
3D Representation of a topographic surface1

Donato D’Ambrosio
Department of Mathematics and Computer Science

University of Calabria

November 15, 2018

1Course of Computer Graphics and GPGPU Programming, Department of
Mathematics and Computer Science, University of Calabria, Italy, Planet Earth



Assignment

Build an application displaying a topographic surface based on the following
dataset (file DEM_test_small.dat into the data folder):

ncols 4

nrows 3

xllcorner 0.0

yllcorner 0.0

cellsize 0.1

NODATA_value -9999

0.9 0.8 0.7 0.6

0.8 0.7 0.6 0.5

0.7 0.6 0.5 0.4

As you can see, data is composed by a header (first 6 rows) and a matrix
of values representing topographic altitudes. Specifically, the lowest altitude
is z_min=0.4, while the highest one is z_max=0.9.

The header defines the number of rows and columns of the actual data
(ncols and nrows), the coordinates of the lower left corner (xllcorner
and yllcorner), the distance between two adjacent points into the matrix
along the horizontal and vertical directions (cellsize) and a special value
representing non-sampled points (NODATA_value), this latter not considered
in this example.

The matrix of values that follows represent a regular grid of altitudes.
What you have to do is to give a representation of the above dataset by

means of triangles.
For this purpose, you can define a buffer containing the sequence of

vertex positions and colors, to be sent to the GPU by means of a vertex
buffer object (VBO), and a buffer of indices representing how the vertices
have to be connected, to be sent to the GPU by means of a element buffer
object (EBO). If you arrange the vertices starting from the lower-left corner
up to the upper-right one, by evaluating the color as a linear function that
maps the [zmin, zmax] range into [0, 1], you sound obtain a buffer like one
shown below

Positions Colors

0.0 0.0 0.7 0.60 0.60 0.60

0.1 0.0 0.6 0.40 0.40 0.40

0.2 0.0 0.5 0.20 0.20 0.20

0.3 0.0 0.4 0.00 0.00 0.00

0.0 0.1 0.8 0.80 0.80 0.80

0.1 0.1 0.7 0.60 0.60 0.60

0.2 0.1 0.6 0.40 0.40 0.40

...

1



while the indices to be considered should be defined as:

0 1 5

5 4 0

1 2 6

6 5 1

...

Step 1

The first step consists in rendering the DEM_test_small.dat and then DEM_test.dat

dataset, which are properly contained into the NDCS, as it is. You should
obtain a result similar to the one shown in Figure 1.

(a) (b)

(c) (d)

Figure 1: (a) Rendering of DEM test small.dat in wireframe. (b) Rendering
of DEM test small.dat in fill mode. (c) Rendering of DEM test.dat

in wireframe. (d) Rendering of DEM test.dat in fill mode.

2



Step 2

The next step consists in centering the dataset into the graphic window,
scaling the dataset in case it is not contained into the NDCS, and to properly
manage NODATA values (that must not be represented).

Note that the vertices transformations (translations and scaling) can be
performed both host and device side. In the second case, however, vertices
can be translated in parallel by vertex shader, which is certainly the best
choice when the number of vertices is high. For this purpose, the host
application can evaluate the displacements and scaling factors along each
direction and send them to the vertex shades by means of uniforms.

Figure 2 shows what it should be obtained when different datasets are
considered. In particular, those in Figure 2b-d do not are contained into the
NDCS. Nevertheless, they are properly rendered thanks to the considered
transformations.

(a) (b)

(c) (d)

Figure 2: (a) Updated rendering of DEM test.dat in fill mode. (b)
Rendering of DEM Albano.dat in fill mode. (c) Render-
ing of the tessina ndem.txt dataset. (d) Rendering of the
tessina nsources.txt dataset.

3



Step 3

The third step consists in introducing a perspective clip space (frustum).
Modeling and viewing transformations can be applied to center the dataset
into the frustum by allowing the data to be observable from different points
of view.

Figure 3 shows an example of how the date should be rendered.

(a) (b)

Figure 3: (a) Rendering of the altitudes.dat from the dataset lava. (b)
Rendering of the altitudes.dat from the dataset lava.

Step 4

The fourth step consists in defining a normal vector for each triangle of the
mesh (by assigning the same normal vector to each vertex composing the
triangle) and to consider the ambient and diffuse component of the Phong
model to lit the surface. A source light acting as the Sun can be simply
defined into the fragment shader by considering a source light direction
L = (0.0, 0.0, 1.0) with a color Lc = (0.8, 0.8, 0.8). A flat color (e.g. C =
(0.8, 0.8, 0.8)) can be assigned to the vertices.

Figure 4 provides an example of what should be rendered.

4



(a) (b)

Figure 4: (a) Rendering of the DEM Albano.dat dataset. (b) Rendering of the
DEM Albano.dat dataset.

Step 5

In this step we consider the altitudes.dat file from dataset lava since it
comes with a texture, namely texture.png.

In order to apply the provided texture to the topographic surface, it
is necessary to properly change the host application, evaluate the texture
coordinates, store them into the VBO used to send the vertex data to the
GPU and update the fragment shader so that it can sample the texture to
fetch the color to be used.

As regard the evaluation of the texture coordinates, consider that the
texture must perfectly fit the topographic data. In other words, the texture
coordinates (0, 0) and (1, 1) must be assigned to the lower-left and upper-
right vertices, respectively.

Eventually, since the VBO now contains additional information regard-
ing the texture, also the vertex shader must be updated in order to fetch
this data and pass it to the fragment shader. For this purpose, an additional
vertex shader attribute can be defined.

Figure 5 shows what should be obtained. In the example, the color
sampled from the texture has been mixed with the color of the fragment
evaluated by applying the Phong lighting model.

5



(a) (b)

Figure 5: (a) Rendering of altitudes.dat from dataset lava with the
texture.png texture applied. (b) Another view of altitudes.dat

from dataset lava with the texture.png texture applyied.

6


