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Moreover, by de�nition Fn = � (�1; ::; �n) and �n+1 = �n + '
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By (1) supn�0 E [j�nj] is �nite for � > 3
2 ; hence f�ngn�0 is a L

1-martingale.

Exercise 2 Let
�

;F ; fFtgt�0 ;P

�
be the �ltered Wiener space. Solve the stochastic process de-

scribed by the Itô Stochastic Di¤erential Equation

X (t;X0) = X0 +

Z t

0

dss (X (s) + 1) +

Z t

0

(X (s) + s) dB (s) ; (2)

dX (t) = t (X (t) + 1) dt+ (X (t) + t) dB (t) :

where (B (t) ; t � 0) is the Brownian motion.

Solution: (2) is a linear Itô SDE. Considering the associated homogeneous equation with initial
datum equal to 1;
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whose solution is
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we compute the Itô di¤erential of the stochastic process U (t) = f (t; Y (t)) := 1
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dU (t) = [�t+ 1]U (t) dt� U (t) dB (t) :

Hence, the Itô di¤erential of the product X (t;X0)U (t) is

d (X (t;X0)U (t)) = 2tU (t) dt+ tU (t) dB (t) :

Therefore, since X (0; X0)U (0) = X0;
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Exercise 3 Compute the characteristic function of the random vector (log Y (1; 1) ; log Y (2; 1)) ;
where (Y (t; 1) ; t � 0) is the stochastic process solution of the homogeneuous Itô SDE associated
to the equation (2).

Solution: Let Z (t) := log Y (t) where Y (t) is given in (3). Then,

E [Z (t)] =
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Cov [Z (t) ; Z (s)] = Cov [B (t)B (s)]= (t ^ s) :

(Z (1) ; Z (2)) is gaussian random vector with parameters � := (0; 1) and covariance matrix
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Hence is characteristic function is
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