Solution of the execises of the exam of the course Probability and Stochastic Processes

a.y. 2022/2023

06/29/2023

Exercise 1 Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. Consider the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0}+\int_{0}^{t} d s e^{-s} X(s)+\int_{0}^{t} s d B(s) \tag{1}\\
d X(t) & =e^{-t} X(t) d t+t d B(t)
\end{align*}
$$

where $(B(t), t \geq 0)$ is the Brownian motion.

1. Solve the equation (1) assuming the initial datum $X_{0}=0$.
2. Compute the probability distribution of the stochastic process $\left(X\left(t, X_{0}\right), t \geq 0\right)$.
3. Compute the density of the random vector $\left(X\left(2, X_{0}\right), X\left(1, X_{0}\right)\right)$.

Solution: The equation (1) is an Itô EDS with additive noise.
Setting

$$
\begin{equation*}
Y(t)=f(t, X(t)):=X(t) e^{-\int_{0}^{t} d s e^{-s}}=X(t) e^{e^{-t}-1} \tag{2}
\end{equation*}
$$

and computing the Itô's differential of $Y(t)$, since

$$
\begin{align*}
& \partial_{t} f(t, x)=-e^{-t} f(t, x), \tag{3}\\
& \partial_{x} f(t, x)=e^{e^{-t}-1} \tag{4}\\
& \partial_{x}^{2} f(t, x)=0 \tag{5}
\end{align*}
$$

we get

$$
\begin{align*}
d Y(t) & =t e^{e^{-t}-1} d B(t) \tag{6}\\
Y(t) & =\int_{0}^{t} s e^{e^{-s}-1} d B(s) \tag{7}
\end{align*}
$$

That is, taking into account that $Y(0, X(0))=0$,

$$
\begin{align*}
X\left(t, X_{0}\right) & =e^{1-e^{-t}} \int_{0}^{t} s e^{e^{-s}-1} d B(s) \tag{8}\\
& =\int_{0}^{t} s e^{e^{-s}-e^{-t}} d B(s)
\end{align*}
$$

1. We have

$$
\begin{equation*}
\mathbb{E}\left[X\left(t, X_{0}\right)\right]=0 \tag{9}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
q_{X}(t)=\mathbb{E}\left[X^{2}(t)\right]=\int_{0}^{t} d s s^{2} e^{2\left(e^{-s}-e^{-t}\right)} \tag{10}
\end{equation*}
$$

Hence, $X(t)$ has Gaussian distribution of mean 0 and variance $q_{X}(t)$.
2. From (8) it follows that

$$
\begin{equation*}
\operatorname{Cov}\left[X\left(t, X_{0}\right), X\left(s, X_{0}\right)\right]=e^{-\left(e^{-t}+e^{-s}\right)} \mathbb{E}\left[\int_{0}^{t \wedge s} d \tau \tau^{2} e^{2 e^{-\tau}}\right] \tag{11}
\end{equation*}
$$

The random vector

$$
\begin{align*}
Y & : \quad=\left(X\left(2, X_{0}\right), X\left(1, X_{0}\right)\right) \tag{12}\\
& =\left(\int_{0}^{2} s e^{e^{-s}-e^{-2}} d B(s), \int_{0}^{1} s e^{e^{-s}-e^{-1}} d B(s)\right)
\end{align*}
$$

has Gaussian distribution with expectation vector $(0,0)$ and covariance matrix

$$
C:=\left(\begin{array}{ll}
a & b \tag{13}\\
b & c
\end{array}\right)
$$

Therefore,

$$
\begin{align*}
f_{Y}(x, y) & =\frac{1}{\sqrt{(2 \pi)^{2} \operatorname{det} C}} \exp \left\{-\frac{\left\langle C^{-1}(x, y),(x, y)\right\rangle}{2}\right\} \tag{14}\\
& =\frac{1}{\sqrt{(2 \pi)^{2}\left(a c-b^{2}\right)}} \exp \left\{-\frac{1}{2\left(a c-b^{2}\right)}\left(b x^{2}-2 b x y+c y^{2}\right)\right\}
\end{align*}
$$

Exercise 2 Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. Consider the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{aligned}
& X\left(t, X_{0}\right)=X_{0}+t+2 \int_{0}^{t} \sqrt{X(s)} d B(s) \\
&\left\{\begin{array}{l}
d X(t)=d t+2 \sqrt{X(t)} d B(t) \\
X(0)=X_{0}
\end{array}\right.
\end{aligned}
$$

where $(B(t), t \geq 0)$ is the Brownian motion and X_{0} is a r.v. independent of the filtration generated by the Brownin motion.

What is the probability distribution of the solution at a given time t?
Solution: Set $X\left(t, X_{0}\right)=f(t, B(t))$ where $f \in C^{1,2}\left(\mathbb{R}^{2}\right)$. By the Itô's Lemma we get

$$
d f(B(t))=\left[\left(\frac{\partial}{\partial t} f\right)(t, B(t))+\frac{1}{2}\left(\frac{\partial^{2}}{\partial y^{2}} f\right)(t, B(t))\right] d t+\left(\frac{\partial}{\partial y} f\right)(t, B(t)) d B(t) .
$$

Hence,

$$
\begin{gathered}
X_{0}+t+2 \int_{0}^{t} \sqrt{X(s)} d B(s)=X_{0}+\int_{0}^{t} d s+2 \int_{0}^{t} \sqrt{f\left(B(s), X_{0}\right)} d B(s) \\
=f(0,0)+\int_{0}^{t} d s\left[\left(\frac{\partial}{\partial t} f\right)+\frac{1}{2}\left(\frac{\partial^{2}}{\partial y^{2}} f\right)\right](s, B(s))+\int_{0}^{t}\left(\frac{\partial}{\partial y} f\right)(s, B(s)) d B(s),
\end{gathered}
$$

which implies

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial y} f\right)(t, y)=2 \sqrt{f(t, y)} \\
\left(\frac{\partial}{\partial t} f\right)(t, y)+\frac{1}{2}\left(\frac{\partial^{2}}{\partial y^{2}} f\right)(t, y)=1 \\
f(0,0)=X_{0}
\end{array} .\right.
$$

Differentiating the first equation with respect to y we get

$$
\left(\frac{\partial^{2}}{\partial y^{2}} f\right)=\frac{1}{\sqrt{f(t, y)}}\left(\frac{\partial}{\partial y} f\right)(t, y)=2
$$

which, inserted in the second equation gives $\left(\frac{\partial}{\partial t} f\right)(t, y)=0$. Hence, $f(t, y)=y^{2}+X_{0}$, that is $X\left(t, X_{0}\right)=B^{2}(t)+X_{0}$.

