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ASP Road map

ASP:
Datalog← done!
+ Default negation
+ Disjunction
+ Integrity Constraints
+ Weak Constraints
+ Aggregate atoms
+ ... and more
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Datalog (followup)

Datalog: A logic language for querying databases
overcomes some limits of Relational Algebra and SQL
→ Recursive definitions

can be used for
→ Deductive database applications, query answering

we have discussed some limits
→ e.g., limited usage of negation, no aggregation as in SQL, ...
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Default Negation

Often, it is desirable to express negation in the following sense:

“If we do not have evidence that X holds, conclude Y.”

This is expressed by default negation: the operator not.

Example (Cross railroad)
An agent could act according to the following rule:

% If the grass is not wet in the early morning,
% then conclude it did not rain in the night.

did_not_rain :- not wet_grass.
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About Negation

Semantics:
no negation→ natural candidate: the minimal model
with negation “unexpected” things may happen

About Models:
consider

a :- not b.
b :- not a.
→ several minimal models {a} and {b}
also no minimal models
but this may be... an advantage actually!
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More than one model...

Observation:
Several models represent several possible scenarios
Several models are sets... several answer sets

Idea:
1 Represent a computational problem by a Logic program
2 Answer sets correspond to problem solutions
3 Use an ASP solver to find these solutions
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Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute
(if exists) an assignment to variables that satisfies Φ.

Can you encode it in Datalog?

Can you encode it in Datalog with a uniform fixed IDB?

Can you encode it with a ground Datalog program?

What if we consider unstratified programs...

...we will came back later to this!
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Normal Logic Programs (propositional case)

Rule: (r ) a︸︷︷︸ :- b1, . . . ,bk , not bk+1, . . . , not bm.︸ ︷︷ ︸
head body

Intuitively:

“a is true if b1, . . . ,bn are true and bk+1, . . . ,bm. are false”

Atoms and Literals: ai , bi , not bi
Head of r : H(r) = a
Body of r : B(r) = B+(r) ∪ B−(r)
Positive Body: B+(r) = {b1, . . . ,bk}
Negative Body: B−(r) = {not bk+1, . . . , not bm.}

Fact: A rule with empty body
Variables: no variables, consider ground programs for now...
Negation: unrestricted
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Formal Semantics: Roadmap

1) Positive Programs
2) Negative Programs

→ via Gelfong & Lifschitz Reduct
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Semantics (Ground) Positive Programs

Interpretation:
A set I of ground atoms, and atom a is true w.r.t. I if a ∈ I,
it is false otherwise.
A negative literal not a is true w.r.t. I if a 6∈ I, false
otherwise.

Satisfaction:
Rule r is satisfied w.r.t. I if H(r) ∈ I whenever all literals
` ∈ B(r) are true w.r.t. I

Model:
Interpretation I is a model for program P if all rules in P
are satisfied by I
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Semantics (Ground) Positive Programs

Immediate consequence operator:
TP(I) = {a ∈ H(r) : ∀b ∈ B(r),b ∈ I}
Least Model (or Answer Set):
Least fixpoint LM(P) of TP operator
(TP(∅) ⊆ TP(TP(∅)) ⊆ · · · ⊆ LM(P) = TP(LM(P)))

Theorem:
A positive program P has a unique least model
M = LM(P) which is minimal under subset inclusion,
actually M = ∩I∈ModelsOf (P)I
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Semantics for Programs with Negation

Consider general programs with negation

Reduct: The Gelfond-Lifschitz reduct of a program P
w.r.t. an interpretation I is the positive program P I

obtained from P by:

deleting all rules with a negative literal false in I;
deleting the negative literals from the bodies of the
remaining rules.

Answer Set: An answer set or stable model of a general
program P I is an interpretation I such that I is an answer
set of P I, i.e., I = LM(P I).
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Example 1

Example (Reduct)
Program:

a :-d , not b.
b :- not d .

d .

Consider: I = {a,d}

Reduct:

a :-d .
d .

→ I is an answer set of P I and therefore it is an answer set of
P.
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Example 2

Example
Program:

a :- not b.

Answer Set: {a}
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Example 3

Example
Program:

a :- not b.
b :- not a.

Answer Sets: {a}, {b}

→ Prolog would loop!
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Example 4

Example
Program:

a :- not b.
b :- not a.
c :-b.
c :-a.

Answer Sets: {a, c}, {b, c}

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Example 5

Example
Program:

a :- not a.

Answer Set: no answer set!
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Example 6

Example
Program:

a :- not b.
b :- not a.
f :-b, not f

Answer Set: {a}
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Supported Models and Answer Sets (1)

Supported Model:

A model M is supported if for each a ∈ M there exist rule r ∈ P
such that H(r) = a and ∀b ∈ B(r), b is true w.r.t. M

Intuition: Something is true if there is a rule “supporting” its
truth.

Theorem:

Answer sets are supported models
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Supported Models and Answer Sets (2)

Example (Inverse does not hold.)
Program:

a :-a.

Models: {}, {a} ← both are supported

Answer Set: {}

→ Circular support is not allowed!

→ Empty answer set is fine!
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Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r
s.t. H(r) ∈ X, one of the following conditions hold

1 the body of r is false, or
2 some literal in the positive body belongs to X

Example: a :-a. and X = {a}. is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset
is unfounded.
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Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute an
assignment to variables that satisfies Φ if it exists.

Write a logic program P(Φ) such that answer sets of P(Φ)
correspond to satisfying assignments of Φ
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