Solution of the execises of the exam of the course Probability and Stochastic Processes

a.y. $2022 / 2023$

11/30/2023

Exercise 1 Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. We consider the stochastic process described by the Itô Stochastic Differential Equation

$$
\begin{align*}
X\left(t, X_{0}\right) & =X_{0}+\int_{0}^{t} d s\left[\sqrt{s} X(s)+e^{-s}\right]+\int_{0}^{t} s d B(s) \tag{1}\\
d X(t) & =\left[\sqrt{s} X(t)+e^{-t}\right] d t+t d B(t)
\end{align*}
$$

where $\{B(t)\}_{t \geq 0}$ is the Brownian motion.

1. Solve the equation (1) assuming the initial datum $X_{0}=0$.
2. Compute the probability distribution of the stochastic process $\left(X\left(t, X_{0}\right), t \geq 0\right)$.
3. Compute the density of the random vector $\left(X\left(2, X_{0}\right), X\left(1, X_{0}\right)\right)$.

Solution:

1. See Exercise 1 of the exam of july the 7 th 2018. The solution of equation (1) is

$$
X\left(t, X_{0}\right)=e^{\frac{2}{3} t^{\frac{3}{2}}}\left[X_{0}+\int_{0}^{t} d s e^{-\left(\frac{2}{3} s^{\frac{3}{2}}+s\right)}+\int_{0}^{t} s e^{-\frac{2}{3} s^{\frac{3}{2}}} d B(s)\right]
$$

2. Since $X_{0}=0$, from the previous equation we have that setting $\forall t>0, X(t, 0)=: X(t)$,

$$
\begin{aligned}
\mu(t) & : \\
\sigma^{2}(t) & : \\
& =\mathbb{E}[X(t)]=e^{\frac{2}{3} t^{\frac{3}{2}}} \int_{0}^{t} d s e^{-\left(\frac{2}{3} s^{\frac{3}{2}}+s\right)} \\
& =e^{\frac{4}{3} t^{\frac{3}{2}}} \int_{0}^{t} d s s^{2} e^{-\frac{4}{3} s^{\frac{3}{2}}}
\end{aligned}
$$

Therefore, $\forall t>0, X\left(t, X_{0}\right) \stackrel{d}{=} N\left(\mu(t), \sigma^{2}(t)\right)$.
3. Since

$$
\begin{aligned}
\operatorname{Cov}\left[X\left(t, X_{0}\right), X\left(s, X_{0}\right)\right] & =\mathbb{E}\left[\left(X\left(t, X_{0}\right)-\mathbb{E}\left[Y\left(t, X_{0}\right)\right]\right)\left(Y\left(s, X_{0}\right)-\mathbb{E}\left[Y\left(s, X_{0}\right)\right]\right)\right] \\
& =e^{\frac{2}{3}\left(t^{\frac{3}{2}}+s^{\frac{3}{2}}\right)} \mathbb{E}\left[\int_{0}^{t \wedge s} d \tau \tau^{2} e^{-\frac{4}{3} \tau^{\frac{3}{2}}}\right]=c(t, s)
\end{aligned}
$$

The random vector

$$
X:=\left(X\left(2, X_{0}\right), X\left(1, X_{0}\right)\right)
$$

has Gaussian distribution with expectation vector

$$
\mu=(\mu(2), \mu(1))=\left(\mu_{1}, \mu_{2}\right)
$$

and covariance matrix

$$
C:=\left(\begin{array}{cc}
\sigma^{2}(2) & c(1,2) \\
c(1,2) & \sigma^{2}(1)
\end{array}\right)=\left(\begin{array}{cc}
a & c b \\
c b & b
\end{array}\right)
$$

where $c:=e^{\frac{2}{3}\left(2^{\frac{3}{2}}+1\right)}$. Therefore,

$$
f_{Y}(x, y)=\frac{1}{\sqrt{(2 \pi)^{2} \operatorname{det} C}} \exp \left\{-\frac{\left\langle C^{-1}\left(x-\mu_{1}, y-\mu_{2}\right),\left(x-\mu_{1}, y-\mu_{2}\right)\right\rangle}{2}\right\}
$$

where $\operatorname{det} C=b\left(a-c^{2} b\right)$ and

$$
C^{-1}=\frac{1}{b\left(a-c^{2} b\right)}\left(\begin{array}{cc}
b & -c b \\
-c b & a
\end{array}\right)
$$

Exercise 2 Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbb{P}\right)$ be the filtered Wiener space. Consider the stochastic process $\left(X\left(t, X_{0}\right), t \geq 0\right)$ such that $\forall t \geq 0, X\left(t, X_{0}\right):=\left(B(t)+X_{0}^{\frac{1}{3}}\right)^{3}$.

1. Write the Itô Stochastic Differential Equation satisfied by $\left(X\left(t, X_{0}\right), t \geq 0\right)$.
2. Let $X_{0}=0$. Compute, the expectation and the variance of $(X(t), t \geq 0)$, where $\forall t \geq$ $0, X(t):=X\left(t, X_{0}\right)$.

Solution:

1. Let $c:=X_{0}^{\frac{1}{3}} \in \mathbb{R}$ and $\mathbb{R} \ni x \mapsto g(x):=(x+c)^{3} \in \mathbb{R}$. Then, $X\left(t, X_{0}\right)=f(t, B(t))=$ $g(B(t))$. Since

$$
\begin{aligned}
\partial_{t} f(t, x) & =0, \\
\partial_{x} f(t, x) & =3(x+c)^{2}, \\
\partial_{x}^{2} f(t, x) & =6(x+c),
\end{aligned}
$$

because $B(t)+X_{0}^{\frac{1}{3}}=X^{\frac{1}{3}}\left(t, X_{0}\right)$, applying the Itô Lemma, we get

$$
X\left(t, X_{0}\right)=X_{0}^{\frac{1}{3}}+3 \int_{0}^{t} d s X^{\frac{1}{3}}(s)+3 \int_{0}^{t} X^{\frac{2}{3}}(s) d B(s)
$$

2. By definition $X(t)=B^{3}(t)$. Hence, since $B(t) \stackrel{d}{=} \sqrt{t} B(1)$, where $B(1) \stackrel{d}{=} N(0,1)$, because the density of the standard normal r.v. is an even function,

$$
\mathbb{E}[X(t)]=\mathbb{E}\left[B^{3}(t)\right]=t^{\frac{3}{2}} \mathbb{E}\left[B^{3}(1)\right]=t^{\frac{3}{2}} \int_{\mathbb{R}} d x x^{3} \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}}=0
$$

Therefore, the variance of $X(t)$ is equal to

$$
\mathbb{E}\left[X^{2}(t)\right]=\mathbb{E}\left[B^{6}(t)\right]=t^{3} \mathbb{E}\left[B^{6}(1)\right]=t^{3} \int_{\mathbb{R}} d x x^{6} \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}}=15 t^{3}
$$

