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Exercise 1 Let f�ngn�0 be a sequence o r.v.�s such that �0
d
= exp (1) and 8n � 1; �n has a exponen-

tial distribution of parameter 1 supported on (�n�1;+1): Prove that the sequence of r.v.�s f�ngn�0
such that 8n � 0; �n := 2ne��n is a martingale w.r.t. the �ltration generated by the sequence of
r.v.�s f�ngn�0 : Is it a convergent martingale?

Solution: 8n � 0;
E [j�nj] = E [�n] � 2n <1 ;

Moreover, denoting by Fn the �algebra generated by (�1; ::; �n) ;
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Since f�ngn�0 is a positive martingale, it is convergent and E [�n] = E [�0] = E
�
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�
= 1

2 :

Exercise 2 Let
�

;F ; fFtgt�0 ;P

�
be the �ltered Wiener space. Solve the stochastic process de-

scribed by the Itô Stochastic Di¤erential Equation

X (t;X0) = X0 +

Z t

0
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Z t

0

s (X (s) + 1) dB (s) ; (1)

dX (t) = t (X (t) + 1) dt+ t (X (t) + 1) dB (t) :

where fB (t)gt�0 is the Brownian motion.

Solution: (1) is a linear Itô SDE. Considering the associated homogeneous equation with initial
datum equal to 1;
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whose solution is

Y (t) = exp
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�
we compute the Itô di¤erential of the stochastic process U (t) = f (t; Y (t)) := 1

Y (t) obtaining

dU (t) =
�
�t+ t2

�
U (t) dt� tU (t) dB (t) :

Hence, the Itô di¤erential of the product X (t;X0)U (t) is

d (X (t;X0)U (t)) =
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�
U (t) dt+ tU (t) dB (t) :

Therefore, since X (0; X0)U (0) = X0;
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Exercise 3 Compute the characteristic function of the random vector (log Y (1; 1) ; log Y (2; 1)) ;
where (Y (t; 1) ; t � 0) is the stochastic process solution of the homogeneuous Itô SDE associated
to the equation (1).

Solution: Let Z (t) := log Y (t) where Y (t) is given in (2). Then,
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and
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(Z (1) ; Z (2)) is gaussian random vector with parameters � :=
�
1
3 ;

2
3

�
and covariance matrix
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Hence is characteristic function is
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