Solution of the execises of the exam of the course Probability and Stochastic Processes

a.y. 2022/2023

02/22/2023

Exercise $1 \operatorname{Let}\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. We consider the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0}-\int_{0}^{t} s X(s) d B(s) \tag{1}\\
d X(t) & =-t X(t) d B(t)
\end{align*}
$$

where $\{B(t)\}_{t \geq 0}$ is the Brownian motion.

1. Solve the equation (1) assuming the initial datum $X_{0}=1$.
2. Compute the variance of $\left(X\left(t, X_{0}\right), t \geq 0\right)$.
3. Compute the density of the random vector $\left(\log X\left(2, X_{0}\right), \log X\left(1, X_{0}\right)\right)$.

Solution:

1. The equation (1) is an Itô EDS with moltiplicative noise.

Setting

$$
\begin{equation*}
Y(t)=f(t, X(t)):=\log \frac{X(t)}{X_{0}} \tag{2}
\end{equation*}
$$

and computing the Itô's differential of $Y(t)$, since $f(t, x)=\log x$ and

$$
\begin{align*}
\partial_{t} f(t, x) & =0 \tag{3}\\
\partial_{x} f(t, x) & =\frac{1}{x} \tag{4}\\
\partial_{x}^{2} f(t, x) & =-\frac{1}{x^{2}} \tag{5}
\end{align*}
$$

we get

$$
\begin{align*}
d Y(t) & =-\frac{1}{2} t^{2} d t-t d B(t) \tag{6}\\
Y(t) & =-\frac{1}{2} \int_{0}^{t} d s s^{2}-\int_{0}^{t} s d B(s) \tag{7}
\end{align*}
$$

That is, taking into account that $Y(0, X(0))=0$,

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0} e^{-\frac{1}{2} \int_{0}^{t} d s s^{2}-\int_{0}^{t} s d B(s)} \tag{8}\\
& =X_{0} e^{-\frac{t^{3}}{6}-\int_{0}^{t} s d B(s)}
\end{align*}
$$

2. Since $X_{0}=1$, from (1) we have

$$
\begin{equation*}
\mathbb{E}\left[X\left(t, X_{0}\right)\right]=1-\mathbb{E} \int_{0}^{t} s X(s) d B(s)=1 \tag{9}
\end{equation*}
$$

Moreover, setting $Y(t):=f(t, X(t))=X^{2}(t)$ and computing its Itô's differential we obtain

$$
\begin{align*}
Y(t) & =1+\int_{0}^{t} d s s^{2} X^{2}(s)-\int_{0}^{t} 2 X^{2}(s) s d B(s) \tag{10}\\
& =1+\int_{0}^{t} d s s^{2} Y(s)-\int_{0}^{t} 2 Y(s) s d B(s)
\end{align*}
$$

Hence, setting $q_{X}(t):=\mathbb{E}[Y(t)]=\mathbb{E}\left[X^{2}(t)\right]$ and taking the expectation on both sides of the previous expression, differentiating w.r.t. t we get that q_{X} is the solution of the Chauchy problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} q_{X}(t)=t^{2} q_{X}(t) \tag{11}\\
q_{X}(0)=1
\end{array}\right.
$$

that is,

$$
\begin{equation*}
q_{X}(t)=e^{\frac{t^{3}}{3}} \tag{12}
\end{equation*}
$$

The variance of $X\left(t, X_{0}\right)$ is then

$$
\begin{equation*}
\mathbb{E}\left[X^{2}\left(t, X_{0}\right)\right]-\mathbb{E}^{2}\left[X\left(t, X_{0}\right)\right]=q_{X}(t)-1=e^{\frac{t^{3}}{3}}-1 \tag{13}
\end{equation*}
$$

3. From (7) it follows that

$$
\begin{align*}
\mathbb{E}\left[Y\left(t, X_{0}\right)\right] & =-\frac{t^{3}}{6} \tag{14}\\
\operatorname{Cov}\left[Y\left(t, X_{0}\right), Y\left(s, X_{0}\right)\right] & =\mathbb{E}\left[\left(Y\left(t, X_{0}\right)-\mathbb{E}\left[Y\left(t, X_{0}\right)\right]\right)\left(Y\left(s, X_{0}\right)-\mathbb{E}\left[Y\left(s, X_{0}\right)\right]\right)\right](\tag{15}\\
& =\mathbb{E}\left[\int_{0}^{t \wedge s} d \tau \tau^{2}\right]=\frac{(t \wedge s)^{3}}{3}
\end{align*}
$$

The random vector

$$
\begin{align*}
Y & : \quad=\left(\log X\left(2, X_{0}\right), \log X\left(1, X_{0}\right)\right) \tag{16}\\
& =\left(-\frac{4}{3}-\int_{0}^{2} t d B(t),-\frac{1}{6}+\int_{0}^{1} t d B(t)\right)
\end{align*}
$$

has Gaussian distribution with expectation vector

$$
\begin{equation*}
\mu=\left(-\frac{4}{3},-\frac{1}{6}\right)=\left(\mu_{1}, \mu_{2}\right) \tag{17}
\end{equation*}
$$

and covariance matrix

$$
C:=\left(\begin{array}{ll}
\frac{8}{3} & \frac{1}{3} \tag{18}\\
\frac{1}{3} & \frac{1}{3}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
b & b
\end{array}\right) .
$$

Therefore,

$$
\begin{align*}
f_{Y}(x, y) & =\frac{1}{\sqrt{(2 \pi)^{2} \operatorname{det} C^{-1}}} \exp \left\{-\frac{\left\langle\left(x-\mu_{1}, y-\mu_{2}\right), C^{-1}\left(x-\mu_{1}, y-\mu_{2}\right)\right\rangle}{2}\right\} \tag{19}\\
& =\frac{\sqrt{7}}{6 \pi} \exp \left\{-\frac{1}{2}\left[\frac{3}{7}\left(x+\frac{4}{3}\right)^{2}+\frac{6}{7}\left(x+\frac{4}{3}\right)\left(y+\frac{1}{6}\right)+\frac{24}{7}\left(y+\frac{1}{6}\right)^{2}\right]\right\}
\end{align*}
$$

Exercise 2 An urn contains black and white balls. A ball is drawn at random from the urn and it is returned together with 2 more balls of the same colour. Let B_{n} be the number of black balls and W_{n} the number of white balls at stage n. If at the beginning the urn contains a black and a white ball, i.e. $B_{0}=W_{0}=1$, prove that the sequence $\left\{X_{n}\right\}_{n \geq 0}$ such that $X_{n}:=\frac{B_{n}}{2 n+2}$ is a martingale w.r.t. its natural filtration and study its convergence.

Solution: Let P_{n} be the total number of balls in the urn at the time of the $n+1$ extraction; we have

$$
\begin{equation*}
P_{n}=W_{n}+B_{n}=2 n+2 . \tag{20}
\end{equation*}
$$

Moreover, since we sample with replacement, the probability of drawing a black ball from the urn at the n-th extraction is $\frac{B_{n}}{P_{n}}$. Hence, the probability that the number of black balls after the n-th extraction stays the same is the probability of drawing a white ball, namely

$$
\begin{equation*}
\mathbb{P}\left[B_{n+1}=m \mid B_{n}=m\right]=1-\frac{m}{2 n+2} . \tag{21}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\mathbb{P}\left[B_{n+1}=m+2 \mid B_{n}=m\right]=\frac{m}{2 n+2} \tag{22}
\end{equation*}
$$

Let $\left\{\mathcal{F}_{n}\right\}_{n \geq 0}$ be the filtration generated by the sequence of r.v.'s $\left\{X_{n}\right\}_{n \geq 0}$, i.e. such that $\mathcal{F}_{n}:=$ $\sigma\left\{X_{1}, . ., \overline{X_{n}}\right\}$ and \mathcal{F}_{0} is the trivial σ algebra, since $\forall n \geq 1, \mathcal{F}_{n}=\sigma\left\{N_{1}, . ., \bar{N}_{n}\right\}$ we have

$$
\begin{align*}
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[\left.\frac{B_{n+1}}{2(n+1)+2} \right\rvert\, \mathcal{F}_{n}\right]=\mathbb{E}\left[\left.\frac{B_{n+1}}{2(n+1)+2} \right\rvert\, B_{n}\right] \tag{23}\\
& =\frac{B_{n}}{2(n+1)+2}\left(1-\frac{B_{n}}{2 n+2}\right)+\frac{B_{n}+2}{2(n+1)+2} \frac{B_{n}}{2 n+2} \\
& =\frac{B_{n}}{2(n+1)+2}+\frac{2}{2(n+1)+2} X_{n} \\
& =X_{n}\left(\frac{1}{1+\frac{2}{2 n+2}}\right)+\frac{2}{2(n+1)+2} X_{n} \\
& =X_{n}\left(\frac{2 n+2}{2(n+1)+2}\right)+\frac{2}{2(n+1)+2} X_{n}=X_{n} .
\end{align*}
$$

Hence $\left\{X_{n}\right\}_{n \geq 0}$ is a non-negative martingale and, since $\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{0}\right]=\frac{1}{2}$,

$$
\begin{equation*}
\sup _{n \geq 0} \mathbb{E}\left[\left|X_{n}\right|\right]=\sup _{n \geq 0} \mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{0}\right]<\infty \tag{24}
\end{equation*}
$$

which implies that it is also a L^{1}-martingale and therefore convergent \mathbb{P}-a.s. to a non-negative r.v. X such that $\mathbb{E}[X]=\mathbb{E}\left[X_{0}\right]=\frac{1}{2}$. Moreover, since by definition $B_{n} \geq B_{0}=1$, from (20) we get $N_{n} \leq 2 n+1$, thus

$$
\begin{equation*}
\sup _{n \geq 0} \mathbb{E}\left[X_{n}^{2}\right]=\sup _{n \geq 0} \mathbb{E}\left[\frac{N_{n}^{2}}{(2 n+2)^{2}}\right] \leq \sup _{n \geq 0}\left(\frac{2 n+1}{2 n+2}\right)^{2} \leq 1 \tag{25}
\end{equation*}
$$

that is $\left\{X_{n}\right\}_{n \geq 0}$ is a L^{2}-martingale and consequently a regular martingale.

