Solution of the execises of the exam of the course Probability and Stochastic Processes

a.y.2023/2024

02/23/2024

Exercise 1 Let $\left\{\xi_{n}\right\}_{n \geq 0}$ be a sequence o r.v.'s such that $\xi_{0} \stackrel{d}{=} \exp (1)$ and $\forall n \geq 1, \xi_{n}$ has a exponential distribution of parameter 1 supported on $\left(\xi_{n-1},+\infty\right)$. Prove that the sequence of r.v.'s $\left\{\eta_{n}\right\}_{n \geq 0}$ such that $\forall n \geq 0, \eta_{n}:=2^{n} e^{-\xi_{n}}$ is a martingale w.r.t. the filtration generated by the sequence of r.v.'s $\left\{\xi_{n}\right\}_{n \geq 0}$. Is it a convergent martingale?

Solution: $\forall n \geq 0$,

$$
\mathbb{E}\left[\left|\eta_{n}\right|\right]=\mathbb{E}\left[\eta_{n}\right] \leq 2^{n}<\infty
$$

Moreover, denoting by \mathcal{F}_{n} the σ algebra generated by $\left(\xi_{1}, . ., \xi_{n}\right)$,

$$
\begin{aligned}
\mathbb{E}\left[\eta_{n+1} \mid \mathcal{F}_{n}\right] & =2^{n+1} \mathbb{E}\left[e^{\left.-\xi_{n+1} \mid \mathcal{F}_{n}\right]}\right. \\
& =2^{n+1} \mathbb{E}\left[e^{-\xi_{n+1}} \mid \xi_{n}\right] \\
& =2^{n+1} e^{\xi_{n}} \int_{\xi_{n}}^{\infty} d x e^{-2 x} \\
& =2^{n+1} \frac{e^{\xi_{n}}}{2} \int_{2 \xi_{n}}^{\infty} d y e^{-y}=\eta_{n} \mathbb{P}-\text { a.s.. }
\end{aligned}
$$

Since $\left\{\eta_{n}\right\}_{n \geq 0}$ is a positive martingale, it is convergent and $\mathbb{E}\left[\eta_{n}\right]=\mathbb{E}\left[\eta_{0}\right]=\mathbb{E}\left[e^{-\xi_{0}}\right]=\frac{1}{2}$.
Exercise 2 Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. Solve the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0}+\int_{0}^{t} d s s(X(s)+1)+\int_{0}^{t} s(X(s)+1) d B(s) \tag{1}\\
d X(t) & =t(X(t)+1) d t+t(X(t)+1) d B(t)
\end{align*}
$$

where $\{B(t)\}_{t \geq 0}$ is the Brownian motion.
Solution: (1) is a linear Itô SDE. Considering the associated homogeneous equation with initial datum equal to 1 ,

$$
Y(t)=1+\int_{0}^{t} d s s X(s)+\int_{0}^{t} s X(s) d B(s)
$$

whose solution is

$$
\begin{align*}
Y(t) & =\exp \left[\int_{0}^{t} d s\left(s-\frac{s^{2}}{2}\right)+\int_{0}^{t} s d B(s)\right] \tag{2}\\
& =\exp \left[\frac{t^{2}}{2}-\frac{t^{3}}{6}+\int_{0}^{t} s d B(s)\right]
\end{align*}
$$

we compute the Itô differential of the stochastic process $U(t)=f(t, Y(t)):=\frac{1}{Y(t)}$ obtaining

$$
d U(t)=\left[-t+t^{2}\right] U(t) d t-t U(t) d B(t) .
$$

Hence, the Itô differential of the product $X\left(t, X_{0}\right) U(t)$ is

$$
d\left(X\left(t, X_{0}\right) U(t)\right)=\left[t+t^{2}\right] U(t) d t+t U(t) d B(t)
$$

Therefore, since $X\left(0, X_{0}\right) U(0)=X_{0}$,

$$
X\left(t, X_{0}\right) U(t)=X_{0}+\int_{0}^{t} d s\left[s+s^{2}\right] U(s)+\int_{0}^{t} s U(s) d B(s)
$$

that is

$$
\begin{aligned}
X\left(t, X_{0}\right)= & Y(t)\left\{X_{0}+\int_{0}^{t} d s \frac{s+s^{2}}{Y(s)}+\int_{0}^{t} \frac{s}{Y(s)} d B(s)\right\} \\
= & \exp \left[\frac{t^{2}}{2}\left(1-\frac{t}{3}\right)+\int_{0}^{t} s d B(s)\right] \times \\
& \times\left\{X_{0}+\int_{0}^{t} d s\left(s+s^{2}\right) e^{-\frac{s^{2}}{2}\left(1-\frac{s}{3}\right)-\int_{0}^{s} \tau d B(\tau)}+\right. \\
& \left.+\int_{0}^{t} s e^{-\frac{s^{2}}{2}\left(1-\frac{s}{3}\right)-\int_{0}^{s} \tau d B(\tau)} d B(s)\right\}
\end{aligned}
$$

Exercise 3 Compute the characteristic function of the random vector $(\log Y(1,1), \log Y(2,1))$, where $(Y(t, 1), t \geq 0)$ is the stochastic process solution of the homogeneuous Ito $S D E$ associated to the equation (1).

Solution: Let $Z(t):=\log Y(t)$ where $Y(t)$ is given in (2). Then,

$$
\mathbb{E}[Z(t)]=\frac{t^{2}}{2}-\frac{t^{3}}{6}
$$

and

$$
\begin{aligned}
\operatorname{Cov}[Z(t), Z(s)] & =\mathbb{E}\left[\int_{0}^{t} \tau d B(\tau) \int_{0}^{s} \tau d B(\tau)\right] \\
& =\int_{0}^{t \wedge s} d \tau \tau^{2}=\frac{(t \wedge s)^{3}}{3}
\end{aligned}
$$

$(Z(1), Z(2))$ is gaussian random vector with parameters $\mu:=\left(\frac{1}{3}, \frac{2}{3}\right)$ and covariance matrix

$$
C:=\left(\begin{array}{ll}
\frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{8}{3}
\end{array}\right) .
$$

Hence is characteristic function is

$$
\mathbb{R}^{2} \ni\left(\lambda_{1}, \lambda_{2}\right) \longmapsto \varphi_{\zeta}\left(\lambda_{1}, \lambda_{2}\right)=e^{i\left(\frac{1}{3} \lambda_{1}+\frac{2}{3} \lambda_{2}\right)-\frac{1}{2}\left(\frac{1}{3} \lambda_{1}^{2}+\frac{2}{3} \lambda_{1}^{2} \lambda_{2}^{2}+\frac{8}{3} \lambda_{2}^{2}\right)} \in \mathbb{C} .
$$

