Solution of the execises of the exam of the course Probability and Stochastic Processes

a.y. 2022/2023

09/20/2023

Exercise 1 Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. We consider the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0}+\int_{0}^{t} d s X(s)+\int_{0}^{t} s X(s) d B(s) \tag{1}\\
d X(t) & =X(t) d t+t X(t) d B(t)
\end{align*}
$$

where $\{B(t)\}_{t \geq 0}$ is the Brownian motion.

1. Solve the equation (1) assuming the initial datum $X_{0}=1$.
2. Compute the probability distribution of the r.v. $X\left(t, X_{0}\right), t \geq 0$.
3. Compute the density of the random vector $\left(\log X\left(2, X_{0}\right), \log X\left(1, X_{0}\right)\right)$.

Solution:

1. The equation (1) is an Itô EDS with moltiplicative noise.

Setting

$$
Y(t)=f(t, X(t)):=\log \frac{X(t)}{X_{0}}
$$

and computing the Itô's differential of $Y(t)$, since $f(t, x)=\log x$ and

$$
\begin{aligned}
\partial_{t} f(t, x) & =0 \\
\partial_{x} f(t, x) & =\frac{1}{x} \\
\partial_{x}^{2} f(t, x) & =-\frac{1}{x^{2}}
\end{aligned}
$$

we get

$$
\begin{aligned}
d Y(t) & =\left(1-\frac{1}{2} t^{2}\right) d t+t d B(t) \\
Y(t) & =\int_{0}^{t} d s\left(1-\frac{1}{2} s^{2}\right)+\int_{0}^{t} s d B(s)
\end{aligned}
$$

That is, taking into account that $Y(0, X(0))=0$,

$$
X\left(t, X_{0}\right)=X_{0} e^{t-\frac{t^{3}}{6}+\int_{0}^{t} s d B(s)}
$$

2. Since $X_{0}=1$, from the previous equation we have that $\mathbb{P}\{X(t) \leq x\}$, where $X(t):=X(t, 1)$ is equal to $\mathbb{P}\left\{\int_{0}^{t} s d B(s) \leq \log x+\frac{t^{3}}{6}-t\right\}$, but $\int_{0}^{t} s d B(s)$ is a Gaussian centered r.v. with variance $\frac{t^{3}}{3}$.
3. From (??) it follows that

$$
\begin{aligned}
\mathbb{E}\left[Y\left(t, X_{0}\right)\right] & =t-\frac{t^{3}}{6} \\
\operatorname{Cov}\left[Y\left(t, X_{0}\right), Y\left(s, X_{0}\right)\right] & =\mathbb{E}\left[\left(Y\left(t, X_{0}\right)-\mathbb{E}\left[Y\left(t, X_{0}\right)\right]\right)\left(Y\left(s, X_{0}\right)-\mathbb{E}\left[Y\left(s, X_{0}\right)\right]\right)\right] \\
& =\mathbb{E}\left[\int_{0}^{t \wedge s} d \tau \tau^{2}\right]=\frac{(t \wedge s)^{3}}{3}
\end{aligned}
$$

The random vector

$$
\begin{aligned}
Y & : \quad=\left(\log X\left(2, X_{0}\right), \log X\left(1, X_{0}\right)\right) \\
& =\left(2-\frac{4}{3}+\int_{0}^{2} t d B(t), 1-\frac{1}{6}+\int_{0}^{1} t d B(t)\right)
\end{aligned}
$$

has Gaussian distribution with expectation vector

$$
\mu=\left(\frac{2}{3}, \frac{5}{6}\right)=\left(\mu_{1}, \mu_{2}\right)
$$

and covariance matrix

$$
C:=\left(\begin{array}{cc}
\frac{8}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
b & b
\end{array}\right) .
$$

Therefore,

$$
\begin{align*}
f_{Y}(x, y) & =\frac{1}{\sqrt{(2 \pi)^{2} \operatorname{det} C}} \exp \left\{-\frac{\left\langle C^{-1}\left(x-\mu_{1}, y-\mu_{2}\right),\left(x-\mu_{1}, y-\mu_{2}\right)\right\rangle}{2}\right\} \tag{2}\\
& =\frac{3}{2 \pi \sqrt{7}} \exp \left\{-\frac{1}{2}\left[\frac{3}{7}\left(x-\frac{2}{3}\right)^{2}+\frac{6}{7}\left(x-\frac{2}{3}\right)\left(y-\frac{5}{6}\right)+\frac{24}{7}\left(y-\frac{5}{6}\right)^{2}\right]\right\}
\end{align*}
$$

Exercise 2 Let $\left\{f_{i}\right\}_{i \geq 1}$ be a sequence of bounded measurable functions $f_{i}: \mathbb{R}^{i} \mapsto \mathbb{R}$ and $\left\{X_{i}\right\}_{i \geq 1}$ a sequence of r.v.'s on a sample space $(\Omega, \mathcal{F}, \mathbb{P})$.

1. What is the minimal assumption on the sequence $\left\{X_{i}\right\}_{i \geq 1}$ for the sequence $\left\{Y_{i}\right\}_{i \geq 0}$ such that $Y_{0}=0$ and $\forall i \geq 1, Y_{i+1}:=\sum_{j=1}^{i+1} X_{j} f_{j-1}\left(X_{1}, . ., X_{j-1}\right)$ to be a martingale w.r.t. the natural filtration $\left\{\mathcal{F}_{i}\right\}_{i \geq 0}$ generated by $\left\{X_{i}\right\}_{i \geq 1}$?
2. Prove that if $\left\{Y_{i}\right\}_{i \geq 0}$ is a martingale w.r.t. $\left\{\mathcal{F}_{i}\right\}_{i \geq 0}$, then the sequence $\left\{Z_{i}\right\}_{i \geq 1}$ such that, $\forall i \geq 0, Z_{i}:=e^{Y_{i}}$ is a submartingale and compute its Doob-Meyer decomposition.

Solution: For any $i \geq 1, \mathbb{E}\left[\left|Y_{i}\right|\right] \leq \sup _{1 \leq j \leq i+1} \sup _{\left(x_{1}, . ., x_{j}\right) \in \mathbb{R}^{j}}\left|f_{j-1}\left(x_{1}, . ., x_{j}\right)\right| \sum_{j=1}^{i+1} \mathbb{E}\left[\left|X_{j}\right|\right]$. Moreover, since $Y_{i+1}=Y_{i}+X_{i+1} W_{i}$ where $\forall i \geq 1, W_{i}:=f_{i-1}\left(X_{1}, . ., X_{i-1}\right)$,

$$
\mathbb{E}\left[Y_{i+1} \mid \mathcal{F}_{i}\right]=\mathbb{E}\left[Y_{i}+X_{i+1} W_{i} \mid \mathcal{F}_{i}\right]=Y_{i}+W_{i} \mathbb{E}\left[X_{i+1} \mid \mathcal{F}_{i}\right]
$$

Hence, if, for any $i \geq 1, \mathbb{E}\left[\left|X_{i}\right|\right]<\infty$ and $\mathbb{E}\left[X_{i+1} \mid \mathcal{F}_{i}\right]=0$, then $\left\{Y_{i}\right\}_{i \geq 0}$ is a martingale w.r.t. $\left\{\mathcal{F}_{i}\right\}_{i \geq 0}$.

Moreover, since $x \mapsto e^{x}$ is a convex function, by the Jensen inequality

$$
\mathbb{E}\left[Z_{i+1} \mid \mathcal{F}_{i}\right]=\mathbb{E}\left[e^{Y_{i+1}} \mid \mathcal{F}_{i}\right] \geq \exp \mathbb{E}\left[Y_{i+1} \mid \mathcal{F}_{i}\right]=e^{Y_{i}}=Z_{i}
$$

that is $\left\{Z_{i}\right\}_{i \geq 1}$ is a submartingale. The Doob-Meyer decomposition of $\left\{Z_{i}\right\}_{i \geq 0}$ is then given by the martingale $\left\{m_{i}\right\}_{i \geq 0}$ where $\forall i \geq 0, m_{i}:=Z_{i}-A_{i}$ and by the compensator $\left\{A_{i}\right\}_{i \geq 0}$ where $\forall i \geq 0, A_{i}:=Z_{0}+\sum_{j=1}^{i}\left(\mathbb{E}\left[Z_{j} \mid \mathcal{F}_{j-1}\right]-Z_{j-1}\right)$.

