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Logic Programming Extensions

• Besides disjunction and strong negation, many extensions of
normal logic programs have been proposed

• Some of these extensions are motivated by applications

• Some of these extensions are syntactic sugar, other strictly add
expressiveness

• Comprehensive survey of extensions:

See http://www.tcs.hut.fi/Research/Logic/wasp/wp3/

• Here, we consider some DLV speci�c extensions.
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Idea
Semantics
Examples
The Guess-Check-Optimize pattern
Social Dinner

Weak Constraints

• Allow the formalization of optimization problems in an easy
and natural way.

• Constraints vs. weak constraints:
• Constraints �kill� unwanted models;
• Weak constraints express desiderata which should be satis�ed,

if possible.

• The answer sets of a program P with a set W of weak
constraints are those answer sets of P which minimize the
number of violated constraints.

• Such answer sets are called optimal or best models of (P,W ).

• Other solvers feature similar constructs.

G. Ianni Unit 2 � ASP Extensions
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Syntax and Semantics

• Syntax:

: ~ b1, · · · , bk, not bk+1, · · · , not bm. [Weight : Level]

• In the presence of weights, best models minimize the sum of
the weights of violated constraints.

• Semantics: minimizes the violation of constraints with highest
priority level �rst; then with the lower priority levels in
descending order.

• Level part is syntactic sugar, can be compiled into weights.

G. Ianni Unit 2 � ASP Extensions
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Weak Constraints: Examples

a v b.

c :- b.

:~ a.

:~ b.

:~ c.

Best model: a Cost ([Weight:Level]): <[1:1]> Answer set {b, c}
is discarded because it violates two weak constraints!
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Weak Constraints: Examples /2

a v b.

:~ a. [1:] :~ a. [1:] :~ b. [2:]

Best model: b Cost ([Weight:Level]): <[2:1]>
Best model: a Cost ([Weight:Level]): <[2:1]>

a v b1 v b2.

:~ a. [:1] :~ b1. [:2] :~ b2. [:2]

Best model: a Cost ([Weight:Level]): <[1:1],[0:2]>
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A bigger example - Employee Assignment

• Goal: Divide employees in two project groups p1 and p2
1.

1 Skills of group members should be di�erent.
2 Persons in the same group should not be married to each other.
3 Members of a group should possibly know each other.

• Requirement 1) is more important than 2) and 3), which are
equally important

• Layers express the relative importance of the requirements.

assign(X,p1) v assign(X,p2) :- employee(X).

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]

:~ assign(X,P), assign(Y,P), married(X,Y). [:1]

:~ assign(X,P), assign(Y,P), X!=Y, not know(X,Y).[:1]

1Example assignment.dlv
G. Ianni Unit 2 � ASP Extensions
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Guess-Check-Optimize Methodology

• Extend the �Guess & Check� Methodology

• Use weak constraints to �lter out best (optimal) solutions

�Guess-Check-Optimize� : Divide P into three main parts:

Guessing Part

G ⊆ P: Answer_Sets(G ∪ FI ) represent �solution candidates� for instance I .

Checking Part (optional)

C ⊆ P: Answer_Sets(G ∪ C ∪ FI ) represent the admissible solutions for I .

Optimization Part (optional)

The optimization part O ⊆ P consists of weak constraints, and implicitly
de�nes an objective function f : Answer_Sets(G ∪ C ∪ FI ) → N
Those answer sets minimizing f are selected.

G. Ianni Unit 2 � ASP Extensions
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Social Dinner III

Task

Now that we have de�ned bottleChosen as the solution predicate,
is there a way to select only the smallest sets of wines? Try to
expand wineCover4.dlv

?

Solution available as wineCover5.dlv
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Social Dinner III

Task

Now that we have de�ned bottleChosen as the solution predicate,
is there a way to select only the smallest sets of wines? Try to
expand wineCover4.dlv

:~ bottleChosen(X). [1:1]

Solution available as wineCover5.dlv
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Weak Constraints with Weights

• A single weak constraints in some layer n is more important
than all weak constraints in lower layers (n − 1, n − 2,...)
together!

• Weak constraints are weighted to make �ner distinctions
among elements of the same priority:
:˜ G1.[3.5:1] :˜ G2.[4.6:1]

• The weights of violated weak constraints are summed up for
each layer.

• Example: High School Time Tabling Problem
Structural Requirements > Pedagogical Requirements >
Personal Wishes
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Traveling Salesperson

Given: Weighted directed graph G = (V ,E ,C) and a node a ∈ V of this graph.
Task: Find a minimum-cost cycle (closed path) in G starting at a and going through
each node in V exactly once2.

• G stored by facts over predicates node(X) and arc(X,Y).
• Starting node a is speci�ed by the predicate start (unary).

Guess:

inPath(X,Y,C) v outPath(X,Y,C) :- start(X), arc(X,Y,C).

inPath(X,Y,C) v outPath(X,Y,C) :- reached(X), arc(X,Y,C).

reached(X):- inPath(Y,X,C).

Check:

:- inPath(X,Y,_), inPath(X,Y1,_), Y <> Y1.

:- inPath(X,Y,_), inPath(X1,Y,_), X <> X1.

:- node(X), not reached(X).

Optimize:

:~ inPath(X,Y,C). [C:1]

2Example tsp.dlv
G. Ianni Unit 2 � ASP Extensions
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Social Dinner IV

Task

Let each wine bootle have a price encoded by
price(bottle,value). Modify wineCover5b.dlv and try to
choose the best cost selection of bottles.

?

Solution available at wineCover5c.dlv
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Social Dinner IV

Task

Let each wine bootle have a price encoded by
price(bottle,value). Modify wineCover5b.dlv and try to
choose the best cost selection of bottles.

:~ bottleChosen(X),prize(X,N). [N:1]

Solution available at wineCover5c.dlv
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Aggregates

• Compute aggregate functions over a set of values, similar as in
SQL (count, min, max, sum)

• A few examples:

:- actiontime(T), #count{ move(B,L,T) } >= 4.

small :- #max{ X : f(A,X,C), b(C,G) } < 3.

ok_price :- 30 <= #sum{ Price :

bought(Good),

price(Good,Price) } < 50.

• other solvers (e.g. Smodels) o�er similar constructs
(cardinality atoms, weight constraints).
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Aggregate Atoms � Syntax

• Symbolic Set: Expression

{Vars : Conj}
of a list Vars of variables and a list Conj of literals (safety
required) (e.g. { X : f(A,X,C), b(C,G) }).

• Aggregate Function: Expression

f {Vars : Conj}
where
• f ∈ {#count,#min,#max ,#sum,#times}, and
• {Vars : Conj} is a symbolic set

(e.g. #max{ X : f(A,X,C), b(C,G) } })
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Aggregate Atoms � Syntax /2

• Aggregate Atom: Expression

Agg_Atom ::= val } f {Vars : Conj}
| f {Vars : Conj} } val
| vall }l f {Vars : Conj} }r valu

where
• val , vall , valu are constants or variables,
• } ∈ {<,>,≤,≥,= },
• }l ,}r ∈ {<,≤}, and
• f {Vars : Conj} is an aggregate function

(e.g. #max{ X : f(A,X,C), b(C,G) } < 3)
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Aggregate Atoms � Semantics

• Informally:
Suppose I is an interpretation.

• Evaluate symbolic set {Vars : Conj} with respect to I : Collect
all instances of Vars for which Conj is true in I (Result:
SemSet).

• Apply f on SemSet (Result: v = f (SemSet)).
• Evaluate comparison val θ v resp. vall θl v ∧ v θr valu with

(instantiated) value val resp. values vall , valu.

• Appealing formal de�nition of semantics is a bit tricky

• Widely acknowledged proposal: Faber et al. [32].
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Social Dinner V

Task

Modify wineCover5c.dlv so that the weak constraint

:~ bottleChosen(X),prize(X,N). [N:1]

can be changed in

:~ totalcost(N). [N:1]

totalcost(N) :- #int(N),

? .

Solution at wineCover6.dlv
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Frame logic: the idea

The molecular syntax typical of F-logic is quite useful for
manipulating triple stores and complex join patterns:

Datalog Syntax

wineBottle("Brachetto"). isA("Brachetto","RedWine"),

isA("Brachetto","SweetWine"). prize("Brachetto",10).

F-Logic Syntax

"Brachetto" : wineBottle[isA-�{"RedWine","SweetWine"},

prize->10].

G. Ianni Unit 2 � ASP Extensions



Intro
Weak constraints

Aggregates
Frame Syntax

Templates
References

Idea
Syntax and Semantics
Social Dinner Example

Frame syntax: the idea

The molecular syntax typical of F-logic is quite useful for
manipulating triple stores and complex join patterns:

Datalog Syntax

mainEntity(M) :- "foaf:PersonalProfileDocument"(X),

"foaf:primaryTopic"(X,M).

F-Logic Syntax

M : mainEntity :-

X:"foaf:PersonalProfileDocument"["foaf:primaryTopic"->M].
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Informal Syntax and Semantics

F-Logic molecule

subject : type[predicate1->object, ...,

predicate2-> >{ object1, ..., objectn },

...]

It is a syntactic shortcut to

Datalog conjunction of facts

type(subject),

predicate1(subject,object), ... , predicate2(subject,object1),

... , predicate2(subject, objectn)

• Objects can be nested frames (only atomic frames in rules' heads)
• Subjects and Objects unify with terms of the language. Under higher order

extensions (see Unit 5), also Predicates and Types do.
• F-Logic semantic features (inheritance, etc.) are not currently implemented, this

is only syntactic sugar.
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Frame Spaces

A Frame Space directive tells how frames are mapped to regular
atoms

@triple.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B,triple) :-

father(A,Y,triple),

father(B,Y,triple).

@.

A[brother->B] :- A[father->Y],

B[father->Y].

Maps to:

brother(A,B) :- father(A,Y),

father(B,Y).
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Social Dinner VII

Task

Take wineCover7a.dlt. It is partially in frame syntax. Put the
following rule in frame logic syntax:

compliantBottle(X,Z) :- preferredWine(X,Y), isA(Z,Y).

Solution at wineCover7b.dlt
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The idea of templates

Imagine you want to encode all the possible permutations of a
given predicate p (assume maxint = |X : p(X )|)

First, I guess worlds of permutations

permutation(X,N) v -permutation(X,N) :- p(X),#int(N).

Then, I cut worlds I don't like

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

Also, each element must be in the partition

covered(X) :- permutation(X,A).

:- p(X), not covered(X).
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The idea of templates - 2

• Thus, this �small� program encodes a search space of
permutations

• But it can be reused and put in a library (let maxint big
enough here)

#template permutation{p(1)}(2)

{

permutation(X,N) v -permutation(X,N)

:- p(X),#int(N),

#count{ Y : p(Y) } = N1,

N <= N1, N > 0.

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

}
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Syntax and Semantics

Template de�nition:

#template closure{e(2)}(2)

{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name
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{

closure(X,Y) :- e(X,Y).

closure(X,Y) :- e(X,Z),

closure(Z,Y).

}

#template max{p(1)}(1)

{

exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X),

not exceeded(X).

}

• e(2), p(1) = formal parameter list

• ..}(2), ..}(1) = output predicate arities

• closure, max = output predicate names

• exceeded = local predicate name
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Syntax and Semantics - 2

Template atoms:

clo(X,Y) :- closure{ edge(*,*) }(X,Y).

inPath(X,N) :- permutation{ clo(*,$) }(X,N).

maxAgePerSex(S,A) :- max{ person($,S,*) }(A).

• edge(*,*), clo(*,$), person($,S,*) = actual
parameters

• closure{ edge(*,*) }(X,Y) = a template atom

• * = input terms

• $ = projection terms

• S = group-by (quanti�cation) term

• (X,Y), (X,N), S..A = output terms
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The Hamiltonian Path problem

HP: �nd a path between nodes of a graph s.t. I cross each node
exactly once. (permutation.dlt)

If I want to encode the HP problem with templates, I can do this
way:

path(X,N) :- permutation{node(*)}(X,N).

:- path(X,M), path(Y,N), not edge(X,Y), M = N+1.

Also, I can use permutation taking input predicates other than
unary:

path(X,N) :- permutation{edge(*,$)}(X,N).

• * = parameter

• $ = projection
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Social Dinner VIII

Task

Try to expand wineCover7.dlt: de�ne a template subset for
specifying the search space of minimum cardinality subsets of wines.

#template subset{ p(1) }(1)

{

?

?

}

bottleChosen(X) :- ?

Solution at wineCover8.dlt
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Task
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specifying the search space of minimum cardinality subsets of wines.
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?
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Try to expand wineCover7.dlt: de�ne a template subset for
specifying the search space of minimum cardinality subsets of wines.

#template subset{ p(1) }(1)

{

subset(X) v nonsubset(X) :- p(X).

:~ subset(X). [1:1]

}

bottleChosen(X) :- subset{compliantBottle($,*)}(X).
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