
A system with template answer set programs?

Francesco Calimeri, Giovambattista Ianni, Giuseppe Ielpa, Adriana
Pietramala, and Maria Carmela Santoro

Department of Mathematics, University of Calabria - 87030 Rende (CS), Italy
{calimeri,ianni,ielpa,pietramala,santoro}@mat.unical.it

Abstract. Although ASP systems have been extended in many direc-
tions, they still miss features which may be helpful towards industrial
applications, like capabilities of quickly introduce new predefined con-
structs or to deal with compound data structures and module. We show
here an implementation on top of the DLV system of DLP

T language,
which features increased declarativity, code readability, compactness and
reusability.

1 Introduction

ASP has recently found a number of promising applications, like information
integration and knowledge management (even in some projects funded by the
European Commission [14, 13]). Indeed, the ASP community has produced sev-
eral extensions of non-monotonic logic languages, aimed at improving readability
and easy programming; in order to specify classes of constraints, search spaces,
data structures, new forms of reasoning, new special predicates [1, 6, 15, 3, 2, 7].

We describe here the DLP
T system as an extension of ASP with template

constructs. ASP systems developers are enabled to fast prototype, making new
features quickly available to the community, and later to concentrate on efficient
(long lasting) implementations. Template predicates allow to define intensional
predicates by means of generic, reusable subprograms, easing coding and im-
proving readability and compactness. For instance, a template program is like

#template max[p(1)](1) {
exceeded(X) :- p(X),p(Y), Y > X.
max(X) :- p(X), not exceeded(X). }

The statement above defines the predicate max, which computes the maxi-
mum value over the domain of a generic unary predicate p. A template definition
may be instantiated as many times as necessary, through template atoms (or tem-
plate invocations), like in :-max[weight(*)](M),M>100. Template definitions may
be unified with a template atom in many ways. The above rule contains a plain
invocation, while in :-max[student(Sex,$,*)](M),M>25. there is a compound one.

The DLP
T language has been successfully implemented and tested on top of

the DLV system [9]. Anyway, the proposed paradigm does not rely at all on DLV

special features, and is easily generalizable.
? This work was partially supported by the European Commission under projects

IST-2002-33570 INFOMIX, and IST-2001-37004 WASP.



2 Syntax

A DLP
T program is an ASP program1 containing (possibly negated) template

atoms. A template definition D consists of two parts; (i) a template header,
#template nD[f1(b1) , ... , fn(bn)](bn+1), where each bi(1 ≤ i ≤ n + 1) is a nonnega-
tive integer value, f1, . . . , fn are predicate names (called formal predicates), and
nD is called template name; (ii) an associated DLP

T subprogram enclosed in
curly braces; nD may be used within the subprogram as predicate of arity bn+1,
whereas each predicate fi(1 ≤ i ≤ n) is intended to be of arity bi. At least a rule
having nD in the head must be declared. For instance, the following (defining
subsets of the domain of a given predicate p) is a valid template definition:
#template subset[p(1)](1) { subset(X) v -subset(X) :- p(X). }.

A template atom t is of the form: nt[p1(X1) , . . . , pn(Xn)](A), where p1, . . . , pn are
predicate names (actual predicates), and nt a template name. Each Xi(1 ≤ i ≤ n) is a list
of special terms. A special list of terms can contain either a variable name, a constant
name, a ‘$’ symbol (projection term) or a ‘*’ symbol (parameter term). Variables and
constants are standard terms. Each pi(Xi)(1 ≤ i ≤ n) is called special atom. A is a list of
standard terms called output list. Given a template atom t, let D(t) be the corresponding
template definition. It is assumed there is a unique definition for each template name.

Briefly, projection terms (‘$’ symbols) indicate which attributes of an actual predi-
cate have to be ignored. A standard term within an actual atom indicates a ‘group-by’
attribute, whereas parameter terms (‘*’ symbols) indicate attributes to be considered
as parameter. An example of template atom is max[company($,State,*)](Income).
Intuitively, the extension of this predicate consists of the companies with maximum
value of the Income attribute (the third attribute of the company predicate), grouped
by State (the second attribute), ignoring the first attribute. The computed values of
Income are returned through the output list.

3 Knowledge Representation

A couple of examples now follows. For instance it is possible to define aggregate predi-
cates [16]. They allow to represent properties over sets of elements. The next template
predicate counts distinct instances of a predicate p, given an order relation succ defined
on the domain of p. Moreover, this definition does not suffer from semantic limitations
[3] and can be invoked also in recursive components of the programs. We assume the
domain of integers is bounded to some finite value.

#template count[p(1),succ(2)](1) {
partialCount(0,0).
partialCount(I,V) :- not p(Y), I=Y+1, partialCount(Y,V).
partialCount(I,V2) :- p(Y), I=Y+1, partialCount(Y,V), succ(V,V2).
partialCount(I,V2) :- p(Y),I=Y+1, partialCount(Y,V), max[succ(*,$)](V2).
count(M) :- max[partialCount($,*)](M). }

A ground atom partialCount(i,a) means that, at the stage i, a has been counted
up; count takes the value counted at the highest (i.e. the last) stage value.

It is worth noting how max is employed over the partialCount predicate, which is
binary. The last rule is equivalent to the piece of code:

partialCount’(X) :- partialCount(_,X).
count(M) :- max[partialCount’(*)](M).

Templates may help introducing and reusing definitions of common search spaces.

1 We assume the reader to be familiar with basic notions concerning with ASP syntax
and semantics; for further information please refer to [5].



EXPLODERI
F
nternal

ormat

DLT

DLV

SOLVER

USER INTERFACE

DLT FRONTEND

FRONTENDDLV

P PRE- ARSER

Program

DLV

DLT Core

FILTERING

DLV OUTPUT

DLT OUTPUT

Fig. 1. Architecture of DLT system

#template permutation[p(1)](2). {
permutation(X,N) v npermutation(X,N) :- p(X),#int(N),count[p(*),>(*,*)](N1),N<=N1.
:- permutation(X,A),permutation(Z,A), Z <> X.
:- permutation(X,A),permutation(X,B), A <> B.
covered(X) :- permutation(X,A).
:- p(X), not covered(X). }

Such kind of constructs enriching plain Datalog have been proposed, for instance, in
[11, 1]. The above predicate ranges permutations over the domain of a given predicate
p. In this case a ground atom permutation(x,i) tells that the element x (taken from
the domain of p), is at position i within the currently guessed permutation. The rest
of the template subprogram forces permutations properties to be met.

4 Informal Semantics

Semantics are given through a suitable ‘‘explosion’’ algorithm. Given a DLP
T program

P , the Explode algorithm replaces each template atom t with a standard atom, referring
to a fresh intensional predicate pt. The subprogram dt (which may have associated
more than one template atom), defining the predicate pt, is computed according to
the template definition D(t). The final output of the algorithm is a standard ASP
program P ′. Answer sets of the originating program P are constructed, by definition,
from answer sets of P ′. A full description of the ‘‘explosion’’ algorithm as well as many
more details are available in [12].

5 System architecture and usage

The DLP
T language has been implemented on top of the DLV system [8–10], creating

DLT system. The current version is available on the web [4, 12].

The overall architecture of the system is shown in Figure 1. The Core controls the
whole process and interacts with frontend modules. A Pre-parser performs syntactic
checks and builds an internal representation of the DLP

T program. The Inflater per-
forms the Explode Algorithm and produces an equivalent DLV program P ′ which is piped
towards the DLV system. The models M(P ′) of P ′, computed by DLV, are then filtered
out by the Post-parser in order to remove previously added internal information.

The DLV system is continuously enriched with new features; thus, the user is allowed
to exploit the ASITIS directive in order to exclude from parsing some piece of code
(containing constructs DLT is not aware of, but recognized by the underlying system).
This allows to adapt DLT to other ASP systems with different syntax.



6 Current Work

We are working extending the framework a) generalizing template semantics for safe
forms of recursion between invocations, b) introducing new forms of template atoms
in order to improve reusability of the same template definition in different contexts, c)
extending the template definition language using standard languages, such as C++.

Some experiments are being performed in order to have an idea about the overhead
due to the “exploded” code. Encodings of well-known (e.g. K-clique, hamiltonian path,
3-colorability, etc.) problems have been tested: “pure” ASP against exploded DLP

T

ones (originally written exploiting templates). Overhead of the latter is never higher
than 5%. However, performances are strictly tied to performances of resulting ASP pro-
grams; and it is worth remarking that this work, aiming at introducing fast prototyping
techniques, does not consider time performances as a primary target2.

References

1. M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An ex-
ecutable specification language for solving all the problems in NP. Computer
Languages, Elsevier Science, Amsterdam (Netherlands), 26(2-4):165–195, 2000.

2. W. Chen, M. Kifer, and D. S. Warren. Hilog: A foundation for higher-order logic
programming. Journal of Logic Programming, 15:187–230, 1993.

3. T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Functions
in Disjunctive Logic Programming: Semantics, Complexity, and Implementation in
DLV. In Proceedings IJCAI-2003, Acapulco, Mexico, Aug. 2003.

4. The DLPT web site. http://dlpt.gibbi.com.
5. T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using

the DLV System. In Logic-Based Artificial Intelligence, pages 79–103. Kluwer
Academic Publishers, 2000.

6. T. Eiter, G. Gottlob, and N. Leone. Abduction from Logic Programs: Semantics
and Complexity. Theoretical Computer Science, 189(1–2):129–177, December 1997.

7. T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized
Quantifiers. In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of LPNMR-
97, number 1265 in LNCS, pages 290–309. Springer, 1997.

8. W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using Database Optimization
Techniques for Nonmonotonic Reasoning. In Proceedings of DDLP’99.

9. W. Faber, N. Leone, and G. Pfeifer. Experimenting with Heuristics for Answer Set
Programming. In Proceedings of IJCAI 2001, pages 635–640, Seattle, WA, USA.

10. W. Faber and G. Pfeifer. DLV homepage, since 1996. http://www.dlvsystem.com/.
11. S. Greco and D. Saccà. NP optimization problems in datalog. International Sym-

posium on Logic Programming. Port Jefferson, NY, USA, pages 181–195, 1997.
12. G. Ianni, F. Calimeri, G. Ielpa, A. Pietramala, and M. C. Santoro. Enhancing

answer set programming with templates. In Proceedings of NMR 2004.
13. The ICONS web site. http://www.icons.rodan.pl/.
14. The Infomix web site. http://www.mat.unical.it/infomix.
15. G. M. Kuper. Logic programming with sets. Journal of Computer and System

Sciences, 41(1):44–64, 1990.
16. K. A. Ross and Y. Sagiv. Monotonic aggregation in deductive databases. Journal

of Computer and System Sciences, 54(1):79–97, 1997.

2 We would like to thank Nicola Leone and Luigi Palopoli for their fruitful remarks.


