
The today’s laboratory task is to implement a client-server application that takes
advantage of the features offered by the openssl command for ensuring a secure
communication channel and verifying the identity of parties involved. You will have to
implement both a client and a server. Client and server will be able to establish an
authenticated (only the server is authenticated) and secure session (cryptography is
enabled).
In particular, you should implement the authentication server side as follows:

– create a mini Certification Authority;
– create a server certificate using openssl commands, this latter signed by the mini-

CA;
– create a client that, before starting a conversation with the server side, checks the

identity of the server ensuring that the personal certificate sent by the server is
signed by a CA (Certification Authority) that it recognizes.

The server will be developed using the openssl commands and the client will be
developed in Java using the javax.net.ssl library.

We will proceed in 4 steps:

A) Generation of the certificate for the Certification Authority;
B) Generation of the certificate for the server;
C) Development of the Java client;
D) Starting and testing of server and client applications;

A) Generation of the certificate for the Certification Authority
Unless you have a contract with a root Certification Authority, you must generate a key
and a 'self-signed' certificate for the CA.

A.1) Generating of a RSA key for the CA. This is the private key which will be used for
signing all the server certificates later. Thus ca.key should be kept as safe as
possible.

$ openssl genrsa -aes256 -out ca.key 2048

A.2) Generating a CSR (Certificate Signing Request), that is a encrypted text file used
for requesting an assignment of a SSL certificate. You should put in this file all the
information that the CA needs to sign a SSL certificate. In particular, you should specify
the common name field (CN) and attach a public key which will be embedded in the
certificate you’re requesting.

$ openssl req -new -key ca.key > ca.csr

A.3) Generating a CA X.509 certificate valid for 100 days which, with your own key,
can be used to release server certificates (we will self-sign it by the CA itself). Note the
–trustout option.

$ openssl x509 -req -days 100 -trustout -signkey ca.key < ca.csr > ca.cert

After the above steps you should have a public CA certificate (ca.cert), and its private key
(ca.key).

B) Generation of the certificate for the server

B.1) Generating of a RSA key for the server

$ openssl genrsa -aes256 -out server.key 2048

B.2) Generating a CSR (Certificate Signing Request)

$ openssl req -new -key server.key -out server.csr

B.3) Request of a certificate for the server valid for 100 days. This certificate will be the
very first one signed by your CA, so we set its serial to 1. An actual CA maintainance
system should store and increment this serial number properly.

$ openssl x509 -req -days 100 -CA ca.cert -CAkey ca.key -set_serial 1 <
server.csr > server.cert

After the above steps, you should have a server.cert which identifies your server, and its
private key.

C) Development of the Java client
We will develop a Java client application that connects to an SSL server, receives an
authentication certificate from the server and validates it compared to a set of certificates
present in its truststore. Java has a separate truststore, which by default is usually at
<java-home>/lib/security/cacerts. In our case we will add the certificate of the CA in a new
truststore before any conversation is established between the parties. When the CA
certificate is installed, all the certificate signed by your CA will be automatically validated
(provided they are not expired, nor revoked: note that revocation is checked only if you
configured your system for checking CRLs or accessing OCSP servers properly).

C.1) The following command allows to create a keystore using the keytool command

$ keytool -import -alias alias_name -file ca.cert -keystore
/path_to/my_key_store

C.2) the code stub you can use for your client app:

import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSocketFactory;
import java.io.*;

public class Client {

 public static void main(String[] arstring) {
 try {
 SSLSocketFactory f = (SSLSocketFactory) SSLSocketFactory.getDefault();
 SSLSocket sslsocket =(SSLSocket) f.createSocket("localhost", 4433);

 InputStream inputstream = System.in;
 InputStreamReader inputstreamreader = new InputStreamReader(inputstream);
 BufferedReader bufferedreader = new BufferedReader(inputstreamreader);

 OutputStream outputstream = sslsocket.getOutputStream();

 OutputStreamWriter outputstreamwriter = new OutputStreamWriter(outputstream);
 BufferedWriter bufferedwriter = new BufferedWriter(outputstreamwriter);

 String string = null;
 while ((string = bufferedreader.readLine()) != null) {
 bufferedwriter.write(string + '\n');
 bufferedwriter.flush();
 }
 } catch (Exception exception) {
 exception.printStackTrace();
 }
 }
}

D) Start server and client

D.1)
 $ openssl s_server -key server.key -cert server.cert

D.2)

$ java -Djavax.net.ssl.trustStore=./path_to/my_key_store
 -Djavax.net.ssl.trustStorePassword=key_store_password
 -Djava.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol
 -Djavax.net.debug=ssl Client

Other useful commands:

 $ keytool -list -keystore nome_key_store

used to list the content of the keystore, then the certificates installed (requires
knowledge of the password chosen during the generation).

 $ keytool -printcert -file ca.cert

used to display the contents of a certificate stored in a file.

 $ openssl s_client

You can use this for debugging the server side.

Experiments you might want to do:

1. How the Java Client reacts if the CA certificate is not installed in the truststore
beforehand?

2. How your browser reacts when connecting to your ‘openssl s_server’ ?

3. Describe the steps required for enabling a browser correctly validating your server
when you point the browser to.

4. Attach a real HTTP server instead of s_server. Hint: you might want to consider
first experimenting with the –www and –WWW options, and then installing a small

httpd daemon like minihttpd (http://acme.com/software/mini_httpd/). If you’re brave
enough, try configuring apache for SSL: APACHE + SSL

5. Experiment observing the SSL traffic using Wireshark. Which are the initial packets you
notice? What you see after a connection is established?

