
Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Answer Set Programming for the Semantic Web

Tutorial

Thomas Eiter, Roman Schindlauer (TU Wien)
Giovambattista Ianni (TU Wien, Univ. della Calabria)

Axel Polleres (Univ. Rey Juan Carlos, Madrid)

Supported by IST REWERSE, FWF Project P17212-N04, CICyT project TIC-2003-9001-C02.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Unit 2 � ASP Extensions

G. Ianni

Dipartimento di Matematica - Università della Calabria

European Semantic Web Conference 2006

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Unit Outline

1 Introduction

2 Weak constraints

3 Aggregate Atoms

4 Frame Logic Syntax

5 Template Predicates

6 References

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Logic Programming Extensions

• Besides disjunction and strong negation, many extensions of
normal logic programs have been proposed

• Some of these extensions are motivated by applications

• Some of these extensions are syntactic sugar, other strictly add
expressiveness

• Comprehensive survey of extensions:

See http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

• Here, we consider some DLV speci�c extensions.

G. Ianni Unit 2 � ASP Extensions

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Logic Programming Extensions

• Besides disjunction and strong negation, many extensions of
normal logic programs have been proposed

• Some of these extensions are motivated by applications

• Some of these extensions are syntactic sugar, other strictly add
expressiveness

• Comprehensive survey of extensions:

See http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

• Here, we consider some DLV speci�c extensions.

G. Ianni Unit 2 � ASP Extensions

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Logic Programming Extensions

• Besides disjunction and strong negation, many extensions of
normal logic programs have been proposed

• Some of these extensions are motivated by applications

• Some of these extensions are syntactic sugar, other strictly add
expressiveness

• Comprehensive survey of extensions:

See http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

• Here, we consider some DLV speci�c extensions.

G. Ianni Unit 2 � ASP Extensions

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Logic Programming Extensions

• Besides disjunction and strong negation, many extensions of
normal logic programs have been proposed

• Some of these extensions are motivated by applications

• Some of these extensions are syntactic sugar, other strictly add
expressiveness

• Comprehensive survey of extensions:

See http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

• Here, we consider some DLV speci�c extensions.

G. Ianni Unit 2 � ASP Extensions

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Logic Programming Extensions

• Besides disjunction and strong negation, many extensions of
normal logic programs have been proposed

• Some of these extensions are motivated by applications

• Some of these extensions are syntactic sugar, other strictly add
expressiveness

• Comprehensive survey of extensions:

See http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

• Here, we consider some DLV speci�c extensions.

G. Ianni Unit 2 � ASP Extensions

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Syntax and Semantics

• Syntax:

: ~ b1, · · · , bk, not bk+1, · · · , not bm. [Weight : Level]

• In the presence of weights, best models minimize the sum of
the weights of violated constraints.

• Semantics: minimizes the violation of constraints with highest
priority level �rst; then with the lower priority levels in
descending order.

• Level part is syntactic sugar, can be compiled into weights.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Syntax and Semantics

• Syntax:

: ~ b1, · · · , bk, not bk+1, · · · , not bm. [Weight : Level]

• In the presence of weights, best models minimize the sum of
the weights of violated constraints.

• Semantics: minimizes the violation of constraints with highest
priority level �rst; then with the lower priority levels in
descending order.

• Level part is syntactic sugar, can be compiled into weights.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Syntax and Semantics

• Syntax:

: ~ b1, · · · , bk, not bk+1, · · · , not bm. [Weight : Level]

• In the presence of weights, best models minimize the sum of
the weights of violated constraints.

• Semantics: minimizes the violation of constraints with highest
priority level �rst; then with the lower priority levels in
descending order.

• Level part is syntactic sugar, can be compiled into weights.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Syntax and Semantics

• Syntax:

: ~ b1, · · · , bk, not bk+1, · · · , not bm. [Weight : Level]

• In the presence of weights, best models minimize the sum of
the weights of violated constraints.

• Semantics: minimizes the violation of constraints with highest
priority level �rst; then with the lower priority levels in
descending order.

• Level part is syntactic sugar, can be compiled into weights.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints: Examples

a v b.

c :- b.

:~ a.

:~ b.

:~ c.

Best model: a Cost ([Weight:Level]): <[1:1]> Answer set {b, c}
is discarded because it violates two weak constraints!

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints: Examples

a v b.

c :- b.

:~ a.

:~ b.

:~ c.

Best model: a Cost ([Weight:Level]): <[1:1]> Answer set {b, c}
is discarded because it violates two weak constraints!

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints: Examples

a v b.

c :- b.

:~ a.

:~ b.

:~ c.

Best model: a Cost ([Weight:Level]): <[1:1]> Answer set {b, c}
is discarded because it violates two weak constraints!

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints: Examples /2

a v b.

:~ a. [1:] :~ a. [1:] :~ b. [2:]

Best model: b Cost ([Weight:Level]): <[2:1]>
Best model: a Cost ([Weight:Level]): <[2:1]>

a v b1 v b2.

:~ a. [:1] :~ b1. [:2] :~ b2. [:2]

Best model: a Cost ([Weight:Level]): <[1:1],[0:2]>

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints: Examples /2

a v b.

:~ a. [1:] :~ a. [1:] :~ b. [2:]

Best model: b Cost ([Weight:Level]): <[2:1]>
Best model: a Cost ([Weight:Level]): <[2:1]>

a v b1 v b2.

:~ a. [:1] :~ b1. [:2] :~ b2. [:2]

Best model: a Cost ([Weight:Level]): <[1:1],[0:2]>

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints: Examples /2

a v b.

:~ a. [1:] :~ a. [1:] :~ b. [2:]

Best model: b Cost ([Weight:Level]): <[2:1]>
Best model: a Cost ([Weight:Level]): <[2:1]>

a v b1 v b2.

:~ a. [:1] :~ b1. [:2] :~ b2. [:2]

Best model: a Cost ([Weight:Level]): <[1:1],[0:2]>

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints: Examples /2

a v b.

:~ a. [1:] :~ a. [1:] :~ b. [2:]

Best model: b Cost ([Weight:Level]): <[2:1]>
Best model: a Cost ([Weight:Level]): <[2:1]>

a v b1 v b2.

:~ a. [:1] :~ b1. [:2] :~ b2. [:2]

Best model: a Cost ([Weight:Level]): <[1:1],[0:2]>

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Social Dinner III

Task

Now that we have de�ned bottleChosen as the solution predicate,
is there a way to select only the smallest sets of wines? Try to
expand wineCover4.dlv

?

Solution available as wineCover5.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Social Dinner III

Task

Now that we have de�ned bottleChosen as the solution predicate,
is there a way to select only the smallest sets of wines? Try to
expand wineCover4.dlv

?

Solution available as wineCover5.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Social Dinner III

Task

Now that we have de�ned bottleChosen as the solution predicate,
is there a way to select only the smallest sets of wines? Try to
expand wineCover4.dlv

:~ bottleChosen(X). [1:1]

Solution available as wineCover5.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Social Dinner III

Task

Now that we have de�ned bottleChosen as the solution predicate,
is there a way to select only the smallest sets of wines? Try to
expand wineCover4.dlv

:~ bottleChosen(X). [1:1]

Solution available as wineCover5.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints with Weights

• A single weak constraints in some layer n is more important
than all weak constraints in lower layers (n − 1, n − 2,...)
together!

• Weak constraints are weighted to make �ner distinctions
among elements of the same priority:
:˜ G1.[3.5:1] :˜ G2.[4.6:1]

• The weights of violated weak constraints are summed up for
each layer.

• Example: High School Time Tabling Problem
Structural Requirements > Pedagogical Requirements >
Personal Wishes

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints with Weights

• A single weak constraints in some layer n is more important
than all weak constraints in lower layers (n − 1, n − 2,...)
together!

• Weak constraints are weighted to make �ner distinctions
among elements of the same priority:
:˜ G1.[3.5:1] :˜ G2.[4.6:1]

• The weights of violated weak constraints are summed up for
each layer.

• Example: High School Time Tabling Problem
Structural Requirements > Pedagogical Requirements >
Personal Wishes

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints with Weights

• A single weak constraints in some layer n is more important
than all weak constraints in lower layers (n − 1, n − 2,...)
together!

• Weak constraints are weighted to make �ner distinctions
among elements of the same priority:
:˜ G1.[3.5:1] :˜ G2.[4.6:1]

• The weights of violated weak constraints are summed up for
each layer.

• Example: High School Time Tabling Problem
Structural Requirements > Pedagogical Requirements >
Personal Wishes

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints with Weights

• A single weak constraints in some layer n is more important
than all weak constraints in lower layers (n − 1, n − 2,...)
together!

• Weak constraints are weighted to make �ner distinctions
among elements of the same priority:
:˜ G1.[3.5:1] :˜ G2.[4.6:1]

• The weights of violated weak constraints are summed up for
each layer.

• Example: High School Time Tabling Problem
Structural Requirements > Pedagogical Requirements >
Personal Wishes

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Traveling Salesperson

Given: Weighted directed graph G = (V ,E ,C) and a node a ∈ V of this graph.
Task: Find a minimum-cost cycle (closed path) in G starting at a and going through
each node in V exactly once2.

• G stored by facts over predicates node(X) and arc(X,Y).
• Starting node a is speci�ed by the predicate start (unary).

Guess:

inPath(X,Y,C) v outPath(X,Y,C) :- start(X), arc(X,Y,C).

inPath(X,Y,C) v outPath(X,Y,C) :- reached(X), arc(X,Y,C).

reached(X):- inPath(Y,X,C).

Check:

:- inPath(X,Y,_), inPath(X,Y1,_), Y <> Y1.

:- inPath(X,Y,_), inPath(X1,Y,_), X <> X1.

:- node(X), not reached(X).

Optimize:

:~ inPath(X,Y,C). [C:1]

2Example tsp.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Traveling Salesperson

Given: Weighted directed graph G = (V ,E ,C) and a node a ∈ V of this graph.
Task: Find a minimum-cost cycle (closed path) in G starting at a and going through
each node in V exactly once2.

• G stored by facts over predicates node(X) and arc(X,Y).
• Starting node a is speci�ed by the predicate start (unary).

Guess:

inPath(X,Y,C) v outPath(X,Y,C) :- start(X), arc(X,Y,C).

inPath(X,Y,C) v outPath(X,Y,C) :- reached(X), arc(X,Y,C).

reached(X):- inPath(Y,X,C).

Check:

:- inPath(X,Y,_), inPath(X,Y1,_), Y <> Y1.

:- inPath(X,Y,_), inPath(X1,Y,_), X <> X1.

:- node(X), not reached(X).

Optimize:

:~ inPath(X,Y,C). [C:1]

2Example tsp.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Traveling Salesperson

Given: Weighted directed graph G = (V ,E ,C) and a node a ∈ V of this graph.
Task: Find a minimum-cost cycle (closed path) in G starting at a and going through
each node in V exactly once2.

• G stored by facts over predicates node(X) and arc(X,Y).
• Starting node a is speci�ed by the predicate start (unary).

Guess:

inPath(X,Y,C) v outPath(X,Y,C) :- start(X), arc(X,Y,C).

inPath(X,Y,C) v outPath(X,Y,C) :- reached(X), arc(X,Y,C).

reached(X):- inPath(Y,X,C).

Check:

:- inPath(X,Y,_), inPath(X,Y1,_), Y <> Y1.

:- inPath(X,Y,_), inPath(X1,Y,_), X <> X1.

:- node(X), not reached(X).

Optimize:

:~ inPath(X,Y,C). [C:1]

2Example tsp.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Traveling Salesperson

Given: Weighted directed graph G = (V ,E ,C) and a node a ∈ V of this graph.
Task: Find a minimum-cost cycle (closed path) in G starting at a and going through
each node in V exactly once2.

• G stored by facts over predicates node(X) and arc(X,Y).
• Starting node a is speci�ed by the predicate start (unary).

Guess:

inPath(X,Y,C) v outPath(X,Y,C) :- start(X), arc(X,Y,C).

inPath(X,Y,C) v outPath(X,Y,C) :- reached(X), arc(X,Y,C).

reached(X):- inPath(Y,X,C).

Check:

:- inPath(X,Y,_), inPath(X,Y1,_), Y <> Y1.

:- inPath(X,Y,_), inPath(X1,Y,_), X <> X1.

:- node(X), not reached(X).

Optimize:

:~ inPath(X,Y,C). [C:1]

2Example tsp.dlv
G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Social Dinner IV

Task

Let each wine bootle have a price encoded by
price(bottle,value). Modify wineCover5b.dlv and try to
choose the best cost selection of bottles.

?

Solution available at wineCover5c.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Social Dinner IV

Task

Let each wine bootle have a price encoded by
price(bottle,value). Modify wineCover5b.dlv and try to
choose the best cost selection of bottles.

:~ bottleChosen(X),prize(X,N). [N:1]

Solution available at wineCover5c.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregates

• Compute aggregate functions over a set of values, similar as in
SQL (count, min, max, sum)

• A few examples:

:- actiontime(T), #count{ move(B,L,T) } >= 4.

small :- #max{ X : f(A,X,C), b(C,G) } < 3.

ok_price :- 30 <= #sum{ Price :

bought(Good),

price(Good,Price) } < 50.

• other solvers (e.g. Smodels) o�er similar constructs
(cardinality atoms, weight constraints).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregates

• Compute aggregate functions over a set of values, similar as in
SQL (count, min, max, sum)

• A few examples:

:- actiontime(T), #count{ move(B,L,T) } >= 4.

small :- #max{ X : f(A,X,C), b(C,G) } < 3.

ok_price :- 30 <= #sum{ Price :

bought(Good),

price(Good,Price) } < 50.

• other solvers (e.g. Smodels) o�er similar constructs
(cardinality atoms, weight constraints).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregates

• Compute aggregate functions over a set of values, similar as in
SQL (count, min, max, sum)

• A few examples:

:- actiontime(T), #count{ move(B,L,T) } >= 4.

small :- #max{ X : f(A,X,C), b(C,G) } < 3.

ok_price :- 30 <= #sum{ Price :

bought(Good),

price(Good,Price) } < 50.

• other solvers (e.g. Smodels) o�er similar constructs
(cardinality atoms, weight constraints).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregates

• Compute aggregate functions over a set of values, similar as in
SQL (count, min, max, sum)

• A few examples:

:- actiontime(T), #count{ move(B,L,T) } >= 4.

small :- #max{ X : f(A,X,C), b(C,G) } < 3.

ok_price :- 30 <= #sum{ Price :

bought(Good),

price(Good,Price) } < 50.

• other solvers (e.g. Smodels) o�er similar constructs
(cardinality atoms, weight constraints).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregates

• Compute aggregate functions over a set of values, similar as in
SQL (count, min, max, sum)

• A few examples:

:- actiontime(T), #count{ move(B,L,T) } >= 4.

small :- #max{ X : f(A,X,C), b(C,G) } < 3.

ok_price :- 30 <= #sum{ Price :

bought(Good),

price(Good,Price) } < 50.

• other solvers (e.g. Smodels) o�er similar constructs
(cardinality atoms, weight constraints).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregates

• Compute aggregate functions over a set of values, similar as in
SQL (count, min, max, sum)

• A few examples:

:- actiontime(T), #count{ move(B,L,T) } >= 4.

small :- #max{ X : f(A,X,C), b(C,G) } < 3.

ok_price :- 30 <= #sum{ Price :

bought(Good),

price(Good,Price) } < 50.

• other solvers (e.g. Smodels) o�er similar constructs
(cardinality atoms, weight constraints).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax

• Symbolic Set: Expression

{Vars : Conj}
of a list Vars of variables and a list Conj of literals (safety
required) (e.g. { X : f(A,X,C), b(C,G) }).

• Aggregate Function: Expression

f {Vars : Conj}
where
• f ∈ {#count,#min,#max ,#sum,#times}, and
• {Vars : Conj} is a symbolic set

(e.g. #max{ X : f(A,X,C), b(C,G) } })

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax

• Symbolic Set: Expression

{Vars : Conj}
of a list Vars of variables and a list Conj of literals (safety
required) (e.g. { X : f(A,X,C), b(C,G) }).

• Aggregate Function: Expression

f {Vars : Conj}
where
• f ∈ {#count,#min,#max ,#sum,#times}, and
• {Vars : Conj} is a symbolic set

(e.g. #max{ X : f(A,X,C), b(C,G) } })

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax

• Symbolic Set: Expression

{Vars : Conj}
of a list Vars of variables and a list Conj of literals (safety
required) (e.g. { X : f(A,X,C), b(C,G) }).

• Aggregate Function: Expression

f {Vars : Conj}
where
• f ∈ {#count,#min,#max ,#sum,#times}, and
• {Vars : Conj} is a symbolic set

(e.g. #max{ X : f(A,X,C), b(C,G) } })

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax

• Symbolic Set: Expression

{Vars : Conj}
of a list Vars of variables and a list Conj of literals (safety
required) (e.g. { X : f(A,X,C), b(C,G) }).

• Aggregate Function: Expression

f {Vars : Conj}
where
• f ∈ {#count,#min,#max ,#sum,#times}, and
• {Vars : Conj} is a symbolic set

(e.g. #max{ X : f(A,X,C), b(C,G) } })

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax

• Symbolic Set: Expression

{Vars : Conj}
of a list Vars of variables and a list Conj of literals (safety
required) (e.g. { X : f(A,X,C), b(C,G) }).

• Aggregate Function: Expression

f {Vars : Conj}
where
• f ∈ {#count,#min,#max ,#sum,#times}, and
• {Vars : Conj} is a symbolic set

(e.g. #max{ X : f(A,X,C), b(C,G) } })

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax

• Symbolic Set: Expression

{Vars : Conj}
of a list Vars of variables and a list Conj of literals (safety
required) (e.g. { X : f(A,X,C), b(C,G) }).

• Aggregate Function: Expression

f {Vars : Conj}
where
• f ∈ {#count,#min,#max ,#sum,#times}, and
• {Vars : Conj} is a symbolic set

(e.g. #max{ X : f(A,X,C), b(C,G) } })

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax /2

• Aggregate Atom: Expression

Agg_Atom ::= val } f {Vars : Conj}
| f {Vars : Conj} } val
| vall }l f {Vars : Conj} }r valu

where
• val , vall , valu are constants or variables,
• } ∈ {<,>,≤,≥,= },
• }l ,}r ∈ {<,≤}, and
• f {Vars : Conj} is an aggregate function

(e.g. #max{ X : f(A,X,C), b(C,G) } < 3)

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax /2

• Aggregate Atom: Expression

Agg_Atom ::= val } f {Vars : Conj}
| f {Vars : Conj} } val
| vall }l f {Vars : Conj} }r valu

where
• val , vall , valu are constants or variables,
• } ∈ {<,>,≤,≥,= },
• }l ,}r ∈ {<,≤}, and
• f {Vars : Conj} is an aggregate function

(e.g. #max{ X : f(A,X,C), b(C,G) } < 3)

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax /2

• Aggregate Atom: Expression

Agg_Atom ::= val } f {Vars : Conj}
| f {Vars : Conj} } val
| vall }l f {Vars : Conj} }r valu

where
• val , vall , valu are constants or variables,
• } ∈ {<,>,≤,≥,= },
• }l ,}r ∈ {<,≤}, and
• f {Vars : Conj} is an aggregate function

(e.g. #max{ X : f(A,X,C), b(C,G) } < 3)

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax /2

• Aggregate Atom: Expression

Agg_Atom ::= val } f {Vars : Conj}
| f {Vars : Conj} } val
| vall }l f {Vars : Conj} }r valu

where
• val , vall , valu are constants or variables,
• } ∈ {<,>,≤,≥,= },
• }l ,}r ∈ {<,≤}, and
• f {Vars : Conj} is an aggregate function

(e.g. #max{ X : f(A,X,C), b(C,G) } < 3)

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax /2

• Aggregate Atom: Expression

Agg_Atom ::= val } f {Vars : Conj}
| f {Vars : Conj} } val
| vall }l f {Vars : Conj} }r valu

where
• val , vall , valu are constants or variables,
• } ∈ {<,>,≤,≥,= },
• }l ,}r ∈ {<,≤}, and
• f {Vars : Conj} is an aggregate function

(e.g. #max{ X : f(A,X,C), b(C,G) } < 3)

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Syntax /2

• Aggregate Atom: Expression

Agg_Atom ::= val } f {Vars : Conj}
| f {Vars : Conj} } val
| vall }l f {Vars : Conj} }r valu

where
• val , vall , valu are constants or variables,
• } ∈ {<,>,≤,≥,= },
• }l ,}r ∈ {<,≤}, and
• f {Vars : Conj} is an aggregate function

(e.g. #max{ X : f(A,X,C), b(C,G) } < 3)

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Semantics

• Informally:
Suppose I is an interpretation.

• Evaluate symbolic set {Vars : Conj} with respect to I : Collect
all instances of Vars for which Conj is true in I (Result:
SemSet).

• Apply f on SemSet (Result: v = f (SemSet)).
• Evaluate comparison val θ v resp. vall θl v ∧ v θr valu with

(instantiated) value val resp. values vall , valu.

• Appealing formal de�nition of semantics is a bit tricky

• Widely acknowledged proposal: Faber et al. [32].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Semantics

• Informally:
Suppose I is an interpretation.

• Evaluate symbolic set {Vars : Conj} with respect to I : Collect
all instances of Vars for which Conj is true in I (Result:
SemSet).

• Apply f on SemSet (Result: v = f (SemSet)).
• Evaluate comparison val θ v resp. vall θl v ∧ v θr valu with

(instantiated) value val resp. values vall , valu.

• Appealing formal de�nition of semantics is a bit tricky

• Widely acknowledged proposal: Faber et al. [32].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Semantics

• Informally:
Suppose I is an interpretation.

• Evaluate symbolic set {Vars : Conj} with respect to I : Collect
all instances of Vars for which Conj is true in I (Result:
SemSet).

• Apply f on SemSet (Result: v = f (SemSet)).
• Evaluate comparison val θ v resp. vall θl v ∧ v θr valu with

(instantiated) value val resp. values vall , valu.

• Appealing formal de�nition of semantics is a bit tricky

• Widely acknowledged proposal: Faber et al. [32].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Semantics

• Informally:
Suppose I is an interpretation.

• Evaluate symbolic set {Vars : Conj} with respect to I : Collect
all instances of Vars for which Conj is true in I (Result:
SemSet).

• Apply f on SemSet (Result: v = f (SemSet)).
• Evaluate comparison val θ v resp. vall θl v ∧ v θr valu with

(instantiated) value val resp. values vall , valu.

• Appealing formal de�nition of semantics is a bit tricky

• Widely acknowledged proposal: Faber et al. [32].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Semantics

• Informally:
Suppose I is an interpretation.

• Evaluate symbolic set {Vars : Conj} with respect to I : Collect
all instances of Vars for which Conj is true in I (Result:
SemSet).

• Apply f on SemSet (Result: v = f (SemSet)).
• Evaluate comparison val θ v resp. vall θl v ∧ v θr valu with

(instantiated) value val resp. values vall , valu.

• Appealing formal de�nition of semantics is a bit tricky

• Widely acknowledged proposal: Faber et al. [32].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Aggregate Atoms � Semantics

• Informally:
Suppose I is an interpretation.

• Evaluate symbolic set {Vars : Conj} with respect to I : Collect
all instances of Vars for which Conj is true in I (Result:
SemSet).

• Apply f on SemSet (Result: v = f (SemSet)).
• Evaluate comparison val θ v resp. vall θl v ∧ v θr valu with

(instantiated) value val resp. values vall , valu.

• Appealing formal de�nition of semantics is a bit tricky

• Widely acknowledged proposal: Faber et al. [32].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Social Dinner V

Task

Modify wineCover5c.dlv so that the weak constraint

:~ bottleChosen(X),prize(X,N). [N:1]

can be changed in

:~ totalcost(N). [N:1]

totalcost(N) :- #int(N),

? .

Solution at wineCover6.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Social Dinner V

Task

Modify wineCover5c.dlv so that the weak constraint

:~ bottleChosen(X),prize(X,N). [N:1]

can be changed in

:~ totalcost(N). [N:1]

totalcost(N) :- #int(N),

? .

Solution at wineCover6.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Social Dinner V

Task

Modify wineCover5c.dlv so that the weak constraint

:~ bottleChosen(X),prize(X,N). [N:1]

can be changed in

:~ totalcost(N). [N:1]

totalcost(N) :- #int(N),

? .

Solution at wineCover6.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Social Dinner V

Task

Modify wineCover5c.dlv so that the weak constraint

:~ bottleChosen(X),prize(X,N). [N:1]

can be changed in

:~ totalcost(N). [N:1]

totalcost(N) :- #int(N),

? .

Solution at wineCover6.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Social Dinner V

Task

Modify wineCover5c.dlv so that the weak constraint

:~ bottleChosen(X),prize(X,N). [N:1]

can be changed in

:~ totalcost(N). [N:1]

totalcost(N) :- #int(N),

#sum{ Y : bottleChosen(X),prize(X,Y) } = N.

Solution at wineCover6.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner

Social Dinner V

Task

Modify wineCover5c.dlv so that the weak constraint

:~ bottleChosen(X),prize(X,N). [N:1]

can be changed in

:~ totalcost(N). [N:1]

totalcost(N) :- #int(N),

#sum{ Y : bottleChosen(X),prize(X,Y) } = N.

Solution at wineCover6.dlv

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Frame logic: the idea

The molecular syntax typical of F-logic is quite useful for
manipulating triple stores and complex join patterns:

Datalog Syntax

wineBottle("Brachetto"). isA("Brachetto","RedWine"),

isA("Brachetto","SweetWine"). prize("Brachetto",10).

F-Logic Syntax

"Brachetto" : wineBottle[isA-�{"RedWine","SweetWine"},

prize->10].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Frame syntax: the idea

The molecular syntax typical of F-logic is quite useful for
manipulating triple stores and complex join patterns:

Datalog Syntax

mainEntity(M) :- "foaf:PersonalProfileDocument"(X),

"foaf:primaryTopic"(X,M).

F-Logic Syntax

M : mainEntity :-

X:"foaf:PersonalProfileDocument"["foaf:primaryTopic"->M].

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Frame Spaces

A Frame Space directive tells how frames are mapped to regular
atoms

@triple.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B,triple) :-

father(A,Y,triple),

father(B,Y,triple).

@.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B) :- father(A,Y),

father(B,Y).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Frame Spaces

A Frame Space directive tells how frames are mapped to regular
atoms

@triple.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B,triple) :-

father(A,Y,triple),

father(B,Y,triple).

@.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B) :- father(A,Y),

father(B,Y).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Frame Spaces

A Frame Space directive tells how frames are mapped to regular
atoms

@triple.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B,triple) :-

father(A,Y,triple),

father(B,Y,triple).

@.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B) :- father(A,Y),

father(B,Y).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Social Dinner VII

Task

Take wineCover7a.dlt. It is partially in frame syntax. Put the
following rule in frame logic syntax:

compliantBottle(X,Z) :- preferredWine(X,Y), isA(Z,Y).

Solution at wineCover7b.dlt

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Social Dinner VII

Task

Take wineCover7a.dlt. It is partially in frame syntax. Put the
following rule in frame logic syntax:

X[compliantBottle->Z] :- X[preferredWine->Y], Z[isA->Y].

Solution at wineCover7b.dlt

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Social Dinner VII

Task

Take wineCover7a.dlt. It is partially in frame syntax. Put the
following rule in frame logic syntax:

X[compliantBottle->Z] :- X[preferredWine->Y], Z[isA->Y].

Solution at wineCover7b.dlt

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The idea of templates

Imagine you want to encode all the possible permutations of a
given predicate p (assume maxint = |X : p(X)|)

First, I guess worlds of permutations

permutation(X,N) v -permutation(X,N) :- p(X),#int(N).

Then, I cut worlds I don't like

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

Also, each element must be in the partition

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The idea of templates

Imagine you want to encode all the possible permutations of a
given predicate p (assume maxint = |X : p(X)|)

First, I guess worlds of permutations

permutation(X,N) v -permutation(X,N) :- p(X),#int(N).

Then, I cut worlds I don't like

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

Also, each element must be in the partition

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The idea of templates

Imagine you want to encode all the possible permutations of a
given predicate p (assume maxint = |X : p(X)|)

First, I guess worlds of permutations

permutation(X,N) v -permutation(X,N) :- p(X),#int(N).

Then, I cut worlds I don't like

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

Also, each element must be in the partition

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The idea of templates

Imagine you want to encode all the possible permutations of a
given predicate p (assume maxint = |X : p(X)|)

First, I guess worlds of permutations

permutation(X,N) v -permutation(X,N) :- p(X),#int(N).

Then, I cut worlds I don't like

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

Also, each element must be in the partition

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The idea of templates - 2

• Thus, this �small� program encodes a search space of
permutations

• But it can be reused and put in a library (let maxint big
enough here)

#template permutation{p(1)}(2)

{

permutation(X,N) v -permutation(X,N)

:- p(X),#int(N),

#count{ Y : p(Y) } = N1,

N <= N1, N > 0.

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

}

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The idea of templates - 2

• Thus, this �small� program encodes a search space of
permutations

• But it can be reused and put in a library (let maxint big
enough here)

#template permutation{p(1)}(2)

{

permutation(X,N) v -permutation(X,N)

:- p(X),#int(N),

#count{ Y : p(Y) } = N1,

N <= N1, N > 0.

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

}

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics

Template de�nition:

#template closure{e(2)}(2)

{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics

Template de�nition:

#template closure{e(2)}(2)

{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics

Template de�nition:

#template closure{e(2)}(2)

{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics

Template de�nition:

#template closure{e(2)}(2)

{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics

Template de�nition:

#template closure{e(2)}(2)

{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics

Template de�nition:

#template closure{e(2)}(2)

{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The Hamiltonian Path problem

HP: �nd a path between nodes of a graph s.t. I cross each node
exactly once. (permutation.dlt)

If I want to encode the HP problem with templates, I can do this
way:

path(X,N) :- permutation{node(*)}(X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Also, I can use permutation taking input predicates other than
unary:

path(X,N) :- permutation{edge(*,$)}(X,N).

• * = parameter

• $ = projection

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The Hamiltonian Path problem

HP: �nd a path between nodes of a graph s.t. I cross each node
exactly once. (permutation.dlt)

If I want to encode the HP problem with templates, I can do this
way:

path(X,N) :- permutation{node(*)}(X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Also, I can use permutation taking input predicates other than
unary:

path(X,N) :- permutation{edge(*,$)}(X,N).

• * = parameter

• $ = projection

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The Hamiltonian Path problem

HP: �nd a path between nodes of a graph s.t. I cross each node
exactly once. (permutation.dlt)

If I want to encode the HP problem with templates, I can do this
way:

path(X,N) :- permutation{node(*)}(X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Also, I can use permutation taking input predicates other than
unary:

path(X,N) :- permutation{edge(*,$)}(X,N).

• * = parameter

• $ = projection

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The Hamiltonian Path problem

HP: �nd a path between nodes of a graph s.t. I cross each node
exactly once. (permutation.dlt)

If I want to encode the HP problem with templates, I can do this
way:

path(X,N) :- permutation{node(*)}(X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Also, I can use permutation taking input predicates other than
unary:

path(X,N) :- permutation{edge(*,$)}(X,N).

• * = parameter

• $ = projection

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The Hamiltonian Path problem

HP: �nd a path between nodes of a graph s.t. I cross each node
exactly once. (permutation.dlt)

If I want to encode the HP problem with templates, I can do this
way:

path(X,N) :- permutation{node(*)}(X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Also, I can use permutation taking input predicates other than
unary:

path(X,N) :- permutation{edge(*,$)}(X,N).

• * = parameter

• $ = projection

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

The Hamiltonian Path problem

HP: �nd a path between nodes of a graph s.t. I cross each node
exactly once. (permutation.dlt)

If I want to encode the HP problem with templates, I can do this
way:

path(X,N) :- permutation{node(*)}(X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Also, I can use permutation taking input predicates other than
unary:

path(X,N) :- permutation{edge(*,$)}(X,N).

• * = parameter

• $ = projection

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Social Dinner VIII

Task

Try to expand wineCover7.dlt: de�ne a template subset for
specifying the search space of minimum cardinality subsets of wines.

#template subset{ p(1) }(1)

{

?

?

}

bottleChosen(X) :- ?

Solution at wineCover8.dlt

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Social Dinner VIII

Task

Try to expand wineCover7.dlt: de�ne a template subset for
specifying the search space of minimum cardinality subsets of wines.

#template subset{ p(1) }(1)

{

?

?

}

bottleChosen(X) :- ?

Solution at wineCover8.dlt

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Social Dinner VIII

Task

Try to expand wineCover7.dlt: de�ne a template subset for
specifying the search space of minimum cardinality subsets of wines.

#template subset{ p(1) }(1)

{

subset(X) v nonsubset(X) :- p(X).

:~ subset(X). [1:1]

}

bottleChosen(X) :- subset{compliantBottle($,*)}(X).

Solution at wineCover8.dlt

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Examples
Social Dinner Example

Social Dinner VIII

Task

Try to expand wineCover7.dlt: de�ne a template subset for
specifying the search space of minimum cardinality subsets of wines.

#template subset{ p(1) }(1)

{

subset(X) v nonsubset(X) :- p(X).

:~ subset(X). [1:1]

}

bottleChosen(X) :- subset{compliantBottle($,*)}(X).

Solution at wineCover8.dlt

G. Ianni Unit 2 � ASP Extensions

Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

References

1 Weak Constraints: [11]
2 Aggregates: [32]
3 Templates: [13]
4 Frame Logic: [48]
5 Other extensions:
http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

[1] G. Alsaç and C. Baral.
Reasoning in description logics using declarative logic
programming.
Technical Report ASU 2001-02, Arizona State University,
2002.

[2] J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler,
M. Kifer, R. Krummenacher, H. Lausen, A. Polleres, and
R. Studer.
Web rule language (WRL), Sept. 2005.
W3C Member Submission,
http://www.w3.org/Submission/WRL/.

[3] Christian Anger, Kathrin Konczak, and Thomas Linke.
NoMoRe: A System for Non-Monotonic Reasoning.
In LPNMR'01, pp. 406�410. 2001.

[4] Chandrabose Aravindan, J. Dix, and I. Niemelä.
DisLoP: A Research Project on Disjunctive Logic
Programming.
AI Communications, 10(3/4):151�165, 1997.

[5] C. Bell, A. Nerode, R.T. Ng, and V.S. Subrahmanian.
Mixed Integer Programming Methods for Computing
Nonmonotonic Deductive Databases.
JACM, 41:1178�1215, 1994.

[6] T. Berners-Lee.
Web for real people, April 2005.
Keynote Speech at the 14th World Wide Web Conference
(WWW2005), slides available at
http://www.w3.org/2005/Talks/0511-keynote-tbl/.

[7] P. A. Bonatti.
Reasoning with In�nite Stable Models.
In Proceedings of the Seventeenth International Joint
Conference on Arti�cial Intelligence (IJCAI) 2001, pages
603�610, Seattle, WA, USA, Aug. 2001. Morgan Kaufmann
Publishers.

[8] M. Brain and M. D. Vos.
Debugging logic programs under the answer set semantics.
In Answer Set Programming, 2005.

[9] F. Buccafurri, N. Leone, and P. Rullo.
Enhancing Disjunctive Datalog by Constraints.
IEEE TKDE, 12(5):845�860, 2000.

[10] J. D. Bruijn, A. Polleres, R. Lara, and D. Fensel.
OWL DL vs. OWL Flight: Conceptual modeling and reasoning
for the semantic web.
In Proceedings of the 14th World Wide Web Conference
(WWW2005), Chiba, Japan, May 2005.

[11] F. Buccafurri, N. Leone, and P. Rullo.
Strong and Weak Constraints in Disjunctive Datalog.
In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of
the 4th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR'97), number 1265 in
LNAI, pages 2�17, Dagstuhl, Germany, July 1997. Springer.

[12] P. Burek and R. Grabos.
Dually structured concepts in the semantic web: Answer set
programming approach.
In Proceedings of the Second European Semantic Web
Conference, ESWC 2005, Heraklion, Crete, Greece, May 29 -
June 1, 2005, LNCS 3532, pages 377�391, 2005.

[13] F. Calimeri, G. Ianni, G. Ielpa, A. Pietramala, and M. C.
Santoro.
A system with template answer set programs.
In JELIA, pages 693�697, 2004.

[14] F. Calimeri and G. Ianni.
External sources of computation for Answer Set Solvers.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Logic Programming and Nonmonotonic Reasoning � 8th
International Conference, LPNMR'05, Diamante, Italy,
September 2005, Proceedings, volume 3662 of LNCS, pages
105�118. Springer, Sept. 2005.

[15] Weidong Chen and David Scott Warren.
Computation of Stable Models and Its Integration with Logical
Query Processing.
IEEE TKDE, 8(5):742�757, 1996.

[16] Paweª Cholewi«ski, V. Wiktor Marek, and M. Truszczy«ski.
Default Reasoning System DeReS.
In Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR '96), pp.
518�528, Cambridge, Massachusetts, USA, 1996.

[17] Paweª Cholewi«ski, V.W. Marek, Artur Mikitiuk, and
M. Truszczy«ski.
Computing with Default Logic.
Arti�cial Intelligence, 112(2�3):105�147, 1999.

[18] C. Cumbo, W. Faber, and G. Greco.
Enhancing the magic-set method for disjunctive datalog
programs.
In Proceedings of the the 20th International Conference on
Logic Programming � ICLP'04, volume 3132 of LNCS, pages
371�385, 2004.

[19] S. Decker, M. Sintek, and W. Nejdl.
The model-theoretic semantics of TRIPLE, Nov. 2002.

[20] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf.
AL-log: Integrating datalog and description logics.
Journal of Intelligent Information Systems (JIIS),
10(3):227�252, 1998.

[21] D. East and M. Truszczy«ski.
Propositional Satis�ability in Answer-set Programming.
In Proceedings of Joint German/Austrian Conference on
Arti�cial Intelligence, KI'2001, pp. 138�153. LNAI 2174, 2001.

[22] D. East and M. Truszczy«ski.
dcs: An Implementation of DATALOG with Constraints.
In NMR'2000, 2000.

[23] U. Egly, T. Eiter, H. Tompits, and S. Woltran.
Solving Advanced Reasoning Tasks using Quanti�ed Boolean
Formulas.
In AAAI'00, pp. 417�422. AAAI Press / MIT Press, 2000.

[24] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres.
A Logic Programming Approach to Knowledge-State Planning,
II: the DLVK System.
Arti�cial Intelligence, 144(1�2):157�211, 2003.

[25] T. Eiter, M. Fink, H. Tompits, and S. Woltran.
Strong and uniform equivalence in answer-set programming:
Characterizations and complexity results for the non-ground
case.
In AAAI, pages 695�700, 2005.

[26] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits.
A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming.
In International Joint Conference on Arti�cial Intelligence
(IJCAI) 2005, pages 90�96, Edinburgh, UK, Aug. 2005.

[27] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.
Combining Answer Set Programming with Description Logics
for the Semantic Web.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Ninth International Conference (KR2004),
Whistler, Canada, pages 141�151, 2004.
Extended Report RR-1843-03-13, Institut für
Informationssysteme, TU Wien, 2003.

[28] Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H.
2006.
E�ective Integration of Declarative Rules with external
Evaluations for Semantic Web Reasoning.
In European Semantic Web Conference 2006, Proceedings.
To appear.

[29] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and
Hans Tompits.
Towards e�cient evaluation of HEX programs.
In Proceedings 11th International Workshop on Nonmonotonic
Reasoning (NMR-2006), Answer Set Programming Track,
June 2006.
To appear.

[30] O. El-Khatib, E. Pontelli, and T. C. Son.
Justi�cation and debugging of answer set programs in asp.
In AADEBUG, pages 49�58, 2005.

[31] W. Faber, N. Leone, and G. Pfeifer.
A Comparison of Heuristics for Answer Set Programming.
In Proceedings of the 5th Dutch-German Workshop on
Nonmonotonic Reasoning Techniques and their Applications
(DGNMR 2001), pages 64�75, Apr. 2001.

[32] W. Faber, N. Leone, and G. Pfeifer.
Recursive aggregates in disjunctive logic programs: Semantics
and complexity.
In J. J. Alferes and J. Leite, editors, Proceedings of the 9th
European Conference on Arti�cial Intelligence (JELIA 2004),
number 3229 in LNAI, pages 200�212. Springer, Sept. 2004.

[33] W. Faber, N. Leone, and F. Ricca.
Heuristics for Hard ASP Programs.
In Nineteenth International Joint Conference on Arti�cial
Intelligence (IJCAI-05), pages 1562�1563, Aug. 2005.

[34] P. Ferraris and V. Lifschitz.
Weight constraints as nested expressions.
TPLP, 5(1�2):45�74, 2005.

[35] W. Faber and G. Pfeifer.
DLV homepage, since 1996.
http://www.dlvsystem.com/.

[36] M. Gelfond and V. Lifschitz.
Classical Negation in Logic Programs and Disjunctive
Databases.
NGC, 9:365�385, 1991.

[37] E. Giunchiglia and M. Maratea.
On the relation between answer set and sat procedures (or,
between cmodels and smodels).
In ICLP, pages 37�51, 2005.

[38] J. Gressmann, T. Janhunen, R. E. Mercer, T. Schaub,
S. Thiele, and R. Tichy.
Platypus: A platform for distributed answer set solving.
In LPNMR, pages 227�239, 2005.

[39] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker.
Description logic programs: Combining logic programs with
description logics.
In Proceedings of the Twelfth International World Wide Web
Conference, WWW2003, Budapest, Hungary, pages 48�57,
2003.

[40] S. Heymans.
Decidable Open Answer Set Programming.
PhD thesis, Theoretical Computer Science Lab (TINF),
Department of Computer Science, Vrije Universiteit Brussel,
Feb. 2006.

[41] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir.
Semantic web reasoning with conceptual logic programs.
In Rules and Rule Markup Languages for the Semantic Web:
Third International Workshop (RuleML 2004), pages 113�127,
Hiroshima, Japan, Nov. 2004.

[42] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir.
Nonmonotonic ontological and rule-based reasoning with
extended conceptual logic programs.
In Proceedings of the Second European Semantic Web
Conference, ESWC 2005. LNCS 3532, pages 392�407, 2005.

[43] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler.
Semantic web architecture: Stack or two towers?
In F. Fages and S. Soliman, editors, Principles and Practice of
Semantic Web Reasoning (PPSWR 2005), number 3703 in
LNCS, pages 37�41. SV, 2005.

[44] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean.
Swrl: A semantic web rule language combining owl and ruleml,
May 2004.
W3C Member Submission.
http://www.w3.org/Submission/SWRL/.

[45] U. Hustadt, B. Motik, and U. Sattler.
Reducing shiq-description logic to disjunctive datalog
programs.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Ninth International Conference (KR2004),
Whistler, Canada, pages 152�162, 2004.

[46] ICONS homepage, since 2001.
http://www.icons.rodan.pl/.

[47] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J.-H. You.
Unfolding Partiality and Disjunctions in Stable Model
Semantics.
ACM TOCL, 2005.
To appear.

[48] M. Kifer, G. Lausen, and J. Wu.
Logical foundations of object-oriented and frame-based
languages.
Journal of the ACM, 42(4):741�843, 1995.

[49] N. Leone, G. Gottlob, R. Rosati, T. Eiter, W. Faber, Michael
Fink, Gianluigi Greco, G. Ianni, Edyta Kaªka, Domenico
Lembo, Maurizio Lenzerini, Vincenzino Lio, Bartosz Nowicki,
Marco Ruzzi, Witold Staniszkis, and Giorgio Terracina.
The INFOMIX System for Advanced Integration of Incomplete
and Inconsistent Data.
In Proceedings of the 24th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2005), pp.
915�917, Baltimore, Maryland, USA, 2005. ACM Press.

[50] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello.
The DLV System for Knowledge Representation and
Reasoning.
ACM TOCL, 2005.
To appear.

[51] N. Leone, S. Perri, and F. Scarcello.
Backjumping techniques for rules instantiation in the dlv
system.
In NMR, pages 258�266, 2004.

[52] A. Y. Levy and M.-C. Rousset.
Combining horn rules and description logics in CARIN.
Arti�cial Intelligence, 104:165 � 209, 1998.

[53] Yuliya Lierler.
Disjunctive Answer Set Programming via Satis�ability.
In Logic Programming and Nonmonotonic Reasoning � 8th
International Conference, LPNMR'05, Diamante, Italy, 2005,
Proceedings, LNCS 3662

[54] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT
solvers.
Arti�cial Intelligence, 157(1-2):115�137, 2004.

[55] V. Marek, I. Niemelä, and M. Truszczy±ki.
Logic programs with monotone cardinality atoms.
In Proceedings LPNMR-2004, volume 2923 of LNCS, pages
154�166, 2004.

[56] V.W. Marek and J.B. Remmel.
On Logic Programs with Cardinality Constraints.
In NMR'2002, pp. 219�228, 2002.

[57] N. McCain and H. Turner.
Satis�ability Planning with Causal Theories.
In KR'98, pp. 212�223. 1998.

[58] J. Mei, S. Liu, A. Yue, and Z. Lin.
An extension to OWL with general rules.
In Rules and Rule Markup Languages for the Semantic Web:
Third International Workshop (RuleML 2004), pages 155�169,
Hiroshima, Japan, Nov. 2004.

[59] B. Motik, U. Sattler, and R. Studer.
Query answering for owl-dl with rules.
Journal of Web Semantics: Science, Services and Agents on
the World Wide Web, 3(1):41�60, JUL 2005.

[60] B. Motik and R. Volz.
Optimizing query answering in description logics using
disjunctive deductive databases.
In F. Bry, C. Lutz, U. Sattler, and M. Schoop, editors,
Proceedings of the 10th International Workshop on Knowledge
Representation meets Databases (KRDB 2003), volume 79 of
CEUR Workshop Proceedings. CEUR-WS.org, Sept. 2003.

[61] I. Niemelä.
The implementation of answer set solvers, 2004.
Tutorial at ICLP 2004. Available at http://www.tcs.hut.
fi/~init/papers/niemela-iclp04-tutorial.ps.gz/.

[62] I. Niemelä, P. Simons, and T. Soininen.
Stable Model Semantics of Weight Constraint Rules.
In LPNMR'99, pp. 107�116.

[63] N. Pelov.
Non-monotone Semantics for Logic Programs with
Aggregates.
Available at http:
//www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz.,
Oct. 2002.

[64] A. Rainer.
Web Service Composition under Answer Set Programming.
In KI-Workshop "Planen, Scheduling und Kon�gurieren,
Entwerfenl" (PuK), 2005.

[65] R. Rosati.
On the decidability and complexity of integrating ontologies
and rules.
Journal of Web Semantics, 3(1):61�73, 2005.

[66] R. Rosati.
DL+log : Tight integration of description logics and
disjunctive datalog.
In KR2006, 2006.
To appear.

[67] D. Seipel and Helmut Thöne.
DisLog � A System for Reasoning in Disjunctive Deductive
Databases.
In Proceedings International Workshop on the Deductive
Approach to Information Systems and Databases (DAISD'94),
pp. 325�343. Universitat Politecnica de Catalunya (UPC),
1994.

[68] P. Simons.
Smodels Homepage, since 1996.
http://www.tcs.hut.fi/Software/smodels/.

[69] V.S. Subrahmanian, D. Nau, and C. Vago.
WFS + Branch and Bound = Stable Models.
IEEE TKDE, 7(3):362�377, 1995.

[70] T. Swift.
Deduction in Ontologies via ASP.
In V. Lifschitz and I. Niemelä, editors, Proc. of the Seventh
Int.l Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), LNCS, pages 275�288, Fort
Lauderdale, Florida, USA, Jan. 2004. Springer.

[71] T. Syrjänen.
Omega-restricted logic programs.
In Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning, Vienna, Austria,
September 2001. Springer.

[72] WASP report (IST-2001-37004). Model applications and
proofs-of-concept.
http:

//www.kr.tuwien.ac.at/projects/WASP/report.html.

[73] WASP showcase.
http:

//www.kr.tuwien.ac.at/projects/WASP/showcase.html.

[74] G. Yang and M. Kifer.
On the semantics of anonymous identity and rei�cation.
In CoopIS/DOA/ODBASE, pages 1047�1066, 2002.

[75] G. Yang, M. Kifer, and C. Zhao.
"�ora-2: A rule-based knowledge representation and inference
infrastructure for the semantic web.".
In R. Meersman, Z. Tari, and D. C. Schmidt, editors,
CoopIS/DOA/ODBASE, pages 671�688, 2003.

G. Ianni Unit 2 � ASP Extensions

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/
http://www.w3.org/Submission/WRL/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.dlvsystem.com/
http://www.w3.org/Submission/SWRL/
http://www.icons.rodan.pl/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz
http://www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz
http://www.tcs.hut.fi/Software/smodels/
http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

	Introduction
	Weak constraints
	The idea
	Syntax and Semantics
	Examples
	The Guess-Check-Optimize pattern
	The Social Dinner example

	Aggregate Atoms
	The idea
	Syntax and Semantics
	The social dinner example

	Frame Logic Syntax
	The idea
	Syntax and Semantics
	Social Dinner Example

	Template Predicates
	The idea
	Syntax and Semantics
	Examples
	Refining the Social Dinner Example

	References

