Solution of the execises of the exam of the course Probability and Stochastic Processes

a.y. 2023/2024

02/02/2024

Exercise 1 Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. We consider the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0}+\int_{0}^{t} d s X(s)+\int_{0}^{t} \sqrt{2} s X(s) d B(s) \tag{1}\\
d X(t) & =X(t) d t+\sqrt{2} t X(t) d B(t)
\end{align*}
$$

where $\{B(t)\}_{t \geq 0}$ is the Brownian motion.

1. Solve the equation (1) assuming the initial datum $X_{0}=1$.
2. Compute the probability density of the r.v. $X\left(t, X_{0}\right), t \geq 0$.
3. Compute the density of the random vector $\left(\log X\left(2, X_{0}\right), \log X\left(1, X_{0}\right)\right)$.

Solution:

1. The equation (1) is an Itô EDS with moltiplicative noise.

Setting

$$
Y(t)=f(t, X(t)):=\log \frac{X(t)}{X_{0}}
$$

and computing the Itô's differential of $Y(t)$, since $f(t, x)=\log x$ and

$$
\begin{aligned}
\partial_{t} f(t, x) & =0 \\
\partial_{x} f(t, x) & =\frac{1}{x} \\
\partial_{x}^{2} f(t, x) & =-\frac{1}{x^{2}},
\end{aligned}
$$

we get

$$
\begin{aligned}
d Y(t) & =\left(1-t^{2}\right) d t+\sqrt{2} t d B(t) \\
Y(t) & =\int_{0}^{t} d s\left(1-s^{2}\right)+\int_{0}^{t} \sqrt{2} s d B(s)
\end{aligned}
$$

That is, taking into account that $Y(0, X(0))=0$,

$$
X\left(t, X_{0}\right)=X_{0} e^{t-\frac{t^{3}}{3}+\sqrt{2} \int_{0}^{t} s d B(s)}
$$

2. Since $X_{0}=1$, from the previous equation we have that $\mathbb{P}\{X(t) \leq x\}$, where $X(t):=X(t, 1)$ is equal to $\mathbb{P}\left\{\int_{0}^{t} s d B(s) \leq \frac{\log x+\frac{t^{3}}{3}-t}{\sqrt{2}}\right\}$, but $\int_{0}^{t} s d B(s)$ is a Gaussian centered r.v. with variance $\frac{t^{3}}{3}$, hence

$$
f_{X(t)}=\frac{1}{2} \sqrt{\frac{3}{\pi t^{3}}} \frac{1}{x} \exp \left\{-\frac{3}{4 t^{3}}\left(\log x+\frac{t^{3}}{3}-t\right)^{2}\right\}
$$

3. From (??) it follows that

$$
\begin{aligned}
\mathbb{E}\left[Y\left(t, X_{0}\right)\right] & =t-\frac{t^{3}}{3} \\
\operatorname{Cov}\left[Y\left(t, X_{0}\right), Y\left(s, X_{0}\right)\right] & =\mathbb{E}\left[\left(Y\left(t, X_{0}\right)-\mathbb{E}\left[Y\left(t, X_{0}\right)\right]\right)\left(Y\left(s, X_{0}\right)-\mathbb{E}\left[Y\left(s, X_{0}\right)\right]\right)\right] \\
& =2 \mathbb{E}\left[\int_{0}^{t \wedge s} d \tau \tau^{2}\right]=\frac{2}{3}(t \wedge s)^{3}
\end{aligned}
$$

The random vector

$$
\begin{aligned}
Y & : \quad=\left(\log X\left(2, X_{0}\right), \log X\left(1, X_{0}\right)\right) \\
& =\left(2-\frac{8}{3}+\sqrt{2} \int_{0}^{2} t d B(t), 1-\frac{1}{3}+\sqrt{2} \int_{0}^{1} t d B(t)\right)
\end{aligned}
$$

has Gaussian distribution with expectation vector

$$
\mu=\left(-\frac{2}{3}, \frac{2}{3}\right)=\left(\mu_{1}, \mu_{2}\right)
$$

and covariance matrix

$$
C:=\left(\begin{array}{cc}
\frac{16}{3} & \frac{2}{3} \\
\frac{2}{3} & \frac{2}{3}
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
b & b
\end{array}\right) .
$$

Therefore,

$$
\begin{align*}
f_{Y}(x, y) & =\frac{1}{\sqrt{(2 \pi)^{2} \operatorname{det} C}} \exp \left\{-\frac{\left\langle C^{-1}\left(x-\mu_{1}, y-\mu_{2}\right),\left(x-\mu_{1}, y-\mu_{2}\right)\right\rangle}{2}\right\} \tag{2}\\
& =\frac{3}{8 \pi \sqrt{2}} \exp \left\{-\frac{1}{2}\left[\frac{3}{14}\left(x+\frac{2}{3}\right)^{2}-\frac{6}{14}\left(x+\frac{2}{3}\right)\left(y-\frac{2}{3}\right)+\frac{12}{7}\left(y-\frac{2}{3}\right)^{2}\right]\right\}
\end{align*}
$$

Exercise 2 Let $\left\{X_{i}\right\}_{i \geq 1}$ a sequence of r.v.'s on a sample space $(\Omega, \mathcal{F}, \mathbb{P}),\left\{f_{i}\right\}_{i \geq 1}$ be a sequence of given functions such that $f_{i}: \mathbb{R}^{i} \mapsto \mathbb{R}$.

1. What are the minimal requirement on the terms of the sequences $\left\{X_{i}\right\}_{i \geq 1}$ and $\left\{f_{i}\right\}_{i \geq 1}$ have to satisfy for the sequence $\left\{Y_{i}\right\}_{i \geq 0}$ such that $\forall i \geq 1, Y_{i}:=\left(\sum_{j=1}^{i} X_{j} f_{j-1}\left(X_{1}, . ., X_{j-1}\right)\right)^{2}$ to be a submartingale w.r.t. the natural filtration $\left\{\mathcal{F}_{i}\right\}_{i \geq 0}$ generated by $\left\{X_{i}\right\}_{i \geq 1}$?
2. Supposing that the requirements asked above are satisfied, write the Doob-Meyer decomposition of $\left\{Y_{i}\right\}_{i \geq 1}$.

Solution: Let, for any $i \geq 1, S_{i}:=\sum_{j=1}^{i} X_{j} f_{j-1}\left(X_{1}, . ., X_{j-1}\right) . \mathbb{E}\left[\left|S_{i}\right|\right] \leq \sup _{1 \leq j \leq i-1} \sup _{\left(x_{1}, . ., x_{j-1}\right) \in \mathbb{R}^{j-1}} \mid f_{j-1}\left(x_{1}, . ., x_{j-1}\right)$ Moreover, since $S_{i+1}=S_{i}+X_{i+1} W_{i}$ where $\forall i \geq 1, W_{i}:=f_{i}\left(X_{1}, . ., X_{i}\right)$,

$$
\mathbb{E}\left[S_{i+1} \mid \mathcal{F}_{i}\right]=\mathbb{E}\left[S_{i}+X_{i+1} W_{i} \mid \mathcal{F}_{i}\right]=S_{i}+W_{i} \mathbb{E}\left[X_{i+1} \mid \mathcal{F}_{i}\right]
$$

Hence, if, for any $i \geq 1, \mathbb{E}\left[\left|X_{i}\right|\right]<\infty, W_{i-1} \mathbb{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right] \geq 0$ and f_{i} is bounded, then $\left\{S_{i}\right\}_{i \geq 1}$ is a submartingale w.r.t. $\left\{\mathcal{F}_{i}\right\}_{i \geq 1}$.

Since $x \mapsto x^{2}$ is a convex function, by the Jensen inequality

$$
\mathbb{E}\left[Y_{i+1} \mid \mathcal{F}_{i}\right]=\mathbb{E}\left[\left(S_{i+1}\right)^{2} \mid \mathcal{F}_{i}\right] \geq\left(\mathbb{E}\left[S_{i+1} \mid \mathcal{F}_{i}\right]\right)^{2} \geq\left(S_{i}\right)^{2}=Y_{i}
$$

that is $\left\{Y_{i}\right\}_{i \geq 1}$ is a submartingale. The Doob-Meyer decomposition of $\left\{Y_{i}\right\}_{i \geq 0}$ is then given by the martingale $\left\{m_{i}\right\}_{i \geq 1}$ where $\forall i \geq 1, m_{i}:=Y_{i}-A_{i}$ and by the compensator $\left\{\bar{A}_{i}\right\}_{i \geq 1}$ where $\forall i \geq 1$,

$$
\begin{aligned}
A_{i} & : \quad=X_{1} f_{0}+\sum_{j=1}^{i}\left(\mathbb{E}\left[Y_{j} \mid \mathcal{F}_{j-1}\right]-Y_{j-1}\right) \\
& =X_{1} f_{0}+\sum_{j=1}^{i}\left(\mathbb{E}\left[Y_{j}-Y_{j-1} \mid \mathcal{F}_{j-1}\right]\right)= \\
& =X_{1} f_{0}+\sum_{j=1}^{i}\left(\mathbb{E}\left[\left(S_{j-1}+X_{j} W_{j-1}\right)^{2}-S_{j-1}^{2} \mid \mathcal{F}_{j-1}\right]\right) \\
& =X_{1} f_{0}+\sum_{j=1}^{i}\left(\mathbb{E}\left[X_{j} W_{j-1}\left(2 S_{j-1}+X_{j} W_{j-1}\right) \mid \mathcal{F}_{j-1}\right]\right)
\end{aligned}
$$

Assuming that $\left\{S_{i}\right\}_{i \geq 1}$ is a martingale i.e. $\forall i \geq 1, \mathbb{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right]=0$,

$$
A_{i}=X_{1} f_{0}+\sum_{j=2}^{i} \mathbb{E}\left[X_{j}^{2} \mid \mathcal{F}_{j-1}\right] W_{j-1}
$$

