Solution of the execises of the exam of the course Probability and Stochastic Processes

a.y. 2022/2023

02/01/2023

Exercise $1 \operatorname{Let}\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. We consider the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0}+\int_{0}^{t} e^{-\frac{s^{2}}{2}} X(s) d s+\int_{0}^{t} \sin s d B(s), \tag{1}\\
d X(t) & =e^{-\frac{t^{2}}{2}} X(t) d t+\sin t d B(t)
\end{align*}
$$

where $\{B(t)\}_{t \geq 0}$ is the Brownian motion.

1. Solve the equation (1) assuming the initial datum $X_{0}=0$
2. Compute the distribution function of the r.v. $X\left(t, X_{0}\right)$ for any given $t>0$.
3. Compute the characteristic function of the r.v. $X(1,0)$, where $\left(X\left(t, X_{0}\right), t \geq 0\right)$ is the solution of the previous problem.

Solution:

1. The equation (1) is an Itô SDE with additive noise. Setting

$$
\begin{equation*}
Y(t)=f(t, X(t)):=X(t) \exp \left\{-\int_{0}^{t} d s e^{-\frac{s^{2}}{2}}\right\} \tag{2}
\end{equation*}
$$

and computing the Itô differential of $Y(t)$ we get

$$
\begin{aligned}
d f(t, X(t)) & =\left\{\left(\partial_{t} f\right)(t, X(t))+\left(\partial_{x} f\right)(t, X(s)) e^{-\frac{t^{2}}{2}} X(t)+\frac{1}{2} \sin ^{2} t\left(\partial_{x x}^{2} f\right)(t, X(t))\right\} d t \\
& +\sin t\left(\partial_{x} f\right)(t, X(t)) d B(t)
\end{aligned}
$$

But, since $f(t, x)=x \exp \left\{-\int_{0}^{t} d s e^{-\frac{s^{2}}{2}}\right\}$ and

$$
\begin{align*}
& \partial_{t} f(t, x)=-e^{-\frac{t^{2}}{2}} f(t, x) \tag{4}\\
& \partial_{x} f(t, x)=\frac{f(t, x)}{x} \tag{5}\\
& \partial_{x}^{2} f(t, x)=0 \tag{6}
\end{align*}
$$

we have

$$
\begin{equation*}
d Y(t)=\exp \left\{-\int_{0}^{t} d s e^{-\frac{s^{2}}{2}}\right\} \sin t d B(t) \tag{7}
\end{equation*}
$$

that is, taking into account that $Y(0, X(0))=X_{0}$,

$$
\begin{equation*}
Y\left(t, X_{0}\right)=X_{0}+\int_{0}^{t} \exp \left\{-\int_{0}^{t} d s e^{-\frac{s^{2}}{2}}\right\} \sin s d B(s) \tag{8}
\end{equation*}
$$

which implies

$$
\begin{align*}
X\left(t, X_{0}\right) & =\exp \left\{\int_{0}^{t} d s e^{-\frac{s^{2}}{2}}\right\} Y\left(t, X_{0}\right) \tag{9}\\
& =\exp \left\{\int_{0}^{t} d s e^{-\frac{s^{2}}{2}}\right\}\left[X_{0}+\int_{0}^{t} \exp \left\{-\int_{0}^{s} d \tau e^{-\frac{\tau^{2}}{2}}\right\} \sin s d B(s)\right] .
\end{align*}
$$

2. Taking $X_{0}=0$, we obtain

$$
\begin{equation*}
X(t, 0)=\int_{0}^{t} \exp \left\{\int_{s}^{t} d \tau e^{-\frac{\tau^{2}}{2}}\right\} \sin s d B(s) \tag{10}
\end{equation*}
$$

wich is a Gaussian r.v. with expectation

$$
\begin{equation*}
\mathbb{E}[X(t, 0)]=\mathbb{E}\left[\int_{0}^{t} \exp \left\{\int_{s}^{t} d \tau e^{-\frac{\tau^{2}}{2}}\right\} \sin s d B(s)\right]=0 \tag{11}
\end{equation*}
$$

and variance

$$
\begin{equation*}
\mathbb{E}\left[X^{2}(s, 0)\right]=\int_{0}^{t} d s \exp 2\left\{\int_{s}^{t} d \tau e^{-\frac{\tau^{2}}{2}}\right\} \sin ^{2} s . \tag{12}
\end{equation*}
$$

3. The r.v.

$$
\begin{equation*}
X(1,0)=\int_{0}^{1} \exp \left\{\int_{s}^{1} d \tau e^{-\frac{\tau^{2}}{2}}\right\} \sin s d B(s) \tag{13}
\end{equation*}
$$

has Gaussian distribution with expectation

$$
\begin{equation*}
\mu=0 \tag{14}
\end{equation*}
$$

and variance

$$
\begin{equation*}
\sigma^{2}:=\int_{0}^{1} d s \exp 2\left\{\int_{s}^{1} d \tau e^{-\frac{\tau^{2}}{2}}\right\} \sin ^{2} s \tag{15}
\end{equation*}
$$

Hence the characteristic function of $X(1,0)$ is

$$
\begin{equation*}
\varphi_{X(1,0)}=e^{-\frac{1}{2} t^{2} \sigma^{2}} \tag{16}
\end{equation*}
$$

Exercise 2 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\left\{X_{k}\right\}_{k>0}$ a sequence of r.v.'s such that if $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ is the natural filtration generated by $\left\{X_{k}\right\}_{k \geq 0}, \forall k \geq \overline{0}, B \in \mathcal{B}(\mathbb{R})$,

$$
\mathbb{P}\left[X_{k+1} \in B \mid \mathcal{F}_{k}\right]=\mathbb{P}\left[X_{k+1} \in B \mid X_{k}\right]=\int_{B} d x \frac{e^{-\frac{\left(x-X_{k}\right)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \sigma}
$$

1. (a) Prove that the function $\mathbb{R} \ni x \longmapsto f(x):=e^{\frac{\alpha}{\sigma^{2}} x} \in \mathbb{R}$ is such that $\forall k \geq 0, \mathbb{E}\left[f\left(X_{k+1}\right) \mid \mathcal{F}_{k}\right]=$ $\lambda f\left(X_{k}\right)$ and compute λ.
(b) If $X_{0} \stackrel{d}{=} N(0,1)$, determine a numerical sequence $\left\{c_{n}\right\}_{n \geq 0}$ such that the sequence of r.v.'s $\left\{Y_{n}\right\}_{n \geq 0}$ so defined $\forall n \geq 0, Y_{n}:=c_{n} f\left(X_{n}\right)$ is a martingale w.r.t. the filtration $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$.
(c) Study the convergence of $\left\{Y_{n}\right\}_{n \geq 1}$.

Solution:

1. Since

$$
\mathbb{E}\left[f\left(X_{k+1}\right) \mid \mathcal{F}_{k}\right]=\int_{\mathbb{R}} d x \frac{e^{-\frac{\left(x-X_{k}\right)^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \sigma} e^{\frac{\alpha}{\sigma^{2}} x}=e^{\frac{\alpha^{2}}{2 \sigma^{2}}} e^{\frac{\alpha}{\sigma^{2}} X_{k}}
$$

we get $\lambda=e^{\frac{\alpha^{2}}{2 \sigma^{2}}}$.
2. Let us set $\forall n \geq 0, c_{n}:=\lambda^{-n}$. Then

$$
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=\lambda^{-(n+1)} \mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}\right]=\lambda^{-n} X_{n}=Y_{n}
$$

Hence $\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[X_{0}\right]=e^{\frac{\alpha^{2}}{2 \sigma^{4}}}$. Therefore, $\left\{Y_{n}\right\}_{n \geq 1}$ is a martingale.
3. Since $\left\{Y_{n}\right\}_{n \geq 1}$ is a non-negative martingale it converges $\mathbb{P}-a . s$. .

