
A Domain Meta-wrapper Using Seeds for
Intelligent Author List Extraction in the

Domain of Scholarly Articles

Francesco Cauteruccio and Giovambattista Ianni

Dipartimento di Matematica e Informatica,
Università della Calabria,

I87036 - Rende (CS) - Italy

Abstract. In this paper we investigate about automated extraction of
author lists in the domain of scientific digital libraries. It is given a list of
known “seed” authors and we aim to extract complete lists of co-authors
from Web pages in arbitrary format. We adopt a methodology embedding
domain knowledge in a unique “meta-wrapper”, not requiring training,
with negligible maintenance costs and based on the combination of sev-
eral extraction techniques. Such methods are applied at the structural
level, at the character level and at the annotation level. We describe the
methodology, illustrate our tool, compare with known approaches and
measure the accuracy of our techniques with proper experiments.

1 Introduction and Motivation

The world research community has nowadays great interest towards numerically
estimating the impact of whole institutions, research authors and individual pa-
pers thereof. Digital libraries specialized in archiving scholarly data play a sig-
nificant role in many national processes of evaluation of research quality [18, 23,
20] and, in order to ease this process, involving also quantitative analysis, many
search engines for scholar literature introduced bibliometric tools in their online
interfaces [25, 26, 22, 21]. Also, this stimulated the recent focus towards extract-
ing structured and semi-structured information from scholar digital libraries. For
instance, there are many systems which perform automated bibliometrics esti-
mates computed on top of the information provided by the Google Scholar search
engine [1, 2, 24, 19] and this information is used daily by evaluators, experts and
researchers worldwide.

The Google Scholar portal, despite its inaccuracies and vulnerabilities to
spam [3], is renowned for its recall. Its service offers neither an API nor any au-
tomated data extraction means, however: specialized wrapping techniques for
extracting information are thus necessary. Also, the available information is
incomplete: for instance, author lists are partial (see Fig. 1). Incomplete lists
prevent an accurate estimate of bibliometric indices which take into account
normalizations based on the number of co-authors of a given paper, such as

2

Fig. 1. An item from a Google Scholar output page

the multi-authored h-index [4]. However, this category of metrics is required by
communities which tend to extend authorship to thousands of researchers1.

Our Scholar H-Index Calculator (SHI in the following, [24]), allows users to
interact using their browser with the Google Scholar web site and result pages are
transparently enriched with bibliometrics information related to the displayed
page hits, starting from the well-known h-index [7], to more specialized ones.
The tool includes many specialized features for advanced bibliometrics analysis,
including the possibility of defining custom formulas and the recently introduced
capability to refine incomplete author lists, which is the subject of this paper. The
problem of reconstructing full author lists can be solved by visiting web pages
containing paper descriptions linked by Google Scholar: these description pages
normally contain detailed author lists, but are in arbitrary HTML format, whose
structure depends on the digital library the paper at hand has been indexed from
(see Figure 2). This makes the issue of extracting complete author lists non-
trivial and connected to the more general issue of reconstructing lists of similar
items from documents in arbitrary format [8]. In order to face the above issue,
we developed a sub-module of our tool, implementing what we called TPI-S
techniques (Tree Pattern Induction with Seeds). The contributions of this paper
are the following:

I we suggest a “meta-wrapper” approach aimed at completing partial infor-
mation from scholar digital libraries. To this end we present an ensemble
of unsupervised, domain-oriented information extraction techniques called
TPI-S (Tree Pattern Induction with Seeds) targeted at reconstructing full
author lists appearing in arbitrary paper description pages. These techniques
need only a small amount of input information (seed data, i.e., incomplete
author lists), do not require user interaction nor preliminary bootstrapping
and are independent from the page structure of specific digital libraries.
TPI-S work:

1. at the structural level, by using a method called XPath Resolution
(XPR), in which proper XPath expressions are automatically generated
in order to reconstruct author lists;

1 An analysis of the impact of multi-authorship in in the Physics field is re-
ported in [6]. As an example, see the complete author list of [5] available at
http://iopscience.iop.org/1748-0221/3/08/S08003.

3

2. at the character level, by using a method called Text Node Resolution
(TNR), in which, whenever author lists are detected to be within text
content, appropriate regular expressions are generated;

I the ability to automatically reconstruct full author lists on top of a scholarly
digital library with large recall, enables the possibility to perform accurate
measurement of bibliometric impact indices, over a large corpus of indexed
data, even when such measures depend on the number of co-authors and
considerably reducing the burden of manual assessment;

I TPI-S techniques have been implemented as part of our bibliometric analysis
tool; they are available to the end user and/or can be also exploited for the
automated analysis of the scientific production of large sets of researchers;
the accuracy of the approach is proven with appropriate experiments, show-
ing that this type of analysis is feasible in practice, over very large corpuses
of authors/documents.

Note that other approaches could be applied to the context at hand, like
designing/training and maintaining a large collection of ad hoc wrappers. Such
collection could complete information by accessing a few known online scholarly
digital libraries. None of these libraries has however coverage comparable with
Google Scholar at the moment of writing: we thus opted for designing a “meta-
wrapper” which embeds domain oriented knowledge (like, generic knowledge
about how author lists are usually encoded and how they appear within markup,
etc.) and that is not tailored at specific digital libraries. The benefits of taking
this approach are many and can be generalized to domains other than the one
at hand:

1. Information is extracted at run-time, by generating on-the-fly a proper XPath
or a regular expression working on the specific document at hand;

2. It is not necessary to take the burden of designing a battery of information
extraction wrappers, nor it is necessary to allocate resources for training
wrappers over sample instances at design-time;

3. When a new digital library enters the collection of interest, or it changes
its HTML shape, it is not necessary to update the TPI-S module, nor it is
necessary to undergo a new training stage at design time;

The structure of the paper is as follows: in the next Section we overview the
problem we are addressing. Then we describe in apposite sections our extrac-
tion techniques and we discuss related work. Eventually we report about our
evaluation and draw conclusions.

2 The TPI-S Methodology

We assume to work with strings from a fixed alphabet Σ. A document D is
an ordered tree with fixed root r, for which each node (also called element) is
a string s ∈ Σ, with attribute names and values (k1, v1), . . . , (km, vm) and a
ordered list of subnodes n1, . . . , nj(m, j ≥ 0). This formal definition mimicks

4

actual DOM models: we assume nodes containing text (textual nodes) are part
of D as well as tag nodes (i.e., elements associated to an allowed HTML tag).
Whenever we refer to the textual content of a node n ∈ D, we intend the string
obtained by concatenating all the textual sub-nodes of n ordered by means of a
leftward depth-first visit of the subtree rooted at n. In the following we assume
we are given a document D, a seed list of strings L and a hidden list L∗ ⊇ L. L∗

and L are connected by some semantic relationship, which is usually defined in a
informal way only (e.g., lists of recipes’ ingredients, etc.). In our setting, we look
for lists of co-authors of scientific articles. In general, hidden lists are encoded
within documents according to two main categories: either i) elements of L∗

appear as individual nodes in a DOM structure (i.e., a HTML table, a list, etc.),
or ii) L∗ appears as encoded within the same textual node (e.g., a textarea, the
text content of a single node, etc.). Accordingly, our approach combines
two techniques: (i) XPath Resolution (XPR), in which we aim at reconstructing
a XPath expression which captures all and only the elements of L∗; (ii) Text
Node Resolution (TNR), in which L∗ is assumed to be encoded within a unique
textual element of D, thus requiring to work at the character-level.

2.1 XPath Resolution

The XPR method aims at constructing a XPath expression E which should
capture L∗ over D. We argue that L∗ is encoded in D respecting some structural
uniformity. In particular, one can observe that usually i) lists of co-authors can
be found in the textual content of a group of nodes each having the same distance
from a common ancestor node, called Lowest Common Ancestor (LCA); and ii)
among the sub-nodes of the LCA, those having the same level depth of seeds
and correspond on a subset of their attributes values, usually contain remaining
hidden authors names.

For simplicity, we assume |L| = 2, i.e., L = {l1, l2}. As a background do-
main information, we assume seeds are given in the same sequence as they
should appear in D and that a single seed is in the format “ABC LastName1 . . .
LastNameN”, as it is the case when partial information is provided from Google
Scholar output. For instance, we can have l1 = “AM Turing” and l2 =“J von
Neumann”. Given a seed string a, let fname(a) and lname(a) be respectively the
initials of first names of a and its last name(s). In order to match occurrences of
seeds within D, we take into account the fact that author name encodings might
differ in how first names are presented (e.g., with initials only, with some of the
first names only, etc.), while last names have usually a fixed appearance.

The XPR method is based on enumerating a set of XPath candidate expres-
sions. Let L1 and L2 be the lists of nodes of D in which, respectively, lname(l1)
and lname(l2) are contained in some text sub-node. Algorithm 1 (computePath)
takes in input D and a couple of candidate elements e1 ∈ L1 and e2 ∈ L2. When
it succeeds, computePath outputs a couple (p,R) where p is a candidate XPath
expression and R is a candidate value for L∗ (a list of textual values, obtained ap-
plying p to D). The outcome of the XPR method is a XPath expression pmax for
which the condition score(pmax) = maxe1∈L1

e2∈L2
score(computePath(D, e1, e2)) = 1

5

Input : document D, elements e1, e2 ∈ D
Output: A string path identifying a XPath expression and the result set of path when

applied to D

route ← [];
t1 ← e1;
t2 ← e2;
balanced ← true;
while t1 6= t2 and balanced do

push(route, t1);
if hasFather(t1) and hasFather(t2) then

t1 ← father(t1);
t2 ← father(t2);

else
balanced ← false;

end

end
if balanced then

push(route, t1);
head ← path from fixed root r to t1;
while x← pop(route) do

append(path, nodeToXPath(x));
end
return (head · path, xpath(head · path));

else
return null;

end

Algorithm 1: computePath

holds. The function score assigns a value w to a couple (p,R), returned by Algo-
rithm 1, according to the fraction of seeds appearing in R. We set our threshold
to 1 since we have found that XPath expressions not capturing all the seeds were
of very low quality and thus worth discarding. Note that elements of R are com-
pared with seeds only with respect to last names, after eliminating uppercases
and after flattening accented letters.

In detail, computePath makes an upward traversal of D starting from e1

and e2: if e1 and e2 are at the same depth (i.e., they are “balanced”) then we
find their LCA, and we build a proper XPath expression p aimed at following
a path which traverses the LCA and then captures neighbors at the same level
and with similar attribute values of e1 and e2. The parts of p which describe the
subtree below LCA are constructed with limited predicate filtering. For instance,
id attribute values are usually different from an hidden element to another and
thus excluded from filtering conditions, while title, class and name values can
be used for filtering. The head sub-path is instead built using XPath index
predicates and a stricter attribute filtering, in order to better tailor a unique
path from the document root to the LCA of e1 and e2.

An example for XPR. An instance example is shown in Figure 2, which de-
picts a portion of a Web document encoded in HTML and containing a list
of authors of a scientific publication. We have 2 seeds, l1 = “AM Turing” and
l2 = “J von Neumann”. The candidate elements e1 and e2 for which we achieve
the maximum value of score are framed with a solid line, where the dotted frame

6

Fig. 2. An example for Algorithm 1.

encloses an unknown element h1. When running computePath over the above
document and e1, e2 as input, we obtain: (i) a stack route containing [tbody, tr,
td, a], where LCA(e1, e2) = tbody and (ii) a corresponding XPath expression
/tbody/tr/td/a[@title=’Author’] which is then concatenated with the proper
head expression. Note that unbalanced couples of candidates are filtered and
excluded from scoring, consider e.g., the couple w1 and e2. Also, note that XPR
is elastic with respect to changes in the substructure of elements candidate for
matching seeds: for instance, e2 would be unbalanced with respect to e1 when-
ever surrounded by some additional markup (e.g., some nesting within a <div>

element, etc.). In this case, we would achieve the maximum score with the couple
of elements w1 and w2, still correctly extracting h1. We found that, when XPR
was applicable, structural uniformity was respected by about 100% of the exper-
imental corpus (see Section 4). When not respected (think e.g., at the element
e2 surrounded by a <div> element), this corresponded to a scenario in which the
culprit element was not actually an author item, thus correctly excluded. Note
that optional footnotes (e.g., superscripts referring to the corresponding author)
are usually appended using same-level nodes like <sup>: these follow structural
uniformity and are correctly filtered out from text extracted by XPR.

2.2 Text Node Resolution

Whenever XPR can’t be applied, we assume that L∗ is not encoded in D accord-
ing to structural uniformity, usually because the author list is encoded as raw
text with little or no markup. We thus work at the character level, i.e., process-
ing the textual content ln of a single element of n ∈ D. Author lists have often a
specific structure in which names are separated by some fixed delimiter, except
the last element, which is easy to be confused with a portion of a last name:
think e.g,. at the list “AM Turing, GW Leibniz, J von Neumann and N Tesla.”.
Note however that it is not possible to build a simple extraction module which

7

Input : Textual element t, list L = {l1, . . . , ln} of seeds
Output: An enumeration I of textual elements

tb ← t;
result ← [];
er ← elementRegexp(t, L);
if er 6= null then

for |L| times do
tb = matchAndSubs(tb, er , “#”);

end
if occurrences(“#”, tb) > 1 then

let h1, h2 be the indices of the first and second match of “#” in tb, respectively;
gr ← “(.*?)” · buildRegexp(tb[h1 + 1, h2 − 1]);
extract(t, gr , er , result);

end

end
return result;

Algorithm 2: computePattern

relies on looking for standard separators like “,” and “and”. We found indeed
that author lists are represented in a quite heterogeneous number of ways, think
e.g,. at “G. Paratinik, M.Sc. and D. Knuth, Ph.D.”, a usual case in fields other
than computer science.

To this end, we generate and then try to apply two types of patterns, ex-
pressed in terms of a regular expression: one is aimed at describing author names
(the element regular expression, or EREG), and the other aimed at describing
groups of delimiters between names (the glue characters regular expression or
GREG). We attempt to extract author names both by means of matches of the
generated EREG, or extracting the text appearing in between two matches of a
GREG.

Let t and s be two strings; we take advantage of the following notational
conventions: (i) |s| is the length of s; (ii) s[i] denotes the character in the i-th
position of s (0 ≤ i ≤ |s|−1); (iii) s[i, j] denotes the substring sij = s[i] · · · · ·s[j]
(i ≤ j); (iv) the function search(t, s) returns a value i, 0 ≤ i ≤ |t| − 1 such that
i is the starting position of the first match of s in t or is undefined otherwise;
(v) t · s is the concatenation of two strings (or two regular expressions); we use
the common fragment of the Perl and Javascript notation for denoting regular
expressions.

Let L = {l1, . . . , ln} be the set of available seeds; we iterate over elements
t ∈ D, which contain in their text content the value lname(l1). The algorithm
computePattern takes in input a candidate string t and a list L of seeds, builds
a EREG and a GREG, matches them properly and outputs a candidate hidden
list. We take advantage of the intermediate function buildRegexp(t), which takes
in input a string t, and outputs a regular expression r which matches t. r is
generalized enough to match recurring patterns corresponding to the example
string t: we build it by aggregating over alphabetical, numerical and spacing
characters, while glue characters are aggregated independently. As an example,
buildRegexp(“, Alan Turing”) = /,\s[A-Z][a-z]+\s[A-Z][a-z]+/ . The behavior
of Algorithm 2 is:

8

Input : String t, elements a, b
Output: A regular expression

ia ←search(t, lname(a));
if ia > 0 then

dright ←nextGlueCharacter(t, ia);
dleft ←lookBehind(t, dright, t[dright]);
if dleft > 0 then

s← buildRegexp(t[dleft +1, ia − 1]);
else

s← buildRegexp(t[0, ia − 1]);
end
s← s · buildRegexp(t[ia, ia + |lname(a)|]);
return s;

else
ib ←search(t, lname(b));
if ib > 0 then

s← buildRegexp(t, |lname(a)|);
c← previousGlueCharacter(t, ib);
r ←buildRegexp(t[|lname(a)|, c]);
return s · r;

end

end
return null;

Algorithm 3: elementRegexp

1. first a EREG er is obtained from the output of the function elementReg-
exp: as shown later, this function exploits seeds occurrences and looks for
surrounding delimiters in order to build a regular expression which should
match a possible occurrence of a name in t.

2. if er is not null, the algorithm uses it to iteratively match all the seeds
li ∈ L (1 < i ≤ n) in tb. The function call matchAndSubs(tb, er,“#”) applies
er to tb replacing a match with a placeholder character “#”.

For instance, suppose that we have tb = “Turing, Leibniz, von Neumann,

Nash.” and L = {“Turing”, “Leibniz”}. elementRegexp(“Turing”) returns a
regular expression er = /[A-Z][a-z]+/; when applying the matchAndSubs
function |L| = 2 times, tb is modified and becomes “#, #, von Neumann,

Nash.”; If er has been matched at least twice, we proceed as follows:

3. it is created a GREG gr in the form /(.*?)re′/ where re′ = buildRegexp(tb[h1+
1, h2 − 1]), for h1 and h2 be the position of the first and second “#” place-
holder in tb. gr is intended to match text between the two occurrences of #
in tb (excluding the character “#” itself). Following the previous example,
we would have re = /(.*?),\s/.

4. the extract function eventually extracts the set of authors by iteratively
applying either gr or, if gr fails to match, er to t and removing the match
found from t itself.

The output of the Algorithm 2 is a vector result representing L∗, when t is
assumed to be the element containing L∗.

The behaviour of the elementRegexp function is described in Algorithm 3 and
is as follows:

9

Fig. 3. An input example for Algorithm 2 and the same input after application of
matchAndSubs.

1. we search an occurrence of lname(a) in t; if lname(a) is a substring of t, we
distinguish the two cases in which t starts with lname(a) or not. Let ia =
search(s,lname(a));

2. if (ia > 0) we assume that lname(a) appears in t surrounded by two glue
characters k1 and k2. Starting from the position ia, we search rightwards
for a glue character: let dright be the index of the first glue character found;
then we scan t leftwards using the function call lookBehind(t,dright, t[dright])
which, given in input a string t, a position dright and the character t[dright],
searches, starting from position dright−1, a further occurrence of the same
glue character. In the case dleft > 0, the positions dleft and ia + |lname(a)|
give the boundaries of the pattern s we want to build, otherwise we use 0 as
left boundary position.

3. when ia = 0, we search the first occurrence of lname(b); if lname(b) is a sub-
string of t starting at position ib, we build the generalized regular expression
s which covers the string t[0, |lname(a)|−1], then we look rightwards from ib
for the closest position c of a glue character and build a regular expression
r which covers the string t[|lname(a)|, c]. We then return s · r.

We chose as the search space of candidate nodes all elements n ∈ D for
which either the first or the second seed appears within the textual content of
n. Among candidate nodes for which computePattern captures all the seeds, we
then select the one yielding the largest number of hidden names.

An example for TNR. In order to exemplify the behavior of TNR, suppose we
have extracted a textual content t from a node d ∈ D and suppose we have a
set of seeds L ={ “A Venditti”, “A Battaglia”, “F Buccisano”, “L Maurillo” }.
t is shown in Fig. 3: it is straightforward to see that each name is followed by a
comma a space and a number, except for the last one. We apply Algorithm 2. The
first step creates the regular expression for the first seed available; in this case, we
have l1 = “A Venditti” and the generated EREG is /[A-Z]\s[A-Z][a-z]+/. Then
we apply the matchAndSubs function 4 times and tb is modified accordingly (see
Fig. 3). The next step of the algorithm creates the GREG /(.*?)[0-9],?\s?/.

Eventually, the extract function returns the extracted list I = {“A Venditti”,
“A Battaglia”, “F Buccisano”, . . . , “G Franconi”, “S Amadori”}. Note how the
last name is extracted by applying the EREG instead of the generated GREG.

10

3 Related work

Our contribution has clear points of contact with the vast literature concern-
ing information extraction from the Web. We focus here at closer contexts and
specifically at the problem of unsupervised extraction of collections of similar
items from Web pages in the case in which seed information is available. We can
categorize related work into two main streams: a) structural approaches, in which
the goal is to induce an extraction expression (written in XPath or another tree
extraction language) for extracting information. This approach category takes
advantage of document markup and is related mostly to our XPR resolution
method; and, b) unstructured approaches, in which documents are seen at the
character level and is more related to our TNR method.

Concerning category (a), the availability of seeds for extracting lists and ta-
bles, possibly containing homogeneous items, is exploited in [9–11]. The first
approach which explicitly addresses a scenario similar to ours is the List Ex-
tractor module of the Knowitall system [8], in which the availability of “seeds”
is used in order to automatically build a wrapper for extracting lists of named
entities. In [12] it is briefly described a bottom-up method for reconstructing
XPath espressions aimed at capturing lists, using seeds and implemented in the
WebKnox system. Both the approaches follow the same principles of our XPR
technique, with a number of technical differences, but are aimed at capturing
general lists, thus not embedding domain knowledge. The unavailability to the
public of both the Knowitall List Extractor and the WebKnox system prevented
us to compare with XPR. A similar approach aimed at unsupervised table ex-
traction, requiring training over example rows is [13].

Concerning our TNR technique, a character-based approach can be found
in the SEAL system [14]. The system is aimed at automatic set building (in
the spirit of the known Google Sets) and contains a character-based wrapper
construction sub-module, which looks at groups of adjacent seeds in a document
using a different technique and does not exploit domain knowledge. Note that
our terminology is not to be confused with the notion of entity lists and seeds list
used differently in the Machine Learning and Natural Language processing field
[15], as we are looking for list of entities materially appearing in sequence within
documents. Also note that none of the above contributions includes explicitly the
idea of building a single meta-wrapping module embedding domain-knowledge,
nor they can be straightforwardly reused in our context. To exemplify, recall
that TPI-S looks for “list of items in the domain X”, for a given X, while the
list and set extraction techniques look for general lists/sets and do not consider
the information about the fact that X is set beforehand. In this respect, our
approach is similar in spirit to DIADEM [16], which has been, for instance,
successfully applied in the domain of real estate web sites.

11

Origin # XPR Acc. TNR Acc. Total Acc. DCM

ScienceDirect 1738 98.8% 0% 98.8% 0%

IEEE Xplore 542 99.8% 100% 100.0% 0%

Physical Review D 258 100.0% N.A. 100.0% 0%

IOPscience 218 7.3% 100% 100.0% 100%

DSpace@MIT 184 0.0% 100% 100.0% 100%

SAO/NASA ADS 176 88.6% 0% 88.6% 100%

Taylor & Francis 135 100.0% N.A. 100.0% 100%

Wiley Online 164 100.0% N.A. 100.0% 0%

ACS Publications 111 98.2% 100% 100.0% 100%

SPIE Digital Library 55 100.0% N.A. 100.0% 0%

Cambridge Journals 55 100.0% N.A. 100.0% 0%

Others 466 59.7% 6% 62.2% 22.5%

Total 4102 85.0% 65.0% 94.7% 22.6%

Table 1. Summary of the evaluation for TPI-S techniques

4 Evaluation and conclusions

We tested our tool by exploiting, as seed information, the partial author lists
reported when querying Google Scholar. The evaluation document collection
(C in the following) has been constructed by taking the set of professors and
researchers in Applied Physics officially enrolled in Italian Universities as of
the end of 2012 and extracting from Google Scholar their list of publications.
In order to reproduce experiments at will, we stored locally all the 4-tuples
(t, u, cu, ls), for t a paper title, u the URL of the corresponding description sheet
(hosted in an arbitrary digital library), cu the content of u and ls a list of seed
authors, as reported by Google Scholar. Duplicates, broken URLs, documents in
which Google Scholar already reported the full list of authors, documents whose
content was other than text or HTML/XML, and documents not appearing in
our reference library (see below) were excluded from the collection, obtaining a
set of about 4000 documents.

We launched our tool on every 4-tuple (t, ls, u, cu) ∈ C, computing the cor-
responding hidden list lh. C contained documents with an average of 145 co-
authors per paper, with a peak number of 2887 co-authors. Given the practi-
cal difficulty to manually assess our performance on a per document basis, we
pragmatically used the Microsoft Academic Search Portal (MSA Search, in the
following) as an “imperfect gold standard” to compare our extracted data. Sim-
ilarly to Google Scholar, the MSA Search portal allows the user to search for
scientific publications, but it shows full lists of contributors. Note however, that
although MSA has been used as a reference for experiments, it cannot be used
for extracting in general full author lists, due to its currently lower coverage if
one considers all the scientific areas outside computer science2.

For each (t, ls, u, cu) ∈ C we thus compared the lh value obtained using our
tool with a reference list of authors lms. lms has been obtained by searching and

2 However note that, arguably, MSA is implemented using a collection of hard-wired
wrappers, thus its expected accuracy is quite high.

12

extracting data about t on the MSA Search portal with an hard-wired wrapper.
Whenever lms = lh, we assumed both lms and lh to be correct; we instead
manually cross-checked the limited set of cases in which lms 6= lh. In such cases,
we manually inspected the content cu and assessed the correctness of lh, thus
excluding situations in which the extracted lms value was incorrect, due to MSA
inaccurate data extraction or to the MSA collection pointing to a document
different than the one described in cu. TPI-S computing times were a negligible
fraction of the page loading times.

The outcome of our evaluation is shown in Table 1. We classified documents
in C according to the digital library of provenance and we aggregated results ac-
cordingly: roughly, each row reflects a family of documents with similar structure.
Per each document category we report: i) the number of documents belonging to
the category at hand; ii) in the rows XPR and TNR, which percentage of author
lists were computed correctly using the respective technique 3; iii) the overall ac-
curacy of TPI-S; iv) the percentage of documents that contained proper Dublin
Core Metadata [17], thus potentially allowing automated machine reading of au-
thor lists. Our tool extracts author lists from Dublin Core Metadata whenever
present: however, we disabled this possibility in order to test the performance
of the TPI-S methods. The limited availability of annotated data suggests that
uniform and standardized machine readability in the domain of scholar digital
libraries is currently not widespread. Some metadata was often available (e.g.,
Bibtex, EndNote etc.), but with no standard access means and format.

The evaluation shows that the overall accuracy of TPI-S is satisfactory and
that TNR is a fair complement of XPR. The “Others” category collects a number
of documents rather unstructured and heterogenous, not coming from a public
digital library, like lecture announcements, or conference schedules (often not
containing an actual authors list at all) this explaining the lower performance
of TNR and XPR. Although the goal of our contribution was not a comparison
performance with MSA, our results denoted a fairly good performance in this
respect, with only 10% of the cases in which lh differed from lms because lh
was incorrect. The TPI-S module has been deployed in our tool enlarging its
pool of data extraction and bibliometric analysis features. The Scholar H-Index
Calculator, containing a publicly accessible version of TPI-S features is available
from [24].

References

1. Harzing, A.: Publish or Perish. http://www.harzing.com/pop.htm (2007)
2. Kaur, J., Hoang, D., Sun, X., et al.: Scholarometer: A social framework for ana-

lyzing impact across disciplines. PloS One 7(9) (2012)
3. Cyril, L.: Ike Antkare one of the great stars in the scientific firmament. Interna-

tional Society for Scientometrics and Informetrics Newsletter 6(2) (2010) 48–52

3 Note that TNR has been applied only incrementally on the relatively small fraction
of documents which XPR has failed to find a match. For instance, it has not been
applied at all when XPR reached 100% of accuracy.

13

4. Schreiber, M.: A modification of the h-index: The hm-index accounts for multi-
authored manuscripts. Journal of Informetrics 2(3) (2008) 211 – 216

5. ATLAS Collaboration, T.: The ATLAS experiment at the CERN large hadron
collider. Journal of Instrumentation 3(08) (2008)

6. Carbone, V.: Fractional counting of authorship to quantify scientific research out-
put. arXiv preprint arXiv:1106.0114 (2011)

7. Hirsch, J.: An index to quantify an individual’s scientific research output. PNAS
102(46) (2005) 16569

8. Etzioni, O., Cafarella, M., Downey, D., et al.: Unsupervised named-entity ex-
traction from the web: An experimental study. Artificial Intelligence 165 (2005)
91–134

9. Doorenbos, R.B., Etzioni, O., Weld, D.S.: A scalable comparison-shopping agent
for the world-wide web. AGENTS 1997. 39–48

10. Cohen, W.W., Hurst, M., Jensen, L.S.: A flexible learning system for wrapping
tables and lists in HTML documents. WWW 2002. 232–241

11. Cohen, W.W., Fan, W.: Web-collaborative filtering: recommending music by crawl-
ing the web. Computer Networks 33(1-6) (2000) 685–698

12. Urbansky, D., Feldmann, M., Thom, J., Schill, A.: Entity extraction from the web
with Webknox. Advances in Intelligent and Soft Computing 67 (2010) 209–218

13. Gupta, R., Sarawagi, S.: Answering table augmentation queries from unstructured
lists on the web. VLDB Endow. 2(1) (August 2009) 289–300

14. Wang, R.C., Cohen, W.W.: Language-independent set expansion of named entities
using the web. ICDM 2007. 342–350

15. Talukdar, P.P., Brants, T., Liberman, M., Pereira, F.: A context pattern induction
method for named entity extraction. CoNLL-X 2006. 141–148

16. Furche, T., Gottlob, G., Grasso, G., et al.: DIADEM: domain-centric, intelligent,
automated data extraction methodology. WWW 2012. 267–270

17. Weibel, S., Kunze, J., Lagoze, C., Wolf, M.: Dublin Core metadata for resource
discovery. Internet Engineering Task Force RFC 2413 (1998) 222

18. ASN: Italian National Scientific Habilitation (Abilitazione Scientifica Nazionale),
http://abilitazione.miur.it/ (2012)

19. Citations gadget for Google Scholar. http://code.google.com/p/citations-gadget/
20. ERA: Excellence in Research for Australia. http://www.arc.gov.au/era/ (2012)
21. Google Scholar. http://scholar.google.com

22. Microsoft Academic Search. http://academic.research.microsoft.com/

23. REF: Research Excellence Framework, http://www.ref.ac.uk/ (2012)
24. Scholar H-Index Calculator. http://scholarcalculator.gibbi.com/ (2010)
25. Sciverse Scopus. http://www.scopus.com/

26. Thomson Reuters Web of Knowledge. http://wokinfo.com/

