
Introduction
Normal Logic Programs

Processing of Declarative Knowledge

–Normal Logic Programs–

Francesco Ricca

Computational Intelligence Curriculum
Institute of Information Systems

Francesco Ricca Datalog



Introduction
Normal Logic Programs

ASP Road map

ASP:
Datalog← done!
+ Default negation
+ Disjunction
+ Integrity Constraints
+ Weak Constraints
+ Aggregate atoms
+ ... and more

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Datalog (followup)

Datalog: A logic language for querying databases
overcomes some limits of Relational Algebra and SQL
→ Recursive definitions

can be used for
→ Deductive database applications, query answering

we have discussed some limits
→ e.g., limited usage of negation, no aggregation as in SQL, ...

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Default Negation

Often, it is desirable to express negation in the following sense:

“If we do not have evidence that X holds, conclude Y.”

This is expressed by default negation: the operator not.

Example (Cross railroad)
An agent could act according to the following rule:

% If the grass is not wet in the early morning,
% then conclude it did not rain in the night.

did_not_rain :- not wet_grass.

Francesco Ricca Datalog



Introduction
Normal Logic Programs

About Negation

Semantics:
no negation→ natural candidate: the minimal model
with negation “unexpected” things may happen

About Models:
consider

a :- not b.
b :- not a.
→ several minimal models {a} and {b}
also no minimal models
but this may be... an advantage actually!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

About Negation

Semantics:
no negation→ natural candidate: the minimal model
with negation “unexpected” things may happen

About Models:
consider

a :- not b.
b :- not a.
→ several minimal models {a} and {b}
also no minimal models
but this may be... an advantage actually!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

About Negation

Semantics:
no negation→ natural candidate: the minimal model
with negation “unexpected” things may happen

About Models:
consider

a :- not b.
b :- not a.
→ several minimal models {a} and {b}
also no minimal models
but this may be... an advantage actually!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

About Negation

Semantics:
no negation→ natural candidate: the minimal model
with negation “unexpected” things may happen

About Models:
consider

a :- not b.
b :- not a.
→ several minimal models {a} and {b}
also no minimal models
but this may be... an advantage actually!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

More than one model...

Observation:
Several models represent several possible scenarios
Several models are sets... several answer sets

Idea:
1 Represent a computational problem by a Logic program
2 Answer sets correspond to problem solutions
3 Use an ASP solver to find these solutions

Francesco Ricca Datalog



Introduction
Normal Logic Programs

More than one model...

Observation:
Several models represent several possible scenarios
Several models are sets... several answer sets

Idea:
1 Represent a computational problem by a Logic program
2 Answer sets correspond to problem solutions
3 Use an ASP solver to find these solutions

Francesco Ricca Datalog



Introduction
Normal Logic Programs

More than one model...

Observation:
Several models represent several possible scenarios
Several models are sets... several answer sets

Idea:
1 Represent a computational problem by a Logic program
2 Answer sets correspond to problem solutions
3 Use an ASP solver to find these solutions

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute
(if exists) an assignment to variables that satisfies Φ.

Can you encode it in Datalog?

Can you encode it in Datalog with a uniform fixed IDB?

Can you encode it with a ground Datalog program?

What if we consider unstratified programs...

...we will came back later to this!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute
(if exists) an assignment to variables that satisfies Φ.

Can you encode it in Datalog?

Can you encode it in Datalog with a uniform fixed IDB?

Can you encode it with a ground Datalog program?

What if we consider unstratified programs...

...we will came back later to this!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute
(if exists) an assignment to variables that satisfies Φ.

Can you encode it in Datalog?

Can you encode it in Datalog with a uniform fixed IDB?

Can you encode it with a ground Datalog program?

What if we consider unstratified programs...

...we will came back later to this!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute
(if exists) an assignment to variables that satisfies Φ.

Can you encode it in Datalog?

Can you encode it in Datalog with a uniform fixed IDB?

Can you encode it with a ground Datalog program?

What if we consider unstratified programs...

...we will came back later to this!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute
(if exists) an assignment to variables that satisfies Φ.

Can you encode it in Datalog?

Can you encode it in Datalog with a uniform fixed IDB?

Can you encode it with a ground Datalog program?

What if we consider unstratified programs...

...we will came back later to this!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute
(if exists) an assignment to variables that satisfies Φ.

Can you encode it in Datalog?

Can you encode it in Datalog with a uniform fixed IDB?

Can you encode it with a ground Datalog program?

What if we consider unstratified programs...

...we will came back later to this!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Normal Logic Programs (propositional case)

Rule: (r ) a︸︷︷︸ :- b1, . . . ,bk , not bk+1, . . . , not bm.︸ ︷︷ ︸
head body

Intuitively:

“a is true if b1, . . . ,bn are true and bk+1, . . . ,bm. are false”

Atoms and Literals: ai , bi , not bi
Head of r : H(r) = a
Body of r : B(r) = B+(r) ∪ B−(r)
Positive Body: B+(r) = {b1, . . . ,bk}
Negative Body: B−(r) = {not bk+1, . . . , not bm.}

Fact: A rule with empty body
Variables: no variables, consider ground programs for now...
Negation: unrestricted

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Normal Logic Programs (propositional case)

Rule: (r ) a︸︷︷︸ :- b1, . . . ,bk , not bk+1, . . . , not bm.︸ ︷︷ ︸
head body

Intuitively:

“a is true if b1, . . . ,bn are true and bk+1, . . . ,bm. are false”

Atoms and Literals: ai , bi , not bi
Head of r : H(r) = a
Body of r : B(r) = B+(r) ∪ B−(r)
Positive Body: B+(r) = {b1, . . . ,bk}
Negative Body: B−(r) = {not bk+1, . . . , not bm.}

Fact: A rule with empty body
Variables: no variables, consider ground programs for now...
Negation: unrestricted

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Formal Semantics: Roadmap

1) Positive Programs
2) Negative Programs

→ via Gelfong & Lifschitz Reduct

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Semantics (Ground) Positive Programs

Interpretation:
A set I of ground atoms, and atom a is true w.r.t. I if a ∈ I,
it is false otherwise.
A negative literal not a is true w.r.t. I if a 6∈ I, false
otherwise.

Satisfaction:
Rule r is satisfied w.r.t. I if H(r) ∈ I whenever all literals
` ∈ B(r) are true w.r.t. I

Model:
Interpretation I is a model for program P if all rules in P
are satisfied by I

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Semantics (Ground) Positive Programs

Immediate consequence operator:
TP(I) = {a ∈ H(r) : ∀b ∈ B(r),b ∈ I}
Least Model (or Answer Set):
Least fixpoint LM(P) of TP operator
(TP(∅) ⊆ TP(TP(∅)) ⊆ · · · ⊆ LM(P) = TP(LM(P)))

Theorem:
A positive program P has a unique least model
M = LM(P) which is minimal under subset inclusion,
actually M = ∩I∈ModelsOf (P)I

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Semantics for Programs with Negation

Consider general programs with negation

Reduct: The Gelfond-Lifschitz reduct of a program P
w.r.t. an interpretation I is the positive program P I

obtained from P by:

deleting all rules with a negative literal false in I;
deleting the negative literals from the bodies of the
remaining rules.

Answer Set: An answer set or stable model of a general
program P I is an interpretation I such that I is an answer
set of P I, i.e., I = LM(P I).

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Example 1

Example (Reduct)
Program:

a :-d , not b.
b :- not d .

d .

Consider: I = {a,d}

Reduct:

a :-d .
d .

→ I is an answer set of P I and therefore it is an answer set of
P.

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Example 2

Example
Program:

a :- not b.

Answer Set: {a}

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Example 3

Example
Program:

a :- not b.
b :- not a.

Answer Sets: {a}, {b}

→ Prolog would loop!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Example 4

Example
Program:

a :- not b.
b :- not a.
c :-b.
c :-a.

Answer Sets: {a, c}, {b, c}

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Example 5

Example
Program:

a :- not a.

Answer Set: no answer set!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Example 6

Example
Program:

a :- not b.
b :- not a.
f :-b, not f

Answer Set: {a}

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Supported Models and Answer Sets (1)

Supported Model:

A model M is supported if for each a ∈ M there exist rule r ∈ P
such that H(r) = a and ∀b ∈ B(r), b is true w.r.t. M

Intuition: Something is true if there is a rule “supporting” its
truth.

Theorem:

Answer sets are supported models

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Supported Models and Answer Sets (1)

Supported Model:

A model M is supported if for each a ∈ M there exist rule r ∈ P
such that H(r) = a and ∀b ∈ B(r), b is true w.r.t. M

Intuition: Something is true if there is a rule “supporting” its
truth.

Theorem:

Answer sets are supported models

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)
Program:

a :-a.

Models: {}, {a} ← both are supported

Answer Set: {}

→ Circular support is not allowed!

→ Empty answer set is fine!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)
Program:

a :-a.

Models: {}, {a} ← both are supported

Answer Set: {}

→ Circular support is not allowed!

→ Empty answer set is fine!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Supported Models and Answer Sets (2)

Example (Inverse does not hold.)
Program:

a :-a.

Models: {}, {a} ← both are supported

Answer Set: {}

→ Circular support is not allowed!

→ Empty answer set is fine!

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r
s.t. H(r) ∈ X, one of the following conditions hold

1 the body of r is false, or
2 some literal in the positive body belongs to X

Example: a :-a. and X = {a}. is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset
is unfounded.

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Unfounded Sets and Answer Sets (intuition)

Unfounded Set:

A set of ground atoms X is an unfounded set if, for each rule r
s.t. H(r) ∈ X, one of the following conditions hold

1 the body of r is false, or
2 some literal in the positive body belongs to X

Example: a :-a. and X = {a}. is unfounded!

Theorem:

Answer sets are unfounded-free interpretations, i.e., no subset
is unfounded.

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute an
assignment to variables that satisfies Φ if it exists.

Write a logic program P(Φ) such that answer sets of P(Φ)
correspond to satisfying assignments of Φ

Francesco Ricca Datalog



Introduction
Normal Logic Programs

Exercise 3SAT

Given a propositional formula Φ in 3 CNF, compute an
assignment to variables that satisfies Φ if it exists.

Write a logic program P(Φ) such that answer sets of P(Φ)
correspond to satisfying assignments of Φ

Francesco Ricca Datalog


	Introduction
	Normal Logic Programs

