
Magic-Sets for Datalog with Existential Quantifiers

Mario Alviano, Nicola Leone, Marco Manna?,
Giorgio Terracina, and Pierfrancesco Veltri

Department of Mathematics, University of Calabria, Italy
{alviano,leone,manna,terracina,veltri}@mat.unical.it

Abstract. Datalog∃ is the extension of Datalog allowing existentially quantified
variables in rule heads. This language is highly expressive and enables easy and
powerful knowledge-modelling, but the presence of existentially quantified vari-
ables makes reasoning over Datalog∃ undecidable in the general case. Restricted
classes of Datalog∃, such as Shy, have been proposed in the literature with the
aim of enabling powerful, yet decidable query answering on top of Datalog∃ pro-
grams. However, in order to make such languages attractive it is necessary to
guarantee good performance for query answering tasks. This paper works in this
direction: improving the performance of query answering on Datalog∃. To this
end, we design a rewriting method extending the well-known Magic-Sets tech-
nique to any Datalog∃ program. We demonstrate that our rewriting method pre-
serves query equivalence on Datalog∃, and can be safely applied to Shy programs.
We therefore incorporate the Magic-Sets method in DLV∃, a system supporting
Shy. Finally, we carry out an experiment assessing the positive impact of Magic-
Sets on DLV∃, and the effectiveness of the enhanced DLV∃ system compared to
a number of state-of-the-art systems for ontology-based query answering.

1 Introduction

Datalog is one of the best-known rule-based languages, and extensions of it are used
in a wide context of applications. Datalog is especially useful in various Artificial In-
telligence applications as it allows for effective encodings of incomplete knowledge.
However, in recent years an important shortcoming of Datalog-based languages became
evident, especially in the context of Semantic Web applications: The language does not
permit the generation and the reasoning about unnamed individuals in an obvious way.
In particular, it is weak in supporting many cases of existential quantification needed in
the field of ontology-based query answering (QA), which is becoming more and more
a challenging task [10,12,8,16] attracting also interest of commercial companies.

As an example, big companies such as Oracle are adding ontological reasoning
modules on top of their existing software. In this context, queries are not merely eval-
uated on an extensional relational database D, but over a logical theory combining D
with an ontological theory Σ. More specifically, Σ describes rules and constraints for
inferring intensional knowledge from the extensional data stored in D. Thus, for a con-
junctive query (CQ) q, it is not only checked whether D entails q, but rather whether
D ∪Σ does.
? Marco Manna’s work was supported by the European Commission through the European So-

cial Fund and by Calabria Region.

A key issue in ontology-based QA is the design of the language that is provided
for specifying the ontological theory Σ. In this regard, Datalog± [8], the novel fam-
ily of Datalog-based languages proposed for tractable QA over ontologies, is arousing
increasing interest. This family, generalizing well-known ontology specification lan-
guages, is mainly based on Datalog∃, the natural extension of Datalog [1] that allows
∃-quantified variables in rule heads. Unfortunately, a major challenge for Datalog∃ is
decidability. In fact, without any restriction, QA over Datalog∃ is not decidable; thus,
the identification of subclasses for which QA is decidable is desirable.

Different Datalog∃ fragments have been proposed in the literature, which essen-
tially rely on four main syntactic paradigms called guardedness [7], weak-acyclicity
[14], stickiness [9] and shyness [17]. The complexity of QA on these fragments, which
offer different levels of expressivity, ranges from AC0 to EXP. Hence, optimization tech-
niques are crucial to make QA effectively usable in real world scenarios, especially for
those fragments providing high degrees of expressiveness.

The contribution of this paper goes exactly in this direction. We first focus on opti-
mization strategies for improving QA tasks over decidable Datalog∃ fragments, and
in particular on the well-known Magic-Sets optimization. We then focus on Shy, a
Datalog∃ class based on shyness, enabling tractable QA, offering a good balance be-
tween expressivity and complexity, and suitable for an efficient implementation.

The original Magic-Sets technique was introduced for Datalog [4]. Many authors
have addressed the issue of extending Magic-Sets to broader languages, including non-
monotonic negation [13], disjunctive heads [15,2], and uninterpreted function symbols
[11,3]. In order to bring Magic-Sets to the more general framework of Datalog∃, two
main difficulties must be faced: the first is, obviously, the presence of existentially quan-
tified variables; the second regards the correctness proof of a Magic-Sets rewriting. In
fact, while a Datalog program can be associated with a universal model that comprises
finitely many atoms, the universal model of a Datalog∃ program comprises in general
infinitely many atoms. These difficulties are faced and solved in this paper, whose main
contributions are as follows:

– We design a Magic-Sets rewriting algorithm handling existential quantifiers, and
thus suitable for Datalog∃ programs in general.

– We demonstrate that our Magic-Sets algorithm preserves query equivalence for any
Datalog∃ program.

– We show how Magic-Sets can be safely applied to Shy programs.
– We implement the Magic-Sets strategy in DLV∃, a bottom-up evaluator of CQs

over Shy programs.
– We experiment on QA over a well-known benchmark ontology, named LUBM. The

results evidence the optimization potential provided by Magic-Sets and confirm the
effectiveness of DLV∃, which outperforms all compared systems in the benchmark.

2 Datalog∃

In this section we introduce Datalog∃ programs and CQs, and we equip such structures
with a formal semantics.

2.1 Preliminaries

The following notation will be used throughout the paper. We always denote by ∆C ,
∆N , ∆∀ and ∆∃, countably-infinite pairwise-disjoint domains of terms called con-
stants, nulls, universal variables and existential variables, respectively; by∆, the union
of these four domains; by t, a generic term; by c, d and e, constants; by ϕ, a null; by X

and Y, variables; by X and Y, sets of variables; by Π an alphabet of predicate symbols
each of which, say p, has a fixed nonnegative arity, denoted by arity(p); by a, b and c,
atoms being expressions of the form p(t1, . . . , tk), where p is a predicate symbol and
t1, . . . , tk is a tuple of terms (also denoted by t̄). Moreover, if the tuple of an atom con-
sists of only constants and nulls, then this atom is called ground; if T ⊆ ∆C ∪∆N , then
base(T) denotes the set of all ground atoms that can be formed with predicate symbols
in Π and terms from T ; if a is an atom, then pred(a) denotes the predicate symbol of
a; if ς is any formal structure containing atoms, then dom(ς) denotes all the terms from
∆C ∪∆N occurring in the atoms of ς .

A mapping is a function µ : ∆ → ∆ s.t. c ∈ ∆C implies µ(c) = c, and ϕ ∈ ∆N

implies µ(ϕ) ∈ ∆C∪∆N . Let T be a subset of∆. The application of µ to T , denoted by
µ(T), is the set {µ(t) | t ∈ T}. The restriction of µ to T , denoted by µ|T , is the mapping
µ′ s.t. µ′(t) = µ(t) for each t ∈ T , and µ′(t) = t for each t /∈ T . In this case, we also
say that µ is an extension of µ′, denoted by µ ⊇ µ′. For an atom a = p(t1, . . . , tk), we
denote by µ(a) the atom p(µ(t1), . . . , µ(tk)). For a formal structure ς containing atoms,
we denote by µ(ς) the structure obtained by replacing each atom a of ς with µ(a). The
composition of a mapping µ1 with a mapping µ2, denoted by µ2 ◦ µ1, is the mapping
associating each t ∈ ∆ to µ2(µ1(t)). Let ς1 and ς2 be two formal structures containing
atoms. A homomorphism from ς1 to ς2 is a mapping h s.t. h(ς1) is a substructure of ς2
(for example, if ς1 and ς2 are sets of atoms, h(ς1) ⊆ ς2). A substitution is a mapping σ
s.t. t ∈ ∆N implies σ(t) = t, and t ∈ ∆V implies σ(t) ∈ ∆C ∪∆N ∪ {t}.

2.2 Programs and Queries

A Datalog∃ rule r is a finite expression of the following form:
∀X∃Y atom[X′∪Y]← conj[X] (1)

where (i) X ⊆ ∆∀ and Y ⊆ ∆∃ (next called ∀-variables and ∃-variables, respectively);
(ii) X′ ⊆ X; (iii) atom[X′∪Y] stands for an atom containing only and all the variables
in X′ ∪Y; and (iv) conj[X] stands for a conjunction of zero or more atoms contain-
ing only and all the variables in X. Constants are also allowed in r. In the following,
head(r) denotes atom[X′∪Y], and body(r) the set of atoms in conj[X]. Universal quan-
tifiers are usually omitted to lighten the syntax, while existential quantifiers are omitted
only if Y is empty. In the second case, r coincides with a standard Datalog rule. If
body(r) = ∅, then r is usually referred to as a fact. In particular, r is called existential
or ground fact according to whether r contains some ∃-variable or not, respectively. A
Datalog∃ program P is a finite set of Datalog∃ rules. We denote by preds(P) ⊆ Π
the predicate symbols occurring in P , by data(P) all the atoms constituting the ground
facts of P , and by rules(P) all the rules of P being not ground facts. A predicate p ∈ Π
is called intentional if there is a rule r ∈ rules(P) s.t. p = pred(head(r)); otherwise,
p is called extensional. We denote by idb(P) and edb(P) the sets of the intentional and
extensional predicates occurring in P , respectively.

Example 1. The next rules belong to a Datalog∃ program hereafter called P-Jungle:

r1 : ∃Z pursues(Z,X) ← escapes(X)
r2 : hungry(Y) ← pursues(Y,X), fast(X)
r3 : pursues(X,Y) ← pursues(X,W), prey(Y)
r4 : afraid(X) ← pursues(Y,X), hungry(Y), strongerThan(Y,X).

This program describes a funny scenario where an escaping, yet fast animal X may in-
duce many other animals to be afraid. Data for P-Jungle could be escapes(gazelle),
fast(gazelle), prey(antelope), strongerThan(lion,antelope), and possi-
bly pursues(lion,gazelle). We will use P-Jungle as a running example. ut

Given a Datalog∃ program P , a conjunctive query (CQ) q over P is a first-order
expression of the form ∃Y conj[X∪Y], where X ⊆ ∆∀ are its free variables, Y ⊆ ∆∃,
and conj[X∪Y] is a conjunction containing only and all the variables in X ∪ Y and
possibly some constants. To highlight the free variables, we write q(X) instead of q.
Query q is called Boolean CQ (BCQ) if X = ∅. Moreover, q is called atomic if conj is
an atom. Finally, atoms(q) denotes the set of atoms in conj.

Example 2. Animals pursed by a lion and stronger than some other animal can be re-
trieved by means of a CQ ∃Y pursues(lion,X), strongerThan(X,Y). ut

2.3 Semantics and Query Answering

Given a set S of atoms and an atom a, we say S entails a (S |= a for short) if there
is a substitution σ s.t. σ(a) ∈ S. Let P ∈ Datalog∃. A set M ⊆ base(∆C ∪ ∆N)
is a model for P (M |= P) if M |= σ|X(head(r)) for each r ∈ P of the form (1)
and substitution σ s.t. σ(body(r)) ⊆ M . Let mods(P) denote the set of models of
P . Let M ∈ mods(P). A BCQ q is true w.r.t. M (M |= q) if there is a substitution
σ s.t. σ(atoms(q)) ⊆ M . Analogously, the answer of a CQ q(X) w.r.t. M is the set
ans(q,M) = {σ|X : σ is a substitution ∧ M |= σ|X(q)}. The answer of a CQ q(X)
w.r.t. a program P is the set ansP (q) = {σ : σ ∈ ans(q,M) ∀M ∈ mods(P)}. Note
that for a BCQ q either ansP (q) = {σ|∅} or ansP (q) = ∅; in the first case we say that
q is cautiously true w.r.t. P , denoted by P |= q.

Query answering (QA) is the problem of computing ansP (q), whereP is a Datalog∃

program and q a CQ. It is well-known that QA can be carried out by using a universal
model of P [14], that is, a model U of P s.t. for each M ∈ mods(P) there is a ho-
momorphism h satisfying h(U) ⊆ M . In this regard, given a universal model U of P ,
for each CQ q(X) and for each substitution σ s.t. σ(X) ⊆ ∆C , it has been shown that
σ ∈ ansP (q) iff σ ∈ ans(q, U) [14]. However, although each Datalog∃ program admits
a universal model, deciding whether a substitution belongs to ansP (q) is undecidable
in the general case [14]. Finally, we mention the CHASE as a well-known procedure for
constructing a universal model for a Datalog∃ program. (See Appendix A for details.)

3 Magic-Sets for Datalog∃

The original Magic-Sets technique was introduced for Datalog [4]. In order to bring
it to the more general framework of Datalog∃, we have to face two main difficulties.

The first is that originally the technique was defined to handle ∀-variables only. How
does the technique have to be extended to programs containing ∃-variables? The sec-
ond difficulty, which is eventually due to the first one, concerns how to establish the
correctness of an extension of Magic-Sets to Datalog∃. In fact, any Datalog program
is characterized by a unique universal model of finite size. In this case, the correctness
of Magic-Sets can be established by proving that the universal model of the rewritten
program (modulo auxiliary predicates) is a subset of the universal model of the orig-
inal program and contains all the answers for the input query. On the other hand, a
Datalog∃ program may have in general many universal models of infinite size. Due to
this difference, it is more difficult to prove the correctness of a Magic-Sets technique.

The difficulty associated with the presence of ∃-variables is circumvented by means
of the following observation: A hypothetical top-down evaluation of a query over a
Datalog∃ program would only consider the rules whose head atoms unify with the
(sub)queries. Therefore, the Magic-Sets algorithm has to skip those rules whose head
atoms have some ∃-variables in arguments that are bound from the (sub)queries. Con-
cerning the second difficulty, we prove the correctness of the new Magic-Sets technique
by considering all models of original and rewritten programs, showing that the same set
of substitution answers is determined for the input query.

3.1 Magic-Sets Algorithm

Magic-Sets stem from SLD-resolution, which roughly acts as follows: Each rule r s.t.
σ(head(r)) = σ′(q), where σ and σ′ are two substitutions, is considered in a first
step. Then, the atoms in σ(body(r)) are taken as subqueries, and the procedure is iter-
ated. During this process, if a (sub)query has some arguments bound to constant val-
ues, this information is used to limit the range of the corresponding variables in the
processed rules, thus obtaining more targeted subqueries when processing rule bod-
ies. Moreover, bodies are processed in a certain sequence, and processing a body atom
may bind some of its arguments for subsequently considered body atoms. The specific
propagation strategy adopted in a top-down evaluation scheme is called sideways infor-
mation passing strategy (SIPS). Roughly, a SIPS is a strict partial order over the atoms
of each rule which also specifies how the bindings originate and propagate [5].

In order to properly formalize our Magic-Sets algorithm, we first introduce adorn-
ments, a convenient way for representing binding information for intentional predicates.

Definition 1 (Adornments). Let p be a predicate of arity k. An adornment for p is
a string α = α1 · · ·αk defined over the alphabet {b, f }. The i-th argument of p is
considered bound if αi = b, or free if αi = f (i ∈ [1..k]).

Binding information can be propagated in rule bodies according to a SIPS.

Definition 2 (SIPS). Let r be a Datalog∃ rule and α an adornment for pred(head(r)).
A SIPS for r w.r.t.α is a pair (≺αr , fαr),where:≺αr is a strict partial order over atoms(r)
s.t. a ∈ body(r) implies head(r) ≺αr a; fαr is a function assigning to each atom
a ∈ atoms(r) the subset of the variables in a that are made bound after processing
a; fαr must guarantee that fαr (head(r)) contains only and all the variables of head(r)
corresponding to bound arguments according to α.

Algorithm 1: MS(q,P)
Input : an atomic query q = g(u1, . . . , uk) and a Datalog∃ program P
Output: an optimized Datalog∃ program

1 begin
2 α := α1 · · ·αk, where αi = b if ui ∈ ∆C , and αi = f otherwise (i ∈ [1..k]);
3 S := {〈g, α〉}; D := ∅; Rmgc := {mgc(q, α)← }; Rmod := ∅;
4 while S 6= ∅ do
5 〈p, α〉 := any element in S; S := S \ {〈p, α〉}; D := D ∪ {〈p, α〉};
6 foreach r ∈ rules(P) s.t. head(r) = p(t1, . . . , tn) and

ti ∈ ∆∃ implies αi = f (i ∈ [1..k]) do
// a := p(t1, . . . , tn)

7 Rmod := Rmod ∪ {head(r)← mgc(a, α) ∧ body(r)};
8 foreach q(s1, . . . , sm) ∈ body(r) s.t. q ∈ idb(P) do

// b := q(s1, . . . , sm)
9 B := {c ∈ body(r) | c ≺αr b};

10 β := β1 · · ·βm, where βi = b if si ∈ ∆C ∪ fαr (B), and
βi = f otherwise (i ∈ [1..k]);

11 Rmgc := Rmgc ∪ {mgc(b, β)← mgc(a, α) ∧B};
12 if 〈q, β〉 /∈ D then S := S ∪ {〈q, β〉};

13 return Rmgc ∪Rmod ∪ {a← | a ∈ data(P)};

The auxiliary atoms introduced by the algorithm are obtained as described below.

Definition 3 (Magic Atoms). Let a = p(t1, . . . , tk) be an atom and α be an adornment
for p. We denote by mgc(a, α) the magic atom mgc pα(t̄), where: t̄ contains all terms
in t1, . . . , tk corresponding to bound arguments according to α; and mgc pα is a new
predicate symbol (we assume that no standard predicate in P has the prefix “mgc ”).

We are now ready to describe the MS algorithm (Algorithm 1), associating each
atomic query q over a Datalog∃ program P with a rewritten and optimized program
MS(q,P). (More complex queries can be encoded by means of auxiliary rules.) The
algorithm uses two sets, S and D, to store pairs of predicates and adornments to be
propagated and already processed, respectively. Magic and modified rules are stored in
the setsRmgc andRmod , respectively. The algorithm starts by producing the adornment
associated with the query (line 1), which is paired with the query predicate and put into
S (line 2). Moreover, the algorithm stores a ground fact named query seed into Rmgc

(line 2). Sets D and Rmod are initially empty (line 2).
After that, the main loop of the algorithm is repeated until S is empty (lines 3–11).

More specifically, a pair 〈p, α〉 is moved from S to D (line 4), and each rule r s.t.
head(r) = a and pred(a) = p is considered (lines 5–11). Considered rules are con-
strained to comply with the binding information from α, that is, no existential variables
have to receive a binding during this process (line 5). The algorithm adds to Rmod a
rule named modified rule which is obtained from r by adding mgc(a, α) to its body.

Binding information from α are then passed to body atoms according to a specific
SIPS (lines 7–11). Specifically, for each body atom b = q(s̄), the algorithm determines

the set B of predecessor atoms in the SIPS (line 8), from which an adornment string β
for q is built (line 9).B and β are then used to generate a magic rule whose head atom is
mgc(b, β), and whose body comprises mgc(a, α) and atoms in B (line 10). Moreover,
the pair 〈q, β〉 is added to S unless it was already processed in a previous iteration (that
is, unless 〈q, β〉 ∈ D; line 11). Finally, the algorithm terminates returning the program
obtained by the union of Rmgc , Rmod and {a← | a ∈ data(P)} (line 12).

Example 3. Resuming program P-Jungle of Example 1, we now give an example of
the application of Algorithm 1. In particular, we consider SIPS s.t. atoms are totally
ordered from left-to-right and binding information is propagated whenever possible. In
this setting, Algorithm 1 run on query afraid(antelope) and P-Jungle yields the
following rewritten program:

mgc afraidb(antelope) ←
mgc pursuesfb(X) ← mgc afraidb(X)
mgc pursuesff ← mgc pursuesfb(Y)
mgc pursuesbf (Y) ← mgc hungryb(Y)
mgc hungryb(Y) ← mgc afraidb(X), pursues(Y,X)

∃Z pursues(Z,X) ← mgc pursuesfb(X), escapes(X)
∃Z pursues(Z,X) ← mgc pursuesff , escapes(X)
hungry(Y) ← mgc hungryb(Y), pursues(Y,X), fast(X)
pursues(X,Y) ← mgc pursuesfb(Y), pursues(X,W), prey(Y)
pursues(X,Y) ← mgc pursuesff , pursues(X,W), prey(Y)
pursues(X,Y) ← mgc pursuesbf (X), pursues(X,W), prey(Y)
afraid(X) ← mgc afraidb(X), pursues(Y,X), hungry(Y),

strongerThan(Y,X)

A detailed description is reported in Appendix B.1. ut

3.2 Query Equivalence Result

We start by establishing a relationship between the model of P and those of MS(q,P).
The relationship is given by means of the next definition.

Definition 4 (Magic Variant). Let I ⊆ base(∆C ∪ ∆N), and {vari(I)}i∈N be the
following sequence: var0(I) = I; for each i ≥ 0, vari+1(I) = vari(I) ∪ {a ∈ I |
∃α s.t. mgc(a, α) ∈ vari(I)} ∪ {mgc(a, α) | ∃r, σ s.t. r ∈ Rmgc ∧ σ(head(r)) =
mgc(a, α)∧σ(body(r)) ⊆ vari(I)}. The fixpoint of this sequence is denoted by var(I).

We point out that the magic variant of a set of atoms I comprises magic atoms and
a subset of I . Intuitively, these atoms are enough to achieve a model of MS(q,P) if I is
a model of P . This intuition is formalized below and proven in Appendix C.

Lemma 1. If M |= P , then var(M) |= MS(q, P).

The soundness of Algorithm 1 w.r.t. QA can be now established.

Theorem 1 (Soundness). If σ ∈ ans(q,MS(q, P)), then σ ∈ ansP (q).

Proof. Assume σ ∈ ans(q,MS(q, P)). LetM |= P . By Lemma 1, var(M) |= MS(q, P).
Since σ ∈ ans(q,MS(q, P)) by assumption, σ(q) ∈ var(M). Thus, σ(q) ∈M because
var(M) comprises magic atoms and a subset of M by construction. ut

To prove the completeness of Algorithm 1 w.r.t. QA we identify a set of atoms that
are not entailed by the rewritten program but not due to the presence of magic atoms.

Definition 5 (Killed Atoms). Let M |= MS(q, P). The set killed(M) is defined as
follows: {a ∈ base(∆) \M | either pred(a) ∈ edb(P), or ∃α s.t. mgc(a, α) ∈M}.

Since the falsity of killed atoms is not due to the Magic-Sets rewriting, one expects
that their falsity can also be assumed in the original program. This intuition is formal-
ized below and proven in Appendix C.

Lemma 2. If M |= MS(q, P), M ′ |= P and M ′ ⊇M , then M ′ \ killed(M) |= P .

We can finally prove the completeness of Algorithm 1 w.r.t. QA, which then estab-
lishes the correctness of Magic-Sets for queries over Datalog∃ programs.

Theorem 2 (Completeness). If σ ∈ ansP (q), then σ ∈ ans(q,MS(q, P)).

Proof. Assume σ ∈ ansP (q). Let M |= MS(q, P). Let M ′ |= P and be s.t. M ′ ⊇ M .
By Lemma 2, M ′ \ killed(M) |= P . Since σ ∈ ansP (q) by assumption, σ(q) ∈ M ′ \
killed(M). Note that all instances of the query which are not in M are contained in
killed(M) because the query seed belongs to M . Thus, σ(q) ∈M holds. ut

4 Magic-Sets for Shy Programs

Among various Datalog∃ subclasses making QA computable, we are going to focus on
Shy [17], an attractive Datalog∃ fragment which guarantees both easy recognizability
and efficient answering even to CQs. After recalling basic definitions and computational
results about Shy, we show how to guarantee shyness in the rewritten of a Shy program.

4.1 Shy Programs

Intuitively, the key idea behind Shy programs relays on the following shyness property:
During a chase execution on a Shy program P , nulls (propagated body-to-head in
ground rules) do not meet each other to join.

We now introduce the notion of null-set of a position in an atom. More precisely, ϕrX
denotes the “representative” null that can be introduced by the ∃-variable X occurring
in rule r. (If 〈r, X〉 6= 〈r′, X′〉, then ϕrX 6= ϕr

′

X′ .) Let P be a Datalog∃ program, a be
an atom, and X a variable occurring in a at position i. The null-set of position i in
a w.r.t. P , denoted by nullset(i,a), is inductively defined as follows: In case a is the
head of some rule r ∈ P , nullset(i,a) is the singleton {ϕrX} if X ∈ ∆∃; otherwise
(X ∈ ∆∀), nullset(i,a) is the intersection of every nullset(j,b) s.t. b ∈ body(r) and
X occurs at position j in b. In case a is not a head atom, nullset(i,a) is the union of
nullset(i, head(r)) for each r ∈ P s.t. pred(head(r)) = pred(a).

A representative null ϕ invades a variable X that occurs at position i in an atom a if
ϕ is contained in nullset(i,a). A variable X occurring in a conjunction conj is attacked
in conj by a null ϕ if each occurrence of X in conj is invaded by ϕ. A variable X is
protected in conj if it is attacked by no null.

Definition 6. Let Shy be the class of all Datalog∃ programs containing only shy rules,
where a rule r is called shy w.r.t. a program P if the following conditions are satisfied:

– If a variable X occurs in more than one body atom, then X is protected in body(r).
– If two distinct ∀-variables are not protected in body(r) but occur both in head(r)

and in two different body atoms, then they are not attacked by the same null. ut

According to Definition 6, program P-Jungle of Example 1 is Shy. Let a1, . . . ,a12
be the atoms of rules r1–r4 in left-to-right/top-to-bottom order, and nullset(1,a1) be
{ϕr1Z }. To show the shyness of P-Jungle, we first propagate ϕr1Z (head-to-body) to
nullset(1,a4), nullset(1,a7), and nullset(1,a10). Next, this singleton is propagated (body-
to-head) from a4, a7 and a3 to nullset(1,a3), nullset(1,a6) and nullset(1,a11), respec-
tively. Finally, we observe that rules r1–r3 are trivially shy, and that r4 also is because
variable Y is not invaded in a12 even if ϕr1Z invades Y both in a10 and a11.

Shy enjoys the following notable computational properties:

– Checking whether a program is Shy is doable in polynomial-time.
– Query answering over Shy is polynomial-time computable in data complexity.1

4.2 Preserving Shyness in the Magic-Sets Rewriting

In Section 3, the correctness of MS has been established for Datalog∃ programs in
general. Our goal now is to preserve the desirable shyness property in the rewritten of
a Shy program. In fact, shyness is not preserved by MS per sé. Resuming Example
3, MS run on query afraid(antelope) and program P-Jungle may produce from
r4 a rule mgc hungryb(Y) ← mgc afraidb(X), pursues(Y,X), which assumes
hungry(ϕ) relevant whenever some pursues(ϕ,X) is derived, for any ϕ ∈ ∆N .
However, shyness guarantees that any extension of this substitution for r4 is actually
annihilated by strongerThan(Y,X), which thus enforces protection on Y. Unfortu-
nately, SIPS cannot represent this kind of information in general, and thus MS may yield
a non-shy program. Actually, the rewritten program in Example 3 is not shy because it
contains rule hungry(Y) ← mgc hungryb(Y), pursues(Y,X), fast(X).

The problem described above originates by the inability to represent in SIPS that
no join on nulls is required to evaluate Shy programs. We thus explicitly encode this
information in rules by means of the following transformation strategy: Let r be a rule
of the form (1) in a program P , and #dom be an auxiliary predicate not occurring in
P . We denote by r? the rule obtained from r by adding a body atom #dom(X) for each
protected variable X in body(r). Moreover, we denote by P ? the program comprising
each rule r? s.t. r ∈ P , and each fact #dom(c)← s.t. c ∈ dom(P). (Note that the
introduction of these facts is not really required because #dom can be treated as a built-
in predicate, thus introducing no computational overhead.)

1 In this setting, data(P) are the only input while q and rules(P) are considered fixed.

Proposition 1. If P is Shy, then P ? is shy as well and mods(P) = mods(P ?).

Now, for an atomic query q over a Shy program P , in order to preserve shyness, we
apply Algorithm 1 to P ? and force SIPS to comply with the following restriction: Let
r ∈ P ? and α be an adornment. For each a,b ∈ body(r) s.t. a ≺αr b, and for each
variable X occurring in both a and b, SIPS (≺αr , fαr) is s.t. a ≺αr #dom(X) ≺αr b. (An
example is reported in Appendix B.2.)

Theorem 3. Let q be an atomic query. If P is Shy, then MS(q, P ?) is Shy.

Proof. All arguments of magic predicates have empty null-sets. Indeed, each variable in
the head of a magic rule r either occurs in the unique magic atom of body(r), or appears
as the argument of a #dom atom. Consequently, all rules in Rmgc are shy. Moreover,
each rule in Rmod is obtained from a rule of P ? by adding a magic atom to its body.
No attack can be introduced in this way because arguments of magic atoms have empty
null-sets. Thus, since the original rule is shy, the modified rule is also shy. ut

In order to handle CQs of the form ∃Y conj[X∪Y], we first introduce a rule rq
of the form q(X)← conj. We then compute P ′ = MS(q(X), (P ∪ {rq})?) further
restricting the SIPS for rq to not propagate bindings via attacked variables, that is, to be
s.t. Z ∈ fαrq (conj) implies that Z is protected in conj (where α is the adornment for q).
After that, we remove from P ′ the rule associated with the query, thus obtaining a Shy
program P ′′. Finally, we evaluate the original query ∃Y conj[X∪Y] on program P ′′.

5 Experimental Results and Discussion

We incorporated Magic-Sets in DLV∃ [17], a system supporting QA over Shy. Empir-
ical evidence of the effectiveness of the implemented system is provided by means of
an experiment on the well-known benchmark suite LUBM (see http://swat.cse.

Table 1. Query evaluation time (seconds) of DLV∃ and improvements (IMP) of Magic-Sets

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14

lubm-10
DLV∃ 3.40 3.21 0.93 1.37 5.73 2.29 5.12 3.97 4.83 3.53 0.33 0.86 5.26 1.88
DLV∃+MS 1.83 1.95 0.63 0.39 1.20 0.48 2.95 1.08 3.45 2.54 0.08 0.85 0.76 1.88
IMP 46% 39% 32% 72% 79% 79% 42% 73% 29% 28% 76% 1% 86% 0%

lubm-30
DLV∃ 11.90 11.49 2.09 4.40 18.42 8.07 18.02 13.53 15.87 12.42 1.13 2.93 18.95 6.41
DLV∃+MS 6.20 6.28 1.44 1.28 3.91 1.67 9.85 3.11 11.82 7.95 0.24 2.85 2.42 6.23
IMP 48% 45% 31% 71% 79% 79% 45% 77% 26% 36% 79% 3% 87% 3%

lubm-50
DLV∃ 21.15 19.05 3.72 7.71 31.80 14.46 31.47 23.63 28.96 21.80 1.99 5.48 32.50 11.52
DLV∃+MS 10.86 11.39 2.42 2.23 6.36 3.03 16.32 5.23 20.30 14.10 0.39 5.32 4.13 11.49
IMP 49% 40% 35% 71% 80% 79% 48% 78% 30% 35% 80% 3% 87% 0%

lehigh.edu/projects/lubm/). It refers to a university domain and includes a
synthetic data generator, which we used to generate three increasing data sets, namely
lubm-10, lubm-30 and lubm-50. LUBM incorporates a set of 14 queries referred to
as q1–q14, where q2, q6, q9 and q14 contain no constants. Tests have been carried out on
an Intel Xeon X3430, 2.4 GHz, with 4 Gb Ram, running Linux Operating System. For
each query, we allowed 7200 seconds (two hours) or running time and 2 Gb of memory.

We first evaluated the impact of Magic-Sets on DLV∃. Specifically, we measured the
time taken by DLV∃ to answer the 14 LUBM queries with and without the application
of Magic-Sets. Results are reported in Table 1, where times do not include data parsing
and loading as they are not affected by Magic-Sets. On the considered queries, Magic-
Sets reduce running time of 50% in average, with a peak of 87% on q13. If only queries
with no constants are considered, the average improvement of Magic-Sets is 37%, while
the average improvement rises up to 55% for queries with at least one constant. We also
point out that the average improvement provided by Magic-Sets is always greater than
25% if q12 and q14 are not considered. Regarding these two queries, Magic-Sets do not
provide any improvement because the whole data sets are relevant for their evaluation.

Next, we compared DLV∃ enhanced by Magic-Sets with three state-of-the-art rea-
soners, namely Pellet [18], OWLIM-SE [6] and OWLIM-Lite [6]. Results are reported
in Table 2, where times include the total time required for query answering. We mea-
sured the total time, including data parsing and loading, because ontology reasoning
is usually performed in contexts where data and knowledge rapidly vary, even within
hours. DLV∃ significantly outperforms all other systems in all tested queries and data
sets. Comparing the other systems, OWLIM-Lite is in general faster than Pellet and
OWLIM-SE. Pellet is faster than OWLIM-SE on lubm-10, but it answered no tested
queries in the allotted time on lubm-30 and lubm-50.

Table 2. Systems comparison: running time (sec.), solved queries (#s) and average time (G.Avg)

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 #s G.Avg

lubm-10
DLV∃ 5 4 2 4 6 1 6 4 8 5 <1 1 6 2 14 2.87
Pellet 82 84 84 82 80 88 81 89 95 82 82 89 82 84 14 84.48
OWLIM-Lite 33 – 33 33 33 33 4909 70 – 33 33 33 33 33 12 53.31
OWLIM-SE 105 105 105 105 105 105 105 106 106 105 105 105 105 105 14 105.14

lubm-30
DLV∃ 16 13 7 14 21 3 21 12 25 18 <1 5 23 8 14 9.70
Pellet – – – – – – – – – – – – – – 0 –
OWLIM-Lite 107 – 107 106 107 106 – 528 – 107 106 106 107 106 11 123.18
OWLIM-SE 323 328 323 323 323 323 323 323 326 323 323 323 323 323 14 323.57

lubm-50
DLV∃ 27 23 12 23 35 6 34 22 42 31 <1 9 33 14 14 16.67
Pellet – – – – – – – – – – – – – – 0 –
OWLIM-Lite 188 – 190 187 189 188 – 1272 – 189 187 187 189 187 11 223.79
OWLIM-SE 536 547 536 536 536 537 536 536 542 536 536 536 536 537 14 537.35

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases: The Logical
Level. Addison-Wesley Longman Publishing Co., Inc., 1995.

2. Mario Alviano, Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic sets for disjunc-
tive datalog programs. Artificial Intelligence. Elsevier. To appear.

3. Mario Alviano, Wolfgang Faber, and Nicola Leone. Disjunctive ASP with functions: De-
cidable queries and effective computation. Theory and Practice of Logic Programming.
Cambridge University Press, 10(4–6):497–512, July 2010.

4. François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic Sets and
Other Strange Ways to Implement Logic Programs. In Proc. Int. Symposium on Principles
of Database Systems, pages 1–16, 1986.

5. Catriel Beeri and Raghu Ramakrishnan. On the power of magic. 10(1–4):255–259, 1991.
6. Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev, and Rus-

lan Velkov. OWLIM: A family of scalable semantic repositories. Semant. Web, 2:33–42,
2011.

7. Andrea Calı̀, Georg Gottlob, and Michael Kifer. Taming the Infinite Chase: Query Answering
under Expressive Relational Constraints. In Proc. of the 11th KR Int. Conf., pages 70–
80, 2008. Revised version: http://dbai.tuwien.ac.at/staff/gottlob/CGK.
pdf.

8. Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz. A general datalog-based framework
for tractable query answering over ontologies. In Proc. of the 28th PODS Symp., pages
77–86, 2009.

9. Andrea Calı̀, Georg Gottlob, and Andreas Pieris. Advanced Processing for Ontological
Queries. PVLDB, 3(1):554–565, 2010.

10. Andrea Calı̀, Georg Gottlob, and Andreas Pieris. New Expressive Languages for Ontological
Query Answering. In Proc. of the 25th AAAI Conf. on AI, pages 1541–1546, 2011.

11. Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. Magic Sets
for the Bottom-Up Evaluation of Finitely Recursive Programs. In Esra Erdem, Fangzhen
Lin, and Torsten Schaub, editors, Logic Programming and Nonmonotonic Reasoning —
10th International Conference (LPNMR 2009), volume 5753, pages 71–86. Springer Ver-
lag, September 2009.

12. Diego Calvanese, Giuseppe Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo
Rosati. Tractable Reasoning and Efficient Query Answering in Description Logics: The
DL-Lite Family. J. Autom. Reason., 39:385–429, 2007.

13. Wolfgang Faber, Gianluigi Greco, and Nicola Leone. Magic Sets and their Application to
Data Integration. Journal of Computer and System Sciences, 73(4):584–609, 2007.

14. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: se-
mantics and query answering. TCS, 336(1):89–124, 2005.

15. Sergio Greco. Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. 15(2):368–385, March/April 2003.

16. Ilianna Kollia, Birte Glimm, and Ian Horrocks. SPARQL Query Answering over OWL On-
tologies. In Proc. of the 24th DL Int. Workshop, volume 6643 of LNCS, pages 382–396.
Springer, 2011.

17. Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. Efficiently Com-
putable Datalog∃ Programs. In Proc. of the 13th KR Int. Conf., page Forthcoming, 2012.

18. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pel-
let: A practical OWL-DL reasoner. Web Semant., 5(2):51–53, 2007.

A The chase for Datalog∃

Given a rule r of the form (1) and a set C of atoms, a firing substitution σ for r w.r.t. C
is a substitution σ on X s.t. σ(body(r)) ⊆ C. Next, given a firing substitution σ for r
w.r.t. C, the fire of r on C due to σ infers σ̂(head(r)), where σ̂ is an extension of σ on
Y ∪X associating each ∃-variable in Y to a different null.

Procedure 1 illustrates the overall restricted chase procedure. Importantly, we as-
sume that different fires (on the same or different rules) always introduce different
“fresh” nulls. The procedure consists of an exhaustive series of fires in a breadth-first
(level-saturating) fashion, which leads as result to a (possibly infinite) chase(P).

Procedure 1: CHASE(P)

Input : Datalog∃ program P
Output: Universal Model chase(P)

1 C := data(P);
2 NewAtoms := ∅;
3 foreach r ∈ P do
4 foreach firing substitution σ for r w.r.t. C do
5 if (C ∪ NewAtoms) 6|= σ(head(r)) then
6 add(σ̂(head(r)),NewAtoms);

7 if NewAtoms 6= ∅ then
8 C := C ∪ NewAtoms;
9 go to step 2;

10 return C;

B Magic-Sets Examples

In this section we first provide a detailed description of the application of Algorithm 1 to
a query afraid(antelope) for program P-Jungle reported in Example 1. We assume
that SIPS are s.t. atoms are totally ordered from left to right, and binding information
are propagated whenever possible. Finally, we show how shyness can be preserved in
the rewritten program.

B.1 The Magic-Sets Rewritten of a Datalog∃ Program

Algorithm 1 starts by producing the adornment b associated with the query. Sets S and
Rmgc initially contain 〈afraid, α〉 and mgc afraidb(antelope) ← , respectively,
whileD andRmod are empty. MS then enters its main loop. Pair 〈afraid, α〉 is moved
from S to D, and rule r4 is considered. The following modified and magic rules are
produced:

afraid(X) ← mgc afraidb(X), pursues(Y,X), hungry(Y),
strongerThan(Y,X)

mgc pursuesfb(X) ← mgc afraidb(X)
mgc hungryb(Y) ← mgc afraidb(X), pursues(Y,X)

and at the same time 〈pursues, fb〉 and 〈hungry, b〉 are added to S. After that, an
element of S, say 〈pursues, fb〉, is moved to D, and rules r1 and r3 are considered.
The following rules are produced:

∃Z pursues(Z,X) ← mgc pursuesfb(X), escapes(X)
pursues(X,Y) ← mgc pursuesfb(Y), pursues(X,W), prey(Y)
mgc pursuesff ← mgc pursuesfb(Y)

and 〈pursues,ff 〉 is added to S. Then, an element of S, say 〈hungry, b〉, is moved to
D, and rule r2 is considered. The following rules are produced:

hungry(Y) ← mgc hungryb(Y), pursues(Y,X), fast(X)
mgc pursuesbf (Y) ← mgc hungryb(Y)

and 〈pursues, bf 〉 is added to S. The algorithm then move an element of S, say
〈pursues,ff 〉, to D, and considers rules r1 and r3, from which it proceduces the fol-
lowing rules:

∃Z pursues(Z,X) ← mgc pursuesff , escapes(X)
pursues(X,Y) ← mgc pursuesff , pursues(X,W), prey(Y)
mgc pursuesff ← mgc pursuesff .

In this case, no new pair is introduced in S. The last element of S, 〈pursues, bf 〉, is
then moved toD, and rule r3 is considered. The following modified rules are produced:

pursues(X,Y) ← mgc pursuesbf (X), pursues(X,W), prey(Y)
mgc pursuesbf (X) ← mgc pursuesbf (X)

No pair is added to S and thus the algorithm terminates. Note that for 〈pursues, bf 〉
the algorithm does not consider rule r1 as the first argument of pursues in head(r1) is
existentially quantified. To sum up, the complete rewritten program is the following:

mgc afraidb(antelope) ←
mgc pursuesfb(X) ← mgc afraidb(X)
mgc pursuesff ← mgc pursuesfb(Y)
mgc pursuesbf (Y) ← mgc hungryb(Y)
mgc hungryb(Y) ← mgc afraidb(X), pursues(Y,X)

∃Z pursues(Z,X) ← mgc pursuesfb(X), escapes(X)
∃Z pursues(Z,X) ← mgc pursuesff , escapes(X)
hungry(Y) ← mgc hungryb(Y), pursues(Y,X), fast(X)
pursues(X,Y) ← mgc pursuesfb(Y), pursues(X,W), prey(Y)
pursues(X,Y) ← mgc pursuesff , pursues(X,W), prey(Y)
pursues(X,Y) ← mgc pursuesbf (X), pursues(X,W), prey(Y)
afraid(X) ← mgc afraidb(X), pursues(Y,X), hungry(Y),

strongerThan(Y,X)

(Always satisfied rules have been omitted).

B.2 Preserving Shyness in the Magic-Sets Rewritten

Since program P-Jungle is Shy, we can first introduce program P-Jungle?:

r?1 : ∃Z pursues(Z,X) ← escapes(X), #dom(X)
r?2 : hungry(Y) ← pursues(Y,X), #dom(X), fast(X)
r?3 : pursues(X,Y) ← pursues(X,W), #dom(W), prey(Y), #dom(Y)
r?4 : afraid(X) ← pursues(Y,X), #dom(Y), hungry(Y), #dom(X),

strongerThan(Y,X)

and then apply Algorithm 1, which thus yields the following Shy program:

mgc afraidb(antelope) ←
mgc pursuesfb(X) ← mgc afraidb(X)
mgc pursuesff ← mgc pursuesfb(Y)
mgc pursuesbf (Y) ← mgc hungryb(Y)
mgc hungryb(Y) ← mgc afraidb(X), pursues(Y,X), #dom(Y)

∃Z pursues(Z,X) ← mgc pursuesfb(X), escapes(X), #dom(X)
∃Z pursues(Z,X) ← mgc pursuesff , escapes(X), #dom(X)
hungry(Y) ← mgc hungryb(Y), pursues(Y,X), #dom(X), fast(X)
pursues(X,Y) ← mgc pursuesfb(Y), pursues(X,W), #dom(W),

prey(Y), #dom(Y)
pursues(X,Y) ← mgc pursuesff , pursues(X,W), #dom(W),

prey(Y), #dom(Y)
pursues(X,Y) ← mgc pursuesbf (X), pursues(X,W), #dom(W),

prey(Y), #dom(Y)
afraid(X) ← mgc afraidb(X), pursues(Y,X), #dom(Y),

hungry(Y), #dom(X), strongerThan(Y,X).

C Proofs

Proofs that have been omitted in Section 3.2 are reported below.

Proof (Proof of Lemma 1). Assume M |= P . Let r ∈ MS(q, P) be of the form
(1) and σ be a substitution s.t. σ(body(r)) ⊆ var(M). We have to show var(M) |=
σ|X(head(r)). If r ∈ Rmgc , then σ(head(r)) ∈ var(M) by construction of var(M),
and so var(M) |= σ|X(head(r)) holds. Otherwise, r ∈ Rmod . Consider the rule
r′ ∈ P from which r has been obtained (line 7 of Algorithm 1). Note that r =
head(r′)←mgc(head(r), α)∧body(r′), for some adornmentα. Therefore, σ(body(r′)) ⊆
M , which combined with M |= P gives M |= σ|X(head(r)), i.e., there is a substitu-
tion σ′ s.t. σ′ ◦ σ|X(head(r)) ∈M . Since mgc(head(r), α) ∈ var(M) by assumption,
σ′ ◦ σ|X(head(r)) ∈ var(M) by Definition 4, and so var(M) |= σ|X(head(r)) holds
also in this case.

Proof (Proof of Lemma 2). In order to show that M ′ \ killed(M) |= P , we have to
consider each rule r ∈ P of the form (1) and each substitution σ s.t. σ(body(r)) ⊆
M ′\killed(M). Our aim is thus to showM ′\killed(M) |= a, where a = σ|X(head(r)).
Since σ(body(r)) ⊆ M ′ \ killed(M) ⊆ M ′ and M ′ |= P , we have M ′ |= a. Assume

by contradiction that for each σ′ s.t. σ′(a) ∈ M ′, we have σ′(a) ∈ killed(M). Thus,
σ′(a) /∈ M and mgc(σ′(a), α) ∈ M (for some adornment α). In this case we consider
the rule r′ ∈ MS(q, P) s.t. r′ = head(r)← mgc(head(r), α) ∧ body(r). Since M |=
MS(q, P), mgc(a, α) ∈ M and σ′(a) /∈ M (for each σ′), we have σ(body(r)) 6⊆ M .
Let b ∈ body(r) be s.t. σ(b) /∈ M and σ(B) ⊆ M , where B = {c ∈ body(r) |
c ≺αr b}. Since MS(q,P) contains a magic rule mgc(b, β)← mgc(a, α) ∧ B (line 11
of Algorithm 1), we can conclude that σ(b) belongs to killed(M), which contradicts
the original assumption σ(body(r)) ⊆M ′ \ killed(M). We can thus conclude that there
is σ′ s.t. σ′(a) ∈ M ′ and σ′(a) /∈ killed(M), from which we immediately obtain
M ′ \ killed(M) |= a. ut

