literal not A = not v ≺ #f{S} or not A = not v ≺
#f [S] is true w.r.t. I if

– (i) V (I, S) 6= ⊥, and,
– (ii) v ≺ V (I, S) does not hold; otherwise, not A is false.

Accordingly, for an instantiated aggregate literal not A = not l ≺1 #f{S} ≺2 u
or not A = not l ≺1 #f [S] ≺2 u

we have that not A is true w.r.t. I if

– (i) V (I, S) 6= ⊥, and,
– (ii) either l ≺1 V (I, S) or V (I, S) ≺2 u do not hold; otherwise, not A is false.

Available aggregate functions. The available aggregate functions in ASP-RfC

are defined as:

– count(S) = |S|;
– sum(S) = Σs∈Ss. sum is defined only for multisets of integers;
– max(S) = maxs∈S s.
– min(S) = mins∈S s.

7

Both min and max are defined over homogenous sets of integers, strings or quoted
strings. For the latter two cases it is considered the total partial order enforced by
the program character encoding (see Section 8 for details). If the multiset S is not
in the domain of an aggregate function f , we conventionally set f(S) = ⊥ (where ⊥
is a fixed symbol not occurring in P).

ASP-RfC

Satisfaction of rules. Given a ground rule r, we say that r is satisfied w.r.t. I if some
naf-literal appearing in the head of r is true w.r.t. I or some naf-literal appearing in the
body of r is false w.r.t. I. Given a ground program P , we say that I is a model of P , iff
all rules in grnd(P) are satisfied w.r.t. I. A model M is minimal if there is no model N
for P such that N ⊂M .

Gelfond-Lifschitz reduct. The Gelfond-Lifschitz reduct [7] of P , w.r.t. an interpretation
I, is the positive ground program P I obtained from grnd(P) by: (i) deleting all rules
having a negative naf-literal false w.r.t. I; (ii) deleting all negative naf-literals from the
remaining rules. I ⊆ BP is an answer set for a program P iff I is a minimal model for
P I . The set of all answer sets for P is denoted by AS(P).

ASP-RfC

Generalized Gelfond-Lifschitz reduct [5]. The notion of Gelfond-Lifschitz
reduct is replaced in ASP-RfC by the following. Note that for ASP-Core programs
the two types of reduct coincide in the answer set they produce.

For a ASP-RfC ground program P and an interpretation I, let P I denote the
transformed program obtained from P by deleting all rules in which a body naf-
literal is false w.r.t. I. I is an answer set of a program P if it is a minimal model of
P I .

ASP-RfC

5 Semantic Restrictions

A number of restrictions apply for ASP-Core and ASP-RfC encodings which will used for
this Competition.

5.1 Safety

Programs written in ASP-Core are assumed to be safe. A program P is safe if all its rules
are safe. A rule r is safe is all its variables are safe.

A variable X appearing in r is safe if either

– X appears in a positive naf-literal in the body of r, or
– X appears in a builtin atom X = Y ⋄ Z in the body of r, having X as its left-hand

side, and Y and Z are safe.

8

ASP-RfC

For ASP-RfC programs, a rule r is safe if any variable X appearing in r
is safe in the following sense:

1. if X is global, it is safe if either:
– X appears in a positive predicate atom in the body of r, or
– X appears in a builtin atom X = Y ⋄ Z in the body of r, having X as its

left-hand side, and Y and Z are safe, or
– X appears in a positive aggregate atom in the form X = #f{Conj} or

X = #f [Conj] (or any equivalent one) and all other variables in the atom
are safe.

2. if X is local to a symbolic set {Vars : Conj } then it appears in an atom of Conj ;

ASP-RfC

5.2 Programs with Function symbols and integers

Programs with function symbols and integers are in principle subject to no restriction.
For the sake of Competition, and to facilitate implementors of ASP-RfC and ASP-Core it
is prescribed that

– each selected problem encoding P must provably have finitely many finite answer
sets for any of its benchmark instance I, that is AS(P ∪ I) must be a finite set
of finite elements. “Proofs” of finiteness can be given in terms of membership to
a known decidable class of programs with functions and/or integers, or any other
formal mean.

– a bound kP on the maximum nesting level of terms, and a bound mP on the maximum
integer value appearing in answer sets originated from P must be known. That is,
for any instance I and for any term t appearing in AS(P ∪ I), the nesting level of t
must not be greater than kP and, if t is an integer it must not exceed mP .

The values mP and kP will be provided in input to participant systems, when invoked
on P .

ASP-RfC

Non-recursiveness of aggregates. Recursive aggregates shall not ap-
pear in selected encodings for the competition. Formally, given a ASP-RfC program
P we consider the labeled dependency graph DG(P) between predicates of P , for
which

– an arc p ← q appears in DG(P) if there is a rule r ∈ P in which p appears in
the head of r and q appears in a predicate atom in the body of r. If q appears
in a set term in r, then we say that p←a q;

– two arcs p← q and q ← p appear in DG(P) if p and q both appear in the head
of some rule r ∈ P .

9

We say that P has no recursive aggregates if there is no cycle (of arcs) in DG(P)
containing an edge in the form p←a q.

ASP-RfC

5.3 Restrictions on disjunction

In order to encourage the participation of Systems not implementing full disjunction,
encodings for problems belonging to the P and NP category shall be provided in terms
of head-cycle free programs [2]. A converter from disjunctive head-cycle free ASP-Core

programs to equivalent shifted versions is provided on the Competition web site.

6 Reasoning Tasks for the System competition

ASP-Core and ASP-RfC programs are subject to the following reasoning tasks.

Model generation (Search). Given a program P , to generate an answer set or to output
UNSATISFIABLE.

Querying. If in the encoding of P it is trailed a ground query q? to output whether q is
true in all the answer sets or not. l

ASP-RfC

In ASP-RfC, given a non ground query q?, it is requested to output all
the ground instances of q which are true in all the answer sets.

ASP-RfC

Input and output formats for the above tasks are defined next.

7 EBNF Grammar for ASP-Core and ASP-RfC

The following is the EBNF grammar for ASP-Core:

<program> ::= | <rules> | <rules> <query>
<rules> ::= | <rules> | <rule>
<rule> ::= <head> [CONS] DOT

| [<head>] CONS <body> DOT

<head> ::= [<head> HEAD SEPARATOR] <classic literal>
<body> ::= [<body> BODY SEPARATOR] (<naf literal>

| <builtin atom>)

(a) <naf literal> ::= [NAF] <classic literal>
<classic literal> ::= [NEG] <atom>
<atom> ::= <predicate name> [PARAM OPEN]

10

[<terms>] PARAM CLOSE]

<terms> ::= [<terms> TERM SEPARATOR] <term>
<builtin atom> ::= <term> <binop> <term> [<arithop> <term>]

<binop> ::= EQUAL | UNEQUAL | LESS | GREATER
| LESS OR EQ | GREATER OR EQ

<arithop> ::= PLUS | MINUS | TIMES | DIV
(b) <term> ::= <ground term> | VARIABLE | ANON VAR

<ground term> ::= SYMBOLIC CONSTANT | STRING | NUMBER
<predicate name> ::= SYMBOLIC CONSTANT | STRING
(c) <query> ::= <ground atom> QUERY MARK

<ground atom> ::= <predicate name> [PARAM OPEN

<ground terms> PARAM CLOSE]

| <predicate name> PARAM OPEN PARAM CLOSE

<ground terms> ::= [<ground terms> TERM SEPARATOR] <ground term>

For ASP-RfC EBNF Grammar, rules (a), (b) and (c) are replaced with the following
versions. The newly introduced non-terminal symbols are defined accordingly in the
following:

(a) <naf literal> ::= [NAF] <classic literal> | [NAF] <aggregate>
(b) <term> ::= <ground term> | VARIABLE | ANON VAR

| <function term>
(c) <query> ::= <classic literal> QUERY MARK

<aggregate> ::= <term> <binop> <aggregate atom>
| <aggregate atom> <binop> <term>
| <term> <leftop> <aggregate atom>

<leftop> <term>
| <term> <rightop> <aggregate atom>

<rightop> <term>
<leftop> ::= LESS | LESS OR EQ

<rightop> ::= GREATER | GREATER OR EQ

<aggregate atom> ::= <aggregate function> CURLY OPEN

<variables> COLON

<conjunction> CURLY CLOSE

| CURLY OPEN <variables> COLON

<conjunction> CURLY CLOSE

| SQUARE OPEN <variables> COLON

<conjunction> SQUARE CLOSE

<variables> ::= [<variables> TERM SEPARATOR] VARIABLE

<conjunction> ::= [<conjunction> BODY SEPARATOR] <atom>
<aggregate function> ::= AGGR COUNT | AGGR MAX | AGGR MIN | AGGR SUM

<function term> ::= <predicate name> PARAM OPEN

<terms> PARAM CLOSE

11

8 Lexical matching table

Token Name Symbolic Value or Lexical Value

Symbolic Example

SYMBOLIC CONSTANT a, b, anna, ... [a-z][A-Za-z 0-9]*

VARIABLE X,Y , Name :, ... [A-Z][A-Za-z 0-9]*

STRING ‘‘http://bit.ly/cw6lDS", \"[^\"*]\"
‘‘Full name" , ...

ANON VAR " "

NUMBER 1, 0, 100000, ... [0-9]+

DOT . "."

BODY SEPARATOR , ","

TERM SEPARATOR , ","

QUERY MARK ? "?"

COLON : ":"

HEAD SEPARATOR ∨ "|" | ";" | "v"
NEG − "-" | "~"
NAF not "not"

CONS ← "<-" | ":-"

PLUS + "+"

MINUS − "-"

TIMES ∗ "*"

DIV / "/" | "div"

PARAM OPEN ("("

PARAM CLOSE) ")"

SQUARE OPEN ["["

SQUARE CLOSE] "]"

CURLY OPEN { "{"
CURLY CLOSE } "}"

EQUAL = "=" | "=="
UNEQUAL 6= "<>" | "!="
LESS < "<"

GREATER > ">"

LESS OR EQ ≤ "<="

GREATER OR EQ ≥ ">="

AGGR COUNT #count "#count"

AGGR MAX #max "#max"

AGGR MIN #min "#min"

AGGR SUM #sum "#sum"

COMMENT \%.*$

BLANK [\t\n]+

Lexical values are given in Flex2 syntax. The COMMENT and BLANK tokens can be freely
interspersed amidst other tokens and have no syntactical and semantic meaning.

2 http://flex.sourceforge.net/.

12

9 Instance Input and Output Formats

Benchmark problems specifications have to clearly indicate the vocabulary of input and
output predicates. Each ASP system (or solver script) will read an input instance (from
standard input) and produce an output (to standard output) according to the formats
described in the following paragraphs.

Input Specification. A solver script (or ASP system) will read each input instance from
the standard input. Each input instance (both in case of search and optimization prob-
lems) is expected to be both:

– made of sequences of Facts (atoms followed by the dot “.” character) with only
predicates of the input vocabulary, possibly separated by spaces and line breaks; and

– entirely saved in a text file (only one instance per file is allowed).

A fact is syntactically defined as
<fact> ::= <ground atom> DOT

for <ground atom> defined as in the ASP-Core grammar.

Output Specification. A solver script (or ASP system) is expected to write to the standard
output an output respecting the following specification:

– Search problem output:

• A single row of text containing a sequence of facts from atoms of the output
vocabulary, representing a “witness”, i.e, a portion of the answer set representing
a solution for the instance problem (if the instance is satisfiable) or an answer to
a query. The string “ANSWER SET FOUND” should appear on a separate line
following the witness;
• the string “NO ANSWER SET FOUND”, in case the instance has no solution;
• the string “UNKNOWN”, if the solver decides to give up before time-out.

– Optimization problem output:

• A series of witnesses of the search problem (i.e., a sequence of facts from atoms
of the output vocabulary), one per line and separated by the return character, in
case of satisfiable instances. The keyword “OPTIMUM FOUND” should appear
on a new line following the last (and optimal) witness if and only if the last
produced witness is optimal. Only the last (and hopefully best) witness will be
considered.
• the string “NO ANSWER SET FOUND”, in case the instance has no solution;
• the string “UNKNOWN”, if the solver decides to give up before time-out.

Samples of input and output are available in the competition web site.

References

1. Core language for asp solver competitions. Minutes of
the steering committee meeting at LPNMR04. Available at
https://www.mat.unical.it/aspcomp2011/files/Corelang2004.pdf.

2. Rachel Ben-Eliyahu and Rina Dechter. Propositional Semantics for Disjunctive Logic Pro-
grams. Annals of Mathematics and Artificial Intelligence, 12:53–87, 1994.

13

3. Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald Pfeifer. Ag-
gregate Functions in DLV. In Marina de Vos and Alessandro Provetti, editors, Proceedings
ASP03 - Answer Set Programming: Advances in Theory and Implementation, pages 274–
288, Messina, Italy, September 2003. Online at http://CEUR-WS.org/Vol-78/.

4. Marc Denecker, Nikolay Pelov, and Maurice Bruynooghe. Ultimate Well-Founded and Sta-
ble Model Semantics for Logic Programs with Aggregates. In Philippe Codognet, editor,
Proceedings of the 17th International Conference on Logic Programming, pages 212–226.
Springer Verlag, 2001.

5. Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. In José Júlio Alferes and João Leite, editors,
Proceedings of the 9th European Conference on Artificial Intelligence (JELIA 2004), volume
3229 of Lecture Notes in AI (LNAI), pages 200–212. Springer Verlag, September 2004.

6. Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors, Computational Logic. Logic Programming and Beyond, volume 2408 of LNCS,
pages 413–451. Springer, 2002.

7. Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9:365–385, 1991.

8. David B. Kemp and Peter J. Stuckey. Semantics of Logic Programs with Aggregates. In
Vijay A. Saraswat and Kazunori Ueda, editors, Proceedings of the International Symposium
on Logic Programming (ISLP’91), pages 387–401. MIT Press, 1991.

9. Mauricio Osorio and Bharat Jayaraman. Aggregation and Negation-As-Failure. New Gen-
eration Computing, 17(3):255–284, 1999.

10. Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Partial stable models for logic
programs with aggregates. In Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7), volume 2923 of Lecture Notes in
AI (LNAI), pages 207–219. Springer, 2004.

11. Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and Stable Se-
mantics of Logic Programs with Aggregates. Theory and Practice of Logic Programming,
7(3):301–353, 2007.

12. Nikolay Pelov and Miros law Truszczyński. Semantics of disjunctive programs with monotone
aggregates - an operator-based approach. In Proceedings of the 10th International Workshop
on Non-monotonic Reasoning (NMR 2004), Whistler, BC, Canada, pages 327–334, 2004.

13. Kenneth A. Ross and Yehoshua Sagiv. Monotonic Aggregation in Deductive Databases.
Journal of Computer and System Sciences, 54(1):79–97, February 1997.

14. Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and Implementing the Stable
Model Semantics. Artificial Intelligence, 138:181–234, June 2002.

15. Allen Van Gelder. The Well-Founded Semantics of Aggregation. In Proceedings of the
Eleventh Symposium on Principles of Database Systems (PODS’92), pages 127–138. ACM
Press, 1992.

http://CEUR-WS.org/Vol-78/

	Standard Language Principles
	Language Overview
	ASP-Core and ASP-RfC Language Syntax
	Rules.
	Literals.
	Atoms.
	Terms, constants, variables.
	Queries.

	Semantics
	Herbrand universe.
	Substitutions and instances.
	Ground program.
	Satisfaction of literals.
	Satisfaction of rules.
	Gelfond-Lifschitz reduct.

	Semantic Restrictions
	Safety
	Programs with Function symbols and integers
	Restrictions on disjunction

	Reasoning Tasks for the System competition
	Model generation (Search).
	Querying.

	EBNF Grammar for ASP-Core and ASP-RfC
	Lexical matching table
	Instance Input and Output Formats
	Input Specification.
	Output Specification.

