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Topics

MAIN FOCUS:
� Knowledge Representation (KR) and 

Applications

GOAL:
� Getting a Powerful Tool for Solving Problems 

in a Fast and Declarative way



Disjunctive Logic Programming 
(DLP)

Disjunctive Datalog

Disjunctive Databases

Answer Set Programming (ASP)



Disjunctive Logic Programming (DLP)

� Simple, yet powerful KR formalism
� Widely used in AI

� Incomplete Knowledge

� Able to represent complex problems not 
(polynomially) translatable to SAT

� A declarative problem specification is 
executable



What is DLP Good for? (Applications)

� Artificial Intelligence

� Knowledge Representation

� Diagnosis

� Planning

� Emerging Applications Areas

� Knowledge Management

� Information Integration



DLP Advantages

� Sound theoretical foundation (Model 
Theory)

� Nice formal properties (clear semantics)
� Real Declarativeness

�Rules Ordering, and Goal Orderings is 
Immaterial!!!

�Termination is always guaranteed
� High expressive power



Drawbacks

� Computing Answer Sets is rather hard

� Very few solid and efficient implementations

...but this has started to change: DLV/GnT



Foundations of DLP: 
Syntax and Semantics

a bit boring, but needed....

getFunTomorrow :- resistToday.



(Extended) Disjunctive Logic Programming

Logic Programming extended with

� disjunction

� integrity constraints

� weak constraints

� integers, arithmetic, and comparison builtins

� default negation

� strong negation

� aggregate functions



Disjunctive Logic Programming

SYNTAX
Rule: a1 ∨ … ∨ an :- b1, …, bk , not bk+1 , …, not bm
Constraints: :- b1 , …, bk , not bk+1 , …, not bm
Program: A finite Set P of  rules and constraints.

- ai bi are atoms or strongly negated atoms ( -p)
- variables are allowed in atoms’ arguments

mother(P,S) v father(P,S) :- parent(P,S).



Facts

� A rule with an empty body is called a fact.
� A fact is therefore a rule with a True body.
� The implication symbol is omitted for facts

parent(eugenio, peppe) :- true.
parent(mario, ciccio) :- true.
equivalently written by

parent(eugenio, peppe).
parent(mario, ciccio).

� Facts must be true in any answer set!



Informal Semantics

Rule:    a1 ∨ … ∨ an :- b1, …, bk , not bk+1 , …, not bm

If all the b1 …bk are true and all the bk+1 … bm are false, then at least
one among a1 …an is true.

isInterestedinDLP(john) v isCurious(john) :- attendsDLP(john).
attendsDLP(john).

Two (minimal) models, encoding two plausible scenarios:

M1: {attendsDLP(john), isInterestedinDLP(john) }
M2: {attendsDLP(john), isCurious(john) }



Disjunction

is minimal
a ∨ b ∨ c ⇒ { a }, { b }, { c }

actually subset minimal

a ∨ b.
a ∨ c.

⇒ {a}, {b,c}

butnot exclusive

a ∨ b.
a ∨ c.
b ∨ c.

⇒ {a,b}, {a,c}, {b,c}



Informal Semantics – ctd.

Constraints:    :- b1 , …, bk , not bk+1 , …, not bm
Discard interpretations which verify the condition
:- hatesDLP(john), isInterestedinDLP(john).
hatesDLP(john).
isInterestedinDLP(john) v isCurious(john) :- attendsDLP(john).
attendsDLP(john).

first scenario ({attendsDLP(john), isInterested(john) }) is discarded.

only one plausible scenario:
M: { attendsDLP(john), hatesDLP(john), isCurious(john) }



Integrity Constraints

When encoding a problem, its solutions are given by the 
models of the resulting program. Rules usually construct these 
models. Integrity constraintscan be used to discard models.

:- L1, … , Ln.

means: discard models in which L1, … , Ln are simultaneously 
true. 

a ∨ b.
a ∨ c.
b ∨ c.

:- a. ⇒ {b, c}

⇒ {a,b}, {a,c}, {b,c}



(Formal) Semantics: Program Instantiation

Herbrand Universe, UP= Set of constants occurring in program P
Herbrand Base, BP= Set of ground atoms constructible from UP and Pred.
Ground instance of a Rule R:  Replace each variable in R by a constant in UP

Instantiation ground(P) of a program P: Set of the ground instances of its rules.

Example: isInterestedinDLP(X) v isCurious(X) :- attendsDLP(X).
attendsDLP(john).
attendsDLP(mary).

UP={ john, mary }

isInterestedinDLP(john) v isCurious(john) :- attendsDLP(john).
isInterestedinDLP(mary) v isCurious(mary) :- attendsDLP(mary).
attendsDLP(john).
attendsDLP(mary).

A program with variables is just a shorthand for its ground instantiation!



Interpretations and Models

Interpretation I of a program P:consistent set of 
(classical) atoms of P.

Atom q is true in I if q belongs to I; otherwise it is 
false. Literal not qis true in I if q is false in I; 
otherwise it is false.

Interpretation I is a MODEL for P if, for every R 
in P, the head of R is True in I, whenever the 
body of R is true in I 



Semantics for Positive Programs

We assume now that Programs are ground(just 
replace P by ground(P)) and Positive(not - free)

I is an answer setfor a positive program P if it is a 
minimal model (w.r.t. set inclusion) for P

-> Bodies of constraint must be false.



Example (Answer set for a positive program)

isInterestedinDLP(john) v isCurious(john) :- attendsDLP(john).
isInterestedinDLP(mary) v isCurious(mary) :- attendsDLP(mary).
attendsDLP(john).
attendsDLP(mary).

I1 = { attendsDLP(john) } (not a model)
I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), isCurious(mary), 

attendsDLP(mary) } (model, non minimal)
I3 = { isCurious(john),  attendsDLP(john), isInterestedinDLP(mary), 

attendsDLP(mary) } (answer set)
I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary), 

attendsDLP(mary) } (answer set)
I5 = { isCurious(john),  attendsDLP(john), isCurious(mary), attendsDLP(mary) } 

(answer set)
I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary), attendsDLP(mary) 

} (answer set)



Example (Answer set for a positive program) – ctd.

Let us ADD:
:- hatesDLP(john), isInterestedinDLP(john).
hatesDLP(john).

( same interpretations as before + hatesDLP(john) ) 
I1 = { attendsDLP(john), hatesDLP(john) } (not a model)
I2 = { isCurious(john), attendsDLP(john), isInterestedinDLP(mary), isCurious(mary), 

attendsDLP(mary), hatesDLP(john) } (model, non minimal)
I3 = { isCurious(john),  attendsDLP(john), isInterestedinDLP(mary), 

attendsDLP(mary) , hatesDLP(john) } (answer set)
I4={ isInterestedinDLP(john), attendsDLP(john), isInterestedinDLP(mary), 

attendsDLP(mary), hatesDLP(john) } (not a model)!!!
I5 = { isCurious(john),  attendsDLP(john), isCurious(mary), attendsDLP(mary), 

hatesDLP(john) } (answer set)
I6={ isInterestedinDLP(john), attendsDLP(john), isCurious(mary), 

attendsDLP(mary),  hatesDLP(john) } (not a model)!!!



Semantics for Programs with Negation

Consider general programs (with NOT)

The reductor of a program P w.r.t. an interpretation I is the 
positive program PI, obtained from P by

� deleting all rules with a negative literal false in I;
� deleting the negative literals from the bodies of the 

remaining rules.

An answer setof a program P is an interpretation I such that I 
is an answer set of PI.

Answer Sets are also called Stable Models.



Example (Answer set for a general program)

P: a :- d, not b.
b :- not d.
d.

I = { a, d }

PI : a :- d.
d.

I is an answer set of PI and therefore it is an answer 
set of P.



Answer sets and minimality

An answer set is always a minimal model (also with negation).
In presence of negation minimal models are not necessarily answer sets

P: a :- not b.

Minimal Models: I1 = { a }
I2 = { b }

Reducts:
PI1 :    a.
PI2 : {}

I1 is an answer set of PI1 while I2 is not an answer set of PI2 (it is not 
minimal, since empty set is a model of PI2). 

PI1 is the only answer set of P.



Knowledge Representation and 
Reasoning



road_free.
car_in_sight.

cross :- road_free.
stay :- car_in_sight.

--- --- ---

sunny.
cool.
want_to_play.

play_tennis :- sunny, cool.
play_tennis :- want_to_play.

Simple programs



close_valve :- valve_open, temperature_1.
close_valve :- valve_open, temperature_2.
open_valve :- valve_closed, temperature_3.
open_valve :- valve_closed, temperature_4.

--- ---

have_money :- earn.
earn :- invest.
invest :- have_money.

(SUPPORT needed � Doesn't make you rich unless you 
earn from somewhere else, invest some other money or 
just have money already).

Simple programs – ctd.



Suppose we are representing a graph by a 
relation edge(X,Y).

I want to express the query:  Find all nodes 
reachable from the others.

path(X,Y) :- edge(X,Y).
path(X,Y) :- path(X,Z), path(Z,Y).

Transitive Closure



Recursion (ancestor)

If we want to define the relation of arbitrary ancestors rather than 
grandparents, we make use of recursion:

ancestor(A,B) :- parent(A,B). 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

An equivalent representation is

ancestor(A,B) :- parent(A,B).
ancestor(A,C) :- ancestor(A,B), parent(B,C).



Note the Full Declarativeness

The order of rules and of goals is immaterial:
ancestor(A,B) :- parent(A,B). 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).

is fully equivalent to 
ancestor(A,C) :- ancestor(A,B), ancestor(B,C).
ancestor(A,B) :- parent(A,B). 

and also to
ancestor(A,C) :- ancestor(B,C), ancestor(A,B).
ancestor(A,B) :- parent(A,B).
NO LOOP!



Datalog Semantics

Though the semantics is the same as for DLP, we can 
have for Datalog the following Model Theoretic: the 
answer to a datalog program is the least model of P (i.e. 
the unique minimal model).

Why does this work?

THEOREM: A positive Datalog program has always a 
(unique) minimal model.

PROOF:The intersection of two models is guaranteed to 
be still a model; thus, only one minimal model exists.



Safety

A rule r is safeif  
� each variable in the head, and
� each variable in a negated subgoal, and
� each variable in a comparison operator (<,<=, etc.)

also appears in a standard positive subgoal. Only safe rules are allowed.

Ex.: The following rules are unsafe:
� s(X) :- a.
� s(Y) :- b(Y), not r(X).
� s(X) :- not r(X).
� s(Y) :- b(Y), X<Y.

In each case, an infinity of x’s can satisfy the rule, even if “r” is a finite 
relation.



Arithmetic Built-ins

Fibonacci
fib0(1,1).
fib0(2,1).
fib(N,X) :- fib0(N,X).
fib(N,X) :- fib(N1,Y1), fib(N2,Y2), 

+(N2,2,N), +(N1,1,N), 
+(Y1,Y2,X).
Unbound builtins

less(X,Y) :- #int(X), #int(Y), X < Y.
num(X) :- *(X,1,X).

Note that an upper bound for integers has to be specified.



Default Negation

Often, it is desirable to express negation in the following 
sense: “ If we do not have evidence that X holds, 
conclude Y.” This is expressed by default negation(the 
operator not).

For example, an agent could act according to the 
following rule: 
“At a railroad crossing, cross the rails if no train 
approaches”

cross_railroad(A) :- crossing(A), not train_approaches(A).



Strong Negation

However, in this example default negation is not really 
the right notion of negation.
It is possible that a train approaches, but that we don.t 
have any evidence for it (e.g. we do not hear the train). 
Rather, it would be desirable to definitely know that no 
train approaches.

�This concept is called strong negation:
cross_railroad(A) :- crossing(A), -train_approaches(A).

� The use of strong negation can lead to inconsistencies:
� a. -a.



Example Disjunction

In a blood group knowledge base one may express 
that the genotype of a parent P of a person C is 
either T1 or T2, if C is heterozygot with types T1
and T2:

genotype(P,T1) ∨ genotype(P,T2) :-

parent(P,C), heterozygot(C,T1,T2).

In general, programs which contain disjunction can 
have more than one model.



A (Declarative) Methodology 

for Programming in DLP



DLP – How To Program?

Idea: encode a search problem P by a DLP
program LP. 
The answer sets of LP correspond  one-to-one to 
the solutions of  P .

�Rudiments of methodology
�Generate-and-test programming:
� - Generate (possible structures)
� - Weed out (unwanted ones) 
� by adding constraints (“Killing” clauses)
�Separate data from program 



“Guess and Check” Programming 
Answer Set Programming (ASP)

A disjunctive rule “guesses” a solution 
candidate.

Integrity constraints check its admissibility.

From another perspective:
�The disjunctive rule defines the search 
space.
�Integrity constraints prune illegal branches.



3-colorability
Input : a Map represented bystate(_)and border(_,_).
Problem: assign one color out of 3 colors to each state such that

two neighbouring states have always different colors.

Solution:

col(X,red) ∨ col(X,green) ∨ col(X,blue) :-state(X). } Guess

:- border(X,Y), col(X,C), col(Y,C). } Check



Hamiltonian Path (HP) (1)

Input : A directed graph represented by node(_) and arc(_,_),        
and a starting node start(_).

Problem: Find a path beginning at the starting node which
contains all nodes of  the graph. 



Hamiltonian Path (HP) (2)

inPath(X,Y) ∨ outPath(X,Y) :- arc(X,Y). Guess

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1.          Check
:- node(X), not reached(X).

reached(X) :- start(X). Auxiliary Predicate
reached(X) :- reached(Y), inPath(Y,X).



Linguistic Extensions

� Aggregate functions

� Weak constraints



Aggregate Functions



Aggregate functions

emp(EmpId, Salary)

Compute the sum of salaries of the employees

• Easily expressed in SQL

• Representation in DLP rather unnatural

– recursion needed to express Sum



Sum (DLP vs DLPA)
% Order employees by id

precedes(X,Y) :- emp(X,_), emp(Y,_), X<Y.

% Define successor, first and last
succ(X,Y) :- precedes(X,Y), not elementInMiddle(X,Y).
elementInMiddle(X,Y) :- precedes(X,Z), precedes(Z,Y).
first(X) :- emp(X,_), not hasPredecessor(X).
last(X) :- emp(X,_), not hasSuccessor(X).
hasPredecessor(X) :- succ(Y,X).
hasSuccessor(Y) :- succ(Y,X).

% sum salaries recursively
partialSum(X,Sx) :- first(X), emp(X,Sx).
partialSum(Y,S) :- succ(X,Y), partialSum(X,PSx), emp(Y,Sy), S=PSx+Sy.

% select the total
sum(S) :- last(L), partialSum(L,S).



DLPAAAA = DLP + aggregates

Symbolic set:

{ Vars : Conj}

{ EmpId : emp( EmpId, male, Skill, Salary ) }

The set of ids of male employees.



Aggregate function

f{S}
S : symbolic set

f : function name among

{ #count, #sum, #times, #min, #max}

#count { EmpId : emp( EmpId, male, Skill, Salary ) }

The number of male employees



Aggregate atom

Lg <1 f{S} <2 Ug

5 < #count { EmpId : emp( EmpId, Male, Skill, Salary) } ≤ 10

The atom is true if the number of male employees
is greater than 5 and does not exceed 10.

Formal semantics: extension of the notion of answer set.



Aggregate Semantics

The reductor Gelfond-Lifschitz transform of a ground
program P w.r.t. a set X ⊆ BP is the positive ground
program PX obtained from P by

1. deleting all rules r ∈ P for which a negative literal in B(r) 
is false w.r.t. X or an aggregate literal is false w.r.t. X; 

2. deleting the aggregate literals and the negative literals
from the remaining rules.

An answer setof a program P  is a set X ⊆ BP such that X 
is an answer set of PX.



Team Building
p1 The team consists of a certain number of employees

p2 At least a given number of different skills must bepresent in the team

p3 The sum of the salaries of the employees working in the team must not exceed the 
given budget

p4 The salary of each individual employee is within a specified limit

p5 The number of women working in the team must be greater than a given number

in(I) v out(I) :- emp(I,Sx,Sk,Sa).

:- nEmp(N), not #count{ I : in(I) } = N.

:- nSkill(M), not #count{ Sk : emp(I,Sx,Sk,Sa), in(I) } ≥M.

:- budget(B), not #sum{ Sa, I : emp(I,Sx,Sk,Sa), in(I) } ≤ B.

:- maxSal(M), not #max{ Sa : emp(I,Sx,Sk,Sa), in(I) } ≤ M.

:- women(W), not #count{ I : emp(I,f,Sk,Sa), in(I) } ≥W.



Seating
Given some tables of nc chairs each, generate a sitting

arrangement for a number of given guests. 
People liking each other should sit at the same table.
People disliking each other should not sit at the same table.
at(P,T) v not_at(P,T) :- guest(P), table(T).

:- table(T), not #count{P : at(P,T)} <= nc.

:- guest(P), not #count {T : at(P,T) }=1.

:- like(P1,P2), at(P1,T), not at(P2,T).

:- dislike(P1,P2), at(P1,T), at(P2,T).



Products control (unstratification) 

bought(C,N)  v  notBought(C,N) :- company(C), forSale(C,N, Price).
produced(A) :- producedBy(A,C), controlled(C).
controlled(C) :- bought(C,N), N > 50.
controlled(C) :- company(C),

#sum{ N, C1 : shares(C,C1,N), controlled(C1) } > 50.
controlled(C) :- bought(C,N), N  ≤ 50,

#sum{ N, C1 : shares(C,C1,N), controlled(C1) } > K, 
50 = K + N.

:- desired(P), not produced(P).
:- budget(B), #sum{ Price, C : forSale(C,N,Price), bought(C,N) } > B.

p1 A product A is produced by us if it is produced by a company under our control.
p2 A company C is under our direct control, if we bought more than 50% of its shares.
p3 A company C is under our (indirect) control, if companies under our control  

(together) own more than 50% of C.
p4 The majority of the shares of C can be reached by summing up the C shares we

bought directly with the shares owned by the companies under our control.
p5 Each desired product has to be produced.
p6 The budget must not be exceeded.



Related Works
� Many related works on DDBs

� #sum and #count similar to Smodels cardinality and 
weight constraints

� No negation in Smodels

� #min, #max, #times no counterpart in Smodels

� Pure sets vs multisets

� Smodels allows unstratification

� Only recently introduced in DLPAAAA

� Duplicated sets recognition in DLPAAAA , other optimizations
in Smodels

� Related theoretical work by Pelov



Weak Constraints: 
a Linguistic Extension 

to Encode Wishes



Weak Constraints

Express desiderata - constraints which should possibly 
be satisfied, like Soft Constraintsin CSP
Syntax :~ B.
Satisfy B if possible.

Weak constraints can be weighted and prioritized:
:~ B.  [w:p]

higher weights/priorities  -> higher importance

A useful tool to encode optimization problems.



Semantics of Weak Constraints

Rules(P): set of the rules (including facts and strong constraints) of P
WC(P): weak constraints of P

Semantcs of programs without Priorities (in weak constraints):
Answer sets of Rules(P) minimizing the sum of the weights of the 
violated constraints in WC(P)

Semantics of programs with Priorities:
- minimize the sum of the weights of the violated constraints in the 
highest priority level;
- then minimize the sum of the weights of the violated constraints in the 
next lower level, etc.



Exams Scheduling
1.  Assign course exams to time slots avoiding overlapping of exams 
of courses with common students

r1: assign(X,s1) ∨ assign(X,s2) ∨ assign(X,s3) :- course(X).

s1: :- assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0.

2.  If overlapping is unavoidable, then reduce it “As Much As 
Possible” – Find an approximate solution

r2: assign(X,s1) ∨ assign(X,s2) ∨ assign(X,s3) :- course(X).
w2: :~ assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0.   [N:]

Scenarios (models) that minimizes the total number of “lost” exams
are preferred.



Team Building 
(Prioritized Constraints)

Divide employees in two project groups p1 and p2.
A.Skills of group members should be different.
B. Persons in the same group should not be married each other.
C. Members of a group should possibly know each other.
Requirement A) is more important than B) and C)

assign(X,p1) ∨ assign(X,p2) :- employee(X).
:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2]
:~ assign(X,P), assign(Y,P), married(X,Y). [:1]
:~ assign(X,P), assign(Y,P), X<>Y, not know(X,Y). [:1]



The GCO (Guess/Check/Optimize) 
Programming Technique

Generalization of the Guess and Check method to 
express optimization problems

A program is made of 3 Modules:

[Guessing Part]defines the search space

[Checking Part]checks solution admissibility

[Optimizing Part]specifies a preference criterion  (by 
means of weak constraints)



Exams Scheduling (with GCO)

%Guess:

assign(X,s1) ∨ assign(X,s2) ∨ assign(X,s3) :- course(X).        

%Optimize:
:~ assign(X,S), assign(Y,S), commonStudents(X,Y,N), N>0.   [N:]



assign(X,p1) ∨ assign(X,p2) :- employee(X). Guess

:~ assign(X,P), assign(Y,P), same_skill(X,Y). [:2] |
:~ assign(X,P),assign(Y,P), married(X,Y). [:1] |Optimize

:~ assign(X,P), assign(Y,P), X<>Y, not know(X,Y). [:1] |

Team Building (with GCO)



The Traveling Salesman Person (TSP)*

inPath(X,Y) ∨ outPath(X,Y) :- arc(X,Y,_).       Guess

:- inPath(X,Y), inPath(X,Y1), Y <> Y1. |
:- inPath(X,Y), inPath(X1,Y), X <> X1. |  Check
:- node(X), not reached(X). |

reached(X) :- start(X). Auxiliary Predicate
reached(X) :- reached(Y), inPath(Y,X).

*  “Path version” of TSP.

:~ inPath(X,Y), arc(X,Y,C).    [C:] Optimize



Minimum Spanning Tree
Given a weighted graph by means of edge(Node1,Node2,Cost), and 

node(N),compute a tree that starts at a root node, spans that graph, 
and has minimum cost

%Guess the edges that are part of the tree:
inTree(X,Y) ∨ outTree(X,Y) :- edge(X,Y,C).       Guess

%Check that we are really dealing with a tree!
:- root(X), inTree(_,X). |
:- inTree(X,Y), inTree(X1,Y), X <> X1. |  
%and the tree is connected |  Check
:- node(X), not reached(X). |

%Minimize the cost of the tree
:~ inTree(X,Y), edge(X,Y,C).    [C:] Optimize

reached(X) :- root(X). Auxiliary Predicate
reached(X) :- reached(Y), inTree(Y,X).



Testing and Debugging with GCO

Develop DLP programs incrementally:
� Design the Guess module G first

� test that the answer sets of G (+the input facts) correctly define the 
search space

� Then the Check module C
� verify that the answer sets of G U C are the admissible problem 

solutions

� Finally the Optimize module O
� test that G U C U O generates the optimal solutions of the problem 

at hand.
Use small but meaningful problem test-instances!



DLV: 

The state-of-the-art implementation of DLP
http://www.dlvsystem.com

(manual and tutorial on the website)



DLV: a KR System based on DLP

� Advanced knowledge modelling features
� Extended DLP

� Declarative “Guess/Check/Optimize” Programming Paradigm 

� Front-ends for specific AI Applications  

� Solid Implementation
� Implementation of DDB optimization techniques

� Implementation of NMR optimization techniques

� Interfaced to Relational and Object-Oriented Databases



Applications

� The CMS project at CERN: An advanced deductive 
Database ApplicationCheck and Automatic Repair of 
Census Data

� Timetabling

� Education: Courses on Databases AI in European and 
American Universities

� Authorization Database Model

� “Implementation Engine” for KR purposes, 
experiments with new semantics and KR languages.



CERN DLV Example(1)

Projection of product data (assembly tree and part characteristics
provided by PDMS) onto matrix of detector readout channels

EDB: product data & part composition members (description of 
relative location of immediate constituent parts of a composite part)



CERN DLV Example(2)

� Depth of assembly trees: 5 to 15

� ∃ integrity constraints (assembly finished?, manually 
inserted data feasible?)

� 85*20 (1700) readout channels out of totally 80000.

The goal of this projection is to assign product data to 
particle detector readout channels, which will collect 
observation data that will be used for the diagnosis of the 
correct functioning of the particle detector.



Timetabling

Structural constraints give rise to integrity constraints.
Weak Constraints express desiderata.

The teacher of Geometry doesn’t like teaching in the
afternoon.
:~  timetable(Day,Hour,geometry), Hour >12. [1:1]

The teacher of  French doesn’t like teaching on Saturday.
:~  timetable(saturday,Hour,french). [1:1]



Conclusion

� Easy representation of hard problems

� Possibility to solve problems unsolvable by SAT 
Checker or by other LP System (e.g., subset-minimal 
diagnosis, planning under incomplete knowledge)

� Front-end for other non-monotonic formalisms

� Interface to relational and object-oriented databases

� Used by researchers around the world

� Fully operational prototype available from

http://www.dlvsystem.com/
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Exercises and DLV Lab



Homework (1)

Consider program

a :- b.

b.

and Interpretations: 

I1 = { a },  I2 = { b },  I3 = { a, b } 

which interpretations are models?

which interpretations are answer sets?



Homework (2)

Consider program

a :- b.

b :- not c.

and Interpretations: 

I1 = { a },  I2 = { c },  I3 = { a, b } 

which interpretations are models?

which interpretations are answer sets?



Homework (3)

Consider program

a :- b.

a v b.

and Interpretations: 

I1 = { a },  I2 = { b },  I3 = { a, b } 

which interpretations are models?

which interpretations are answer sets?



Homework (4)

Consider program

a :- b.

a v b.

:- not a.

what are the answer sets?



Homework (5)

Consider program

a :- b.

a v b.

:- a.

is there any answer set?



Homework (6)

Consider program

a :- b.

b :- a.

a v b.

and Interpretations: 

I1 = { a },  I2 = { b },  I3 = { a, b } 

which interpretations are models?

which interpretations are answer sets?



Homework (7)

Compute the ground instantiation of

p(X) :- q(X), not r(X).

q(a).

q(b).

r(a).

and determine the answer sets of the program. 



Answer to Homework (7)

Instantiation:

p(a) :- q(a), not r(a).

p(b) :- q(b), not r(b).

q(a).

q(b).

r(a).

Answer sets:  I = { p(b), q(a), q(b), r(a) }



Homework (8)

inPath(X,Y) ∨ outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

Transform the Hamiltonian Path program, to make sure
that the start arc is not reached again (i.e., is not the 
endpoint of some arc in the path).



Answer to Homework (8)

inPath(X,Y) ∨ outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

:- start(X), inPath(Y,X).



Homework (9)

inPath(X,Y) ∨ outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

Transform the Hamiltonian Path program, in a program for 
Hamiltonian Cycle (make sure that the start arc is reached 
again, i.e., it is the end point of some arc in the path).
- Use the program to get the “tour version” of TSP.



Answer to Homework (9)
(a safety problem)

WARNING:
:- start(X), not inPath(Y,X).
does not work.
It would require each node to be connected to the start!

Suppose that the graph has 3 nodes: a, b, c.
The above constraint then has 3 instances (disregarding 
those with start(b) or start(c)):

:- start(a), not inPath(b,a).
:- start(a), not inPath(c,a).
:- start(a), not inPath(a,a).



Answer to Homework (9)
(safety)

LESSON:To avoid any problem, always use safe negation!

p(X)     :- a(X,Y), not q(Y,Z).    (unsafe Z)
p(X,Y) :- not a(X).                     (unsafe X,Y)
p(X)     :- a(X,Y), not q(_).        (unsafe _)

DLP systems anyway require safety.

SAFETY: A rule R is safe if each variable appearing in R occurs 
also in a positive body literal of R.



Answer to Homework (9)
first solution

inPath(X,Y) ∨ outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(X).
reached(X) :- reached(Y), inPath(Y,X).

endPoint(X) :- inPath(_,X).
:- start(X), not endPoint(X).



Answer to Homework (9)
a better solution

inPath(X,Y) ∨ outPath(X,Y) :- arc(X,Y).

:- inPath(X,Y), inPath(X,Y1), Y <> Y1.
:- inPath(X,Y), inPath(X1,Y), X <> X1. 
:- node(X), not reached(X).

reached(X) :- start(Y), inPath(Y,X).
reached(X) :- reached(Y), inPath(Y,X).



Homework (10)
(Node Cover)

Design a DLP program to represent the following problem.

Given a graph <V,E> by means of edge(Node1,Node2), and
node(N), find a node cover, that is, a subset V' of V 
such that for each edge <u,v> in E at least one of u 
and v belongs to V'.



Answer to Homework (10)
(Node Cover)

%Guess a set of nodes

inCover(X) V outCover(X) :- node(X).

%Check that all arcs are covered.
:- edge(X,Y), not inCover(X), not inCover(Y) .



Homework (11)
(Minimum Node Cover)

Design a DLP program to represent the following problem.

Given a graph <V,E> by means of edge(Node1,Node2), and
node(N), find a minimum node cover, that is, a subset 
V' of V of minimum cardinalitysuch that for each 
edge <u,v> in E at least one of u and v belongs to 
V'.



Answer to Homework (11)
(Minimum Node Cover)

%Guess a set of nodes

inCover(X) V outCover(X) :- node(X).

%Check that all arcs are covered.
:- edge(X,Y), not inCover(X), not inCover(Y) .

% Prefer smaller covering
% Minimize the cardinality of the coverings
:~ inCover(X).



Running DLV
� Copy DLV to a dir which is in your  PATH
� Or make “alias dlv  DLV-DIR/dlv” in your .cshrc (or 

equivalent file).
� edit two files 3coland graph:
3col:   col(X,green) v col(X,blue) v col(X,red) :- node(X).

:- edge(X,Y), col(X,C), col(Y,C), X<>Y.
graph:node(a).   node(b).  node(c).   node(d).

edge(a,b).
edge(b,c).
edge(c,a).
edge(a,d).
edge(d,c).



Running DLV

> dlv 3col graph -filter=col -n=1

DLV [build DEV/Aug  1 2002   gcc 2.95.2 1999 1024 (release)]

{col(a,green), col(b,blue), col(c,red), col(d,blue)}

>


