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Disjunctive Logic Programming is nowadays a mature
formalism which has been successfully applied to a va-
riety of practical problems, such as information inte-
gration, knowledge representation, planning, diagno-
sis, optimization and configuration. Although current
DLP systems have been extended in many directions,
they still miss features which may be helpful towards
industrial applications, like the capability of quickly in-
troducing new predefined constructs or of dealing with
modules. Indeed, in spite of the fact that a wide lit-
erature about modular logic programming is known,
code reusability has never been considered as a crit-
ical point in Disjunctive Logic Programming. In this
work we extend the Disjunctive Logic Programming,
under the stable model semantics, with the notion of
‘template’ predicates. A template predicate may be in-
stantiated to an ordinary predicate by means of tem-
plate atoms, thus allowing to define reusable modules,
to define new constructs and aggregates without any
syntactic limitation.
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1. Introduction

Disjunctive Logic Programming (dlp) is nowa-
days a generic term including many language
flavors, whose common base is the adoption of
the ‘Gelfond-Lifschitz reduct’ [Gelfond and Lifs-
chitz, 1991] as a main tool for defining the un-
derlying semantics. Roughly speaking, Disjunc-
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tive Logic Programming dialects are variants of
Datalog, where models for a given program (sta-
ble models) may be multiple. Most of these lan-
guages allow to filter out models by means of
constraints or to select among different models
by means of weight constraints or similar exten-
sions [Buccafurri et al., 2000; Niemelä et al., 1999;
Niemelä, 1999; Simons, 1999; Niemelä et al., 1999;
2000; Marek and Remmel, 2002; Ferraris and Lif-
schitz, 2005].
After some pioneering work on stable model com-
putation [Bell et al., 1994; Subrahmanian et al.,
1995], research in the field produced several, ma-
ture, implemented systems featuring clear seman-
tics and efficient program evaluation [Seipel and
Thöne, 1994; Babovich, since 2002; Chen and War-
ren, 1996; Cholewiński et al., 1996; Aravindan et
al., 1997; Rao et al., 1997; McCain and Turner,
1998; Cholewiński et al., 1999; Egly et al., 2000;
East and Truszczyński, 2000; Anger et al., 2001;
East and Truszczyński, 2001; Leone et al., 2005b;
Lierler and Maratea, 2004; Lin and Zhao, 2004;
Janhunen and Niemelä, 2004; Lierler, 2005].
dlp under the stable model semantics has recently
found a number of promising applications: sev-
eral tasks in information integration and knowl-
edge management require complex reasoning ca-
pabilities, which are explored, for instance, in
the INFOMIX and ICONS projects (funded by
the European Commission)[Leone et al., 2005a;
ICONS, since 2001].
It is very likely that this new generation of dlp

applications require the introduction of repetitive
pieces of standard code. Indeed, a major need
of complex and huge dlp applications such as
[Nogueira et al., 2001] is dealing efficiently with
large pieces of such a code and with complex data
structures, more sophisticated than the simple, na-
tive ASP data types.
Indeed, the non-monotonic reasoning community
has continuously produced, in the past, several ex-
tensions of nonmonotonic logic languages, aimed
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at improving readability and easy programming
through the introduction of new constructs, em-
ployed in order to specify classes of constraints,
search spaces, data structures, new forms of rea-
soning, new special predicates [Cadoli et al., 1999;
Eiter et al., 1997a; Kuper, 1990], such as aggregate
predicates [Calimeri et al., 2005].
Nonetheless, code reusability has never been con-
sidered as a priority in the Answer Set Program-
ming/dlp field, despite the fact that modular logic
programming has been widely studied in the gen-
eral case [Bugliesi et al., 1994; Eiter et al., 1997b].
The language dlp

T we propose here has two pur-
poses. First, dlp

T moves the DLP field towards
industrial applications, where code reusability is
a crucial issue. Second, dlp

T aims at minimiz-
ing developing times in DLP system prototyping.
DLP systems developers wishing to introduce new
constructs are enabled to fast prototype their lan-
guages, make their language features quickly avail-
able to the scientific community, and successively
concentrate on efficient (and long lasting) imple-
mentations. To this end, it is necessary a sound
specification language for new DLP constructs.
DLP itself proves to fit very well for this purpose.
The proposed framework introduces the concept of
‘template’ predicate, whose definition can be ex-
ploited whenever needed through binding to usual
predicates.
Template predicates can be seen as a way to define
intensional predicates by means of a subprogram,
where the subprogram is generic and reusable.
This eases coding and improves readability and
compactness of DLP programs:

Example 1 The following template definition

#template max[p(1)](1)

{
exceeded(X) :- p(X),p(Y), Y > X.

max(X) :- p(X), not exceeded(X).

}

introduces a generic template program, defining
the predicate max, intended to compute the max-
imum value over the domain of a generic unary
predicate p. A template definition may be instanti-
ated as many times as necessary, through template
atoms, like in the following sample program

:- max[weight(*)](M), M > 100. (a)

:- max[student(Sex,$,*)](M), M >25. (b)

Template definitions may be unified with a tem-
plate atom in many ways. The above program con-
tains two invocations: a plain invocation (a), and a
compound invocation (b). The latter allows to em-
ploy the definition of the template predicate max

on a ternary predicate, discarding the second at-
tribute of student, and grouping by values of the
first attribute. 2

The operational semantics of the language is de-
fined through a suitable algorithm (actually, a
pseudo-algorithm, as we will see in Section 4)
which is able to produce, from a set of nonrecur-
sive template definitions and a dlp

T program, an
equivalent DLP program. There are some impor-
tant theoretical questions to be addressed, such as
the termination of the algorithm, and the expres-
siveness of the dlp

T language. Indeed, we prove
that it is guaranteed that dlp

T program encodings
are as efficient as plain DLP encodings, since un-
folded programs are just polynomially larger with
respect to the originating program.
The dlp

T language has been successfully im-
plemented and tested on top of the DLV sys-
tem [Faber et al., 2001]. Anyway, the proposed
paradigm does not rely at all on DLV special fea-
tures, and is easily generalizable. In sum, benefits
of the dlp

T language are: improved declarativity
and succinctness of the code; code reusability and
possibility to collect templates within libraries; ca-
pability to quickly introduce new, predefined con-
structs; fast language prototyping.
The paper is structured as follows:

– Section 2 briefly gives syntax and semantics of
DLP and syntax of the language dlp

T .
– The features of dlp

T are illustrated in Section 3,
with the help of some examples.

– Section 4 formally introduces the semantics of
dlp

T .
– Theoretical properties of dlp

T are discussed in
Section 5.

– An implementation of the dlp
T language on top

of a suitable DLP solver is presented in Sec-
tion 6.

– Eventually, in section 7, conclusions are drawn.
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2. Syntax of the dlp
T language

We provide here the syntax of dlp
T . But first, we

give a survey on formal syntax and semantics of
dlp.

2.1. Disjunctive Logic Programming

The flavor of dlp we will consider is basically con-
sisting in Disjunctive Datalog enriched with weak
constraints. For further background the reader
can refer to [Eiter et al., 2000; Gelfond and Lif-
schitz, 1991]. In addition, in [Apt and Bol, 1994;
Dix, 1995] more comprehensive surveys on the se-
mantics of disjunction and negation are given.

2.1.1. dlp Syntax
A (standard) term is either a variable or a con-
stant. Usually, strings starting with uppercase let-
ters denote variables, while those starting with
lower case letters denote constants, such as X and
x , respectively.
An atom is an expression p(t1, . . .,tn), where p is a
predicate of arity n and t1,. . . ,tn are terms, such as
edge(a,X ) or p(X ). A classical literal l is either an
atom p (in this case, it is positive), or a (strongly)
negated atom ¬p (in this case, it is negative). A
negation as failure (NAF) literal ℓ is of the form l
or not l , where l is a classical literal; in the former
case ℓ is positive, and in the latter case negative.
Unless stated otherwise, by literal a NAF literal is
meant.
Given a classical literal l , its complementary literal
¬l is defined as ¬p if l = p and p if l = ¬p. A set L
of literals is said to be consistent if, for every literal
l ∈ L, its complementary literal is not contained
in L.
A disjunctive rule (rule, for short) r is a formula

a1 v · · · v an ← b1, · · · , bk , not bk+1, · · · , not bm ·(1)

where a1, · · · , an , b1, · · · , bm are classical literals
and n ≥ 0, m ≥ k ≥ 0. The disjunction
a1 v · · · v an is said to be the head of r , while the
conjunction b1, . . . , bk , not bk+1, . . . , not bm is the
body of r . A rule without head literals (i.e. n = 0)
is usually referred to as an integrity constraint. A
rule having precisely one head literal (i.e. n = 1)
is called a normal rule. If the body of r is empty
(i.e. k = m = 0), r is called fact, and usually the
“←” sign is omitted.
For any set L of classical literals, not L = {not l |
l ∈ L} is denoted. If r is a rule of form (1), then

H (r) = {a1, . . ., an} is the set of the literals in
the head and B(r)= B+(r)∪ B−(r) is the set of
the body literals, where B+(r) (the positive body)
is {b1,. . . , bk} and B−(r) (the negative body) is
{bk+1, . . . , bm}.
A dlp program (alternatively, disjunctive datalog
program) P is a finite set of rules. A not-free pro-
gram P (i.e., such that ∀r ∈ P : B−(r) = ∅) is
called positive. In positive programs negation as
failure (not) does not occur, while strong negation
(¬) may be present. A v -free program P (i.e., such
that ∀r ∈ P : |H (r)| ≤ 1) is called datalog program
(or normal logic program).
A term (an atom, a rule, a program, etc.) is ground,
if no variable appears in it. A ground program is
also called a propositional program.
Usually, we simply refer to programs, if we want
to point out that they are not restricted to be pos-
itive, normal or ground.

Weak constraints. Weak constraints (see [Bucca-
furri et al., 2000]) are defined as a variant of in-
tegrity constraints. In order to differentiate clearly
between them, for weak constraints the symbol
‘:∼’ is adopted instead of ‘←’. Additionally, a
weight and a priority level (or layer) inducing a
partial order of the weak constraints are specified
explicitly.
Formally, a weak constraint wc is an expression of
the form

:∼ b1, . . . , bk , not bk+1, . . . , not bm · [w : l ]

where for m ≥ k ≥ 0, b1, . . . , bm are classical liter-
als, while w (the weight) and l (the level, or layer)
are positive integer constants or variables. For con-
venience, w and/or l might be omitted and are set
to 1 in this case.
The sets B(wc), B+(wc), and B−(wc) of a weak
constraint wc are defined in the same way as for
regular integrity constraints.

2.1.2. dlp Semantics
The most widely accepted semantics for dlp is the
Stable Model Semantics proposed by Gelfond and
Lifschitz in 1991. According to this semantics, a
program may have several alternative stable mod-
els (but possibly none), each corresponding to a
possible view of the world.

The semantics provided in this section is a general-
ization of the original semantics proposed for weak
constraints in [Buccafurri et al., 2000], as seen in
[Leone et al., 2005b].
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Herbrand Universe. For any program P , let UP

(the Herbrand Universe) be the set of all constants
appearing in P . In case no constant appears in P ,
an arbitrary constant ψ is added to UP .

Herbrand Literal Base. For any program P , let
BP be the set of all ground (classical) literals con-
structible from the predicate symbols appearing in
P and the constants of UP (note that, for each
atom p, BP contains also the strongly negated lit-
eral ¬p).

Ground Instantiation. For any rule r , Ground(r)
denotes the set of rules obtained by applying all
possible substitutions σ from the variables in r to
elements of UP . In a similar way, given a weak
constraint w, Ground(w) denotes the set of weak
constraints obtained by applying all possible sub-
stitutions σ from the variables in w to elements of
UP . For any program P , Ground(P) denotes the
set GroundRules(P) ∪GroundWC (P), where

GroundRules(P) =
⋃

r∈Rules(P)

Ground(r)

and

GroundWC (P) =
⋃

w∈WC (P)

Ground(w)·

For propositional programs, P = Ground(P)
holds.

Stable Models. For every program P , we define
its stable models using its ground instantiation
Ground(P) in three steps: first we define the stable
models of positive disjunctive datalog programs,
then we give a reduction of disjunctive datalog
programs containing negation as failure to positive
ones and use it to define stable models of arbitrary
disjunctive datalog programs, possibly containing
negation as failure. Finally, we specify the way how
weak constraints affect the semantics, defining the
semantics of general programs.

An interpretation I is a set of ground classical lit-
erals, i.e. I ⊆ BP w.r.t. a program P . A consis-
tent interpretation I ⊆ BP is called closed under
P (where P is a positive disjunctive datalog pro-
gram), if, for every r ∈ Ground(P), H (r) ∩ I 6= ∅
whenever B(r) ⊆ I . An interpretation I ⊆ BP

is a stable model for a positive disjunctive datalog

program P , if it is minimal (under set inclusion)
among all interpretations that are closed under P .1

Example 2 The positive program

P1 = {a v¬b v c·}

has the stable models {a}, {¬b}, and {c}. Its ex-
tension

P2 = {a v¬b v c· , ← a·}

has the stable models {¬b} and {c}. Finally, the
positive program

P3 = {a v¬b v c· , ← a· , ¬b ← c· , c ← ¬b·}

has the single stable model the set {¬b, c}.

The reduct or Gelfond-Lifschitz transform of a
ground program P w.r.t. a set I ⊆ BP is the pos-
itive ground program PI , obtained from P by

– deleting all rules r ∈ P for which B−(r)∩ I 6= ∅
holds;

– deleting the negative body from the remaining
rules.

A stable model of a program P is a set I ⊆ BP

such that I is a stable model of Ground(P)I .

Example 3 Given the general program P4:

a v¬b ← c·
¬b ← not a, not c·
a v c ← not ¬b·

and the interpretation I = {¬b}, the reduct PI
4 is

{a v¬b ← c· , ¬b·}. It is easy to see that I is a
stable model of PI

4 , and for this reason it is also a
stable model of P4.
Now consider the interpretation J = {a}. The
reduct PJ

4 is {a v¬b ← c· , a v c·} and it can be
easily verified that J is a stable model of PJ

4 , so it
is also stable model of P4.
If, on the other hand, we take K = {c}, the reduct
PK

4 is equal to PJ
4 , but K is not stable model of

PK
4 : for the rule r : a v¬b ← c, B(r) ⊆ K holds,

but H (r)∩K 6= ∅ does not. Indeed, it can be veri-
fied that I and J are the only stable models of P4.

1Note that we only consider consistent stable models,
while in [Gelfond and Lifschitz, 1991] also the inconsistent
set of all possible literals can be a valid stable models.
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Given a ground program P with a set of weak
constraints WC (P), we are interested in the sta-
ble models of Rules(P) which minimize the sum
of weights of the violated (unsatisfied) weak con-
straints in the highest priority level2, and among
them those which minimize the sum of weights of
the violated weak constraints in the next lower
level, etc. Formally, this is expressed by an objec-
tive function H P(A) for P and a stable model A as
follows, using an auxiliary function fP which maps
leveled weights to weights without levels:

fP(1) = 1,

fP(n) = fP(n − 1) · |WC (P)| · wP
max + 1, n > 1,

HP(A) =
PlPmax

i=1 (fP(i) ·
P

w∈N
P

i
(A)

weight(w)),

where wP
max and lPmax denote the maximum weight

and maximum level over the weak constraints in
P, respectively; N P

i (A) denotes the set of the weak
constraints in level i that are violated by A, and
weight(w) denotes the weight of the weak con-
straint w . Note that |WC (P)| ·wP

max +1 is greater
than the sum of all weights in the program, and
therefore guaranteed to be greater than the sum
of weights of any single level.
Intuitively, the function fP handles priority levels.
It guarantees that the violation of a single con-
straint of priority level i is more “expensive” then
the violation of all weak constraints of the lower
levels (i.e., all levels < i).
For a program P (possibly with weak constraints),
a set A is an (optimal) stable model of P if and
only if (1) A is a stable model of Rules(P) and
(2) H P(A) is minimal over all the stable models of
Rules(P).

Example 4 Consider the following program Pwc ,
which contains three weak constraints:

a v b·
b v c·
d v¬d ← a, c·
:∼ b · [1 : 2]
:∼ a,¬d · [4 : 1]
:∼ c, d · [3 : 1]

Rules(Pwc) admits three stable models: A1 =
{a, c, d}, A2 = {a, c,¬d}, and A3 = {b}. We have:
H Pwc (A1) = 3, H Pwc (A2) = 4, H Pwc (A3) = 13.
Thus, the unique (optimal) stable model is {a, c, d}
with weight 3 in level 1 and weight 0 in level 2.

2Higher values for weights and priority levels mark weak
constraints of higher importance. E.g., the most important
constraints are those having the highest weight among those
with the highest priority level.

2.2. dlp
T

A dlp
T program is a dlp program where (possibly

negated) template atoms may appear in rules and
constraints. Definition of template atoms is next
provided.

Definition 1 A template definition D consists of:

- a template header,

#template nD [f1(b1) , · · · , fn(bn)](bn+1)

where b1, . . . , bn+1 are (nonnegative) integer val-
ues, and f1, . . . , fn are predicate names (formal
predicates, from now on). nD is called template
name;

- an associated dlp
T subprogram enclosed in

curly braces; nD may be used within the sub-
program as predicate of arity bn+1, whereas the
predicates fi , . . . , fn are intended to be of arity
bi , . . . , bn , respectively. At least a rule having nD

within its head must appear in the subprogram.

Example 5 Beside the one introduced in Exam-
ple 1, another valid template definition is the fol-
lowing:

#template subset[p(1)](1)

{
subset(X) v -subset(X) :- p(X).

}

Intuitively, this defines a subset of the predicate
‘p’; such a subset is non-deterministically chosen
by means of disjunction.

Definition 2 A template atom t is of the form:

nt [p1(X1) , . . . , pn (Xn)](A)

where p1, . . . , pn are predicate names (namely,
actual predicates), and nt is a template name.
Xi , . . . ,Xn are lists of special terms (referred in
the following as special lists of terms), where A is
a list of standard terms.
A special term is either a standard term, or a dollar
(‘$’) symbol (from now on, projection term) or a
star (‘*’) symbol (from now on, parameter term).
p1(Xi), . . . , pn(Xn) are called special atoms. A is
called output list.
Given a template atom t , let D(t) be the corre-
sponding template definition having the same tem-
plate name. It is assumed there is a unique defini-
tion for each template name.
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Example 6 Some template atoms are

max[company($,State,*)](Income).

subset[node(*)](X).

Template atoms may “instantiate” template defi-
nitions as many times as necessary.

Example 7 The following short piece of program
contains multiple instantiation of the ‘max’ tem-
plate, whose definition has been introduced in Ex-
ample 1:

:- max[weight(*)](M), M > 100.

:- max[student(Sex,$,*)](M), M > 25.

Looking at Example 6 and Example 7, we can get
some intuitions on (‘$’ and ‘*’ symbols). Basically,
projection terms (‘$’ symbols) are intended to in-
dicate which attributes, among those belonging to
an actual predicate, have to be ignored. A stan-
dard term (a constant or a variable) within an ac-
tual atom indicates a ‘group-by’ attribute, whereas
parameter terms (‘*’ symbols) indicate which at-
tributes have to be considered as parameters.
Thus, the intuitive meaning of the first template
atom of example 6 is to compute the companies
with the maximum value of the ‘income’ attribute
(the third attribute of the company predicate),
grouped by the ‘state’ attribute (the second one),
ignoring the first attribute. The computed values
of Income are returned through the output list.

Example 8 Given a database by means of facts like

emp companyA("Jones",30000,35,"Accounting").

[...]

emp companyB("Miller",34000,29,"Marketing").

the following single-rule program

emp companyAB(Name) :-

intersection[emp companyA](*,$,$,$),

emp companyB(*,$,$,$)](Name).

computes the employees working for both com-
pany A and company B. It exploits the tem-
plate ‘intersection’, defined in Section 3, and again

shows how ‘$’ and ‘*’ symbols can be used. The last
three attributes (name, salary, department) are
thus ignored, by meaning of ‘$’ symbols, while the
first (name) is intended as parameter, by meaning
of ‘*’ symbol.

3. Knowledge Representation by dlp
T

In this section we show by examples the main
advantages of template programming. Examples
point out the provision of a succinct, elegant and
easy-to-use way for quickly introducing new con-
structs through the dlp

T language.

Aggregates. Aggregate predicates [Ross and Sa-
giv, 1997], allow to represent properties over sets
of elements. Aggregates or similar special predi-
cates have been already studied and implemented
in several DLP solvers [Dell’Armi et al., 2003;
Simons, 2000]: the next example shows how to fast
prototype aggregate semantics without taking into
account of the efficiency of a built-in implementa-
tion. Here we take advantage of the template pred-
icate max, defined in Example 1. The next tem-
plate predicate defines a general program to count
distinct values of a predicate p, given an order re-
lation succ defined on the domain of p. We assume
the domain of integers is bounded to some finite
value.

#template count[p(1),succ(2)](1)

{
partialCount(0,0).

partialCount(I,V) :- not p(Y), I=Y+1,

partialCount(Y,V).

partialCount(I,V2) :- p(Y), I=Y+1,

partialCount(Y,V), succ(V,V2).

partialCount(I,V2) :- p(Y),I=Y+1,

partialCount(Y,V), max[succ(*,$)](V2).

count(M) :- max[partialCount($,*)](M).

}

The above template definition is conceived in or-
der to count, in a iterative-like way, values of the
p predicate through the partialCount predicate.
A ground atom partialCount(i , a) means that at
the stage i , the constant a has been counted up.
The predicate count takes the value which has
been counted at the highest (i.e. the last) stage
value. The above program is somehow involved
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and shows how difficult could be to simulate ag-
gregate constructs in Disjunctive Logic Program-
ming. Anyway, the use of templates allows to write
it once, and reuse it as many times as necessary.
It is worth noting how max is employed over
the binary predicate partialCount, instead of an
unary one. Indeed, the ‘$’ and ‘*’ symbols are
employed to project out the first argument of
partialCount. The last rule is equivalent to the
piece of code:

partialCount’(X) :- partialCount(_,X).

count(M) :- max[partialCount’(*)](M).

Definition of ad hoc search spaces. Template
definitions can be employed to introduce and
reuse constructs defining the most common search
spaces. This improves declarativity of DLP pro-
grams to a larger extent. The next two exam-
ples show how to define a predicate subset and
a predicate permutation, ranging, respectively,
over subsets and permutations of the domain of a
given predicate p. Such kind of constructs enrich-
ing plain Datalog languages have been proposed,
for instance, in [Laenens et al., 1990; Cadoli and
Schaerf, 2001].

#template subset[p(1)](1)

{
subset(X) v -subset(X) :- p(X).

}

#template permutation[p(1)](2).

{
permutation(X,N) v npermutation(X,N) :- p(X),

#int(N), count[p(*),>(*,*)](N1), N<=N1.

:- permutation(X,A),permutation(Z,A), Z <> X.

:- permutation(X,A),permutation(X,B), A <> B.

covered(X) :- permutation(X,A).

:- p(X), not covered(X).

}

The explanation of the subset template pred-
icate (already appeared in Example 5 is quite
straightforward. As for the permutation defini-
tion, a ground atom permutation(x , i) tells that
the element x (taken from the domain of p), is in
position i within the currently guessed permuta-
tion. The rest of the template subprogram forces
permutations properties to be met.

Next we show how count and subset can be ex-
ploited to succinctly encode the k-clique problem
[Garey and Johnson, 1979], i.e., given a graph G
(represented by predicates node and edge), find
if there exists a complete subgraph containing at
least k nodes (we consider here the 5-clique prob-
lem):

in_clique(X) :- subset[node(*)](X).

:- count[in_clique(*),>(*,*)](K), K < 5.

:- in_clique(X),in_clique(Y), X <> Y,

not edge(X,Y).

The first rule of this example guesses a clique from
a subset of nodes. The first constraint forces a
candidate clique to be at least of 5 nodes, while
the last forces a candidate clique to be strongly
connected. The permutation template can be em-
ployed, for instance, to encode the Hamiltonian
Path problem: given a graph G, find a path visit-
ing each node of G exactly once:

path(X,N) :- permutation[node(*)](X,N).

:- path(X,M), path(Y,N), not edge(X,Y),

M = N+1.

The following any template may be employed in
order to (non-deterministically) select exactly one
value from the domain of a predicate p. It is built
on top of the subset predicate.

#template any[p(1)](1)

{
any (X) :- subset[p(*)](X).

:- any(X), any(Y), X <> Y.

:- p(X), not any(X).

}

Handling of complex data structures. dlp
T can

be fruitfully employed to introduce operations over
complex data structures, such as sets, dates, trees,
etc.

Sets: Extending Datalog with Set programming is
another matter of interest for the DLP field. This
topic has been already discussed (e.g. in [Leone
and Rullo, 1993; Kuper, 1990]), proposing some
formalisms aiming at introducing a suitable se-
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mantics with sets. It is fairly quick to introduce
set primitives using dlp

T ; a set S is modeled
through the domain of a given unary predicate s .
Intuitive constructs like intersection, union, or
symmetricdifference, can be modeled as follows.

#template intersection[a(1),b(1)](1).

{
intersection (X) :- a(X),b(X).

}

#template union[a(1),b(1)](1).

{
union(X) :- a(X).

union(X) :- b(X).

}

#template symmetricdifference[a(1),b(1)](1)

{
symmetricdifference(X) :- union[a(*),b(*)](X),

not intersection[a(*),b(*)](X).

}

Dates: managing time and date data types is an-
other important issue in engineering applications
of dlp. For instance, in [Ianni et al., 2003], it is
very important to reason on compound records
containing date values. The following template
shows how to compare dates represented through
a ternary relation 〈day, month, year〉.

#template before[date1(3),date2(3)](6)

{
before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),

date2(D1,M1,Y1), Y<Y1.

before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),

date2(D1,M1,Y1), Y==Y1, M<M1.

before(D,M,Y,D1,M1,Y1) :- date1(D,M,Y),

date2(D,M1,Y1), Y==Y1,M==M1,D<D1.

}

4. Semantics of the dlp
T language

The semantics of the dlp
T language is given

through a suitable ‘‘explosion’’ algorithm.

Remark 1 It is worth noting that, as already
briefly mentioned, and more deeply discussed in
Section 5, the ‘‘explosion’’ algorithm is actually a
pseudo-algorithm, since it might not terminate in
some cases. Nevertheless, we do prefer to keep the
term algorithm also in the following.

It is given a dlp
T program P . The aim of the

Explode algorithm, introduced next, is to remove
template atoms from P . Each template atom t
is replaced with a standard atom, referring to a
fresh intensional predicate pt . The subprogram dt ,
defining the predicate pt , is computed taking into
account of the template definition Def (t) associ-
ated to t . Actually, many template atoms may
be grouped and associated to the same subpro-
gram. The concept of atom signature, introduced
next, helps in finding groups of equivalent tem-
plate atoms. The final output of the algorithm is
a dlp program P ′. Stable models of the originat-
ing program P are constructed, by definition, from
stable models of P ′. Throughout this section, we
will refer to Example 1 as running example. By
little abuse of notation, a ∈ P (resp. a ∈ r) means
that the atom a appears in the program P (the
rule r , respectively).

Definition 3 Given a template atom t , the corre-
sponding template signature s(t) is obtained from
t by replacing each standard term with a conven-
tional (mute variable) ‘ ’ symbol. Let Def (s(t))
be the template definition associated to the sig-
nature s(t); Given a dlp

T program P , let At(P)
be the set of template atoms occurring in P . Let
Sig(At(P)) be the set of signatures {s(t) : t ∈
At(P)}. 2

For instance, max[p(*,S,$)](M) and max[p(*,a,

$)](H) have the same signature, namely max[p(*,

_,$)](_).

4.1. The Explode algorithm

The Explode algorithm (E in the following) is
sketched in Figure 4.1. It is given a dlp

Tprogram
P and a set of template definitions T . The output
of E is a dlp program P ′. E takes advantage of
a stack of signatures S , which contains the set of
signatures to be processed; S is initially filled up
with each template signature occurring within P .
The purpose of the main loop of E is to itera-
tively apply the U (Unfold) operation to P , until
S is empty. Given a signature s , the U operation
generates from the template definition Def (s) a
dlp

T program P s which defines a fresh predicate
ts , where t is the template name of s . Then, P s is
appended to P ; furthermore, each template atom
a ∈ P , such that a has signature s , is replaced
with a suitable atom as(X′). It is important point-
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Explode(Input: adlp
T program P ,a set of

template definitions T .
Outputs: an updated version of P ′

of P in dlp form.
Data Structures: a queue S )

begin

put each s ∈ Sig(At(P)) in S ;
P ′ = P ;
while ( S is not empty ) do begin

extract a template signature s from S ;

//Start of the U (Unfold) operation;
construct P s (see Subsection 4.2),

then set P = P ∪ P s ;
put all the s ′ ∈ Sig(At(P s)) in S ;

for each template atom a ∈ P
if a has signature s

construct the standard atom
as(X′) (see Subsection 4.3);

replace a with as(X′) in P ;
//End of the U operation;

end;
end.

Fig. 1. The Explode (E) Algorithm

ing out that, if P s contains template atoms, the
unfolding operation updates S with new template
signatures.
We show next how P s is constructed and template
atoms are removed.
Let the header of Def (s) be

#template t [f1(b1) , . . . , fn(bn)](bn+1)

Let s be of the form

t [p1(X1) , . . . , pn (Xn)](Xn+1)

Given a special list X of terms, let X[j ] denote the
j th term of X; let fr(X) be a list of |X| fresh vari-
ables FX,1, . . . ,FX,|X|; let st(X), pr(X) and pa(X)
be the sublist of (respectively) standard, projec-
tion and parameter terms within X. Given two
lists A and B, let A&B be the list obtained ap-
pending B to A.

4.2. How P s is constructed.

The program P s is built in two steps. On the first
step, P s is enriched with a set of rules, intended
in order to deal with projection variables.

For each pi ∈ s , we introduce a predicate ps
i and

we enrich P s with the auxiliary rule ps
i (X′

i) ←
pi(X

′′
i ), where:

- X
′′
i is built from Xi substituting pr(Xi) with

fr(pr(Xi )), substituting pa(Xi ) with fr(pa(Xi )),
and substituting st(Xi) with fr(st(Xi));
- X

′
i is set to fr(st(Xi ))&fr(pa(Xi )).

For instance, given the signature
s2 = max [student(

,
$, ∗)]( )

and the example template definition given in Ex-
ample 1, let L be the list 〈_,$,*〉; it is introduced
the rule:

students2(Fst(L),1,Fpa(L),1)
: −student(Fst(L),1,Fpr(L),1,Fpa(L),1)·

Note that projection variables are filtered out from
students. In the second step, for each rule r be-
longing to D(s), we create an updated version r ′

to be put in P s , where each atom a ∈ r is modified
this way:
- if a is fi(Y) where fi is a formal predicate, it
is substituted with the atom ps

i (Y′). Y
′ is set to

fr(st(Xi))&Y;
- if a is a either a standard (included atoms having
t as predicate name) or a special atom (in this
latter case a occurs within a template atom) p(Y),
it is substituted with an atom ps (Y′), where

Yvect ′ = fr(st(X1))& . . .&fr(st(Xn))&Y·

Example 9 For instance, consider the rule
max (X )← p(X ),not exceeded(X )·

from Example 1, and the signature
s2 = max[student(_,$,*)](_);

let L be the special list 〈 , $, ∗〉; according to the
steps introduced above, this rule is translated to

max s2(FL,1,X )←students2(FL,1,X ),
not exceeded s2(FL,1,X ) · 2

4.3. How template atoms are replaced3.

Consider a template atom in the form
t [p1(X1) , . . . , pn(Xn)](Xn+1)·

It is substituted with
ts(X′)

where
X

′ = st(X1)& . . .&st(Xn)&Y.

3Depending on the form of D(s), some template atom
might not to be allowed, since some atom with same
predicate name but with mismatched arities could be
generated.
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Example 10 The complete output of E on the con-
straint

← max [student( , $, ∗)](M ),M > 25·

coupled with the template definition of max given
in Example 1 is:

students2 (S1,P1)← student(S1 , ,P1) ·

exceeded s2 (FL,1, X )← students2 (FL,1,X ),

students2 (FL,1,Y ),

Y > X ·

max s2(FL,1, X )← students2 (FL,1,X ),

not exceeded s2 (FL,1,X ) ·

← max s2 (Sex ,M ),M > 25·

2

We are now able to give the formal semantics
of dlp

T . It is important highlighting that stable
models of a dlp

T program are, by definition, con-
structed in terms of stable models of an equivalent
dlp program.

Definition 4 Given a dlp
T program P , and a set

of template definitions T , let P ′ the output of the
Explode algorithm on input 〈P ,T 〉. Let H (P) be
the Herbrand base of P ′ restricted to those atoms
having predicate name appearing in P . Given a
stable model m ∈ M (P ′), then we define H (P)∩m
as a stable model of P . 2

Note that the Herbrand base of a dlp
T program

is defined in terms of the Herbrand base of a dlp

program which is not the output of E .

5. Theoretical properties of dlp
T

The explosion algorithm replaces template atoms
from a dlp

T program P , producing a dlp program
P ′. It is very important to investigate about two
theoretical issues:
- Finding whether and when E terminates; in gen-
eral, we observe that E might not terminate, for
instance, in case of recursive template definitions.
Anyway, we prove that it can be decided in poly-
nomial time whether E terminates on a given in-
put.

- Establishing whether dlp
T programs are en-

coded as efficiently as dlp programs. In particu-
lar, we are able to prove that P ′ is polynomially
larger than P . Thus dlp

T keeps the same expres-
sive power as dlp. This way, we are guaranteed
that dlp

T program encodings are as efficient as
plain dlp encodings, since unfolded programs are
always reasonably larger with respect to the orig-
inating program.

Definition 5 It is given a dlp
T program P , and

a set of template definitions T . The dependency
graph GT ,P = 〈V ,E 〉 of T and P is a graph en-
coding dependencies between template atoms and
template definitions, and it’s built as follows. Each
template definition t ∈ T will be represented by
a corresponding node vt of V . V contains a node
vP associated to P as well. E will contain a direct
edge (vt , vt′) if the template t contains a template
atom referring to the template t ′ inside its subpro-
gram (as for the node referred to P , we consider
the whole program P). Let GT ,P (u) ⊆ GT ,P be
the subgraph containing nodes and arcs of GT ,P

reachable from u. 2

Lemma 1 It is given a dlp
T program P , and a set

of template definitions T . Let vP the node of GT ,P

corresponding to P . If GT ,P (vP ) is acyclic then E
terminates whenever applied to P and T .

Proof. We assume GT ,P (vP ) = 〈N ,E 〉 is acyclic.
we can state a partial ordering ≫ between its
nodes, such that for each v , v ′ ∈ N , v ≫ v ′ iff ei-
ther (v , v ′) ∈ E or there is a v ′′ such that v ≫ v ′′

and v ′′ ≫ v .
We can build a total ordering ≻ by extending ≫
in a way that, whenever neither v ≫ v ′ nor v ≫ v ′

holds, it is chosen appropriately whether v ≻ v ′

or v ′ ≻ v holds. This can be done, for instance,
by performing an in-depth visit of GT ,P (vP ) and
taking the resulting order of visit.
Let level(v) be defined as follows:

– level(v) = 0 if there is no v ′ such that v ′ ≻ v ;
– for i > 0, level(v) = i if i is the maximum value

such that there is a v ′ such that level(v ′) = i−1
and v ≻ v ′.

Note that level(v) > level(v ′) iff v ≻ v ′.
Given a queue S of signatures, let level(S ) be
maxDef (s)|s∈S level(vDef (s)).
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Fig. 2. Architecture of the dlp
T compiler

We will assume S is managed as a priority queue
such that an element s ∈ S having better value of
level(vDef (s)) is extracted first4.
Note that E has a main loop where at each iter-
ation a signature s is popped from S , whereas a
new set of signatures S ′ is put in S . A new signa-
ture s ′ ∈ S ′ can be put on S iff Def (s) ≻ Def (s ′).
This means that level(S ) is non-increasing from
one iteration to another.
level(S ) can stay unchanged from one iteration i
to the next iteration i + 1 only if there is some
s ′ such that Def (s) = Def (s ′) still in S at the
beginning of iteration i + 1. But, in this case,
during iteration i + 1, the cardinality of the set
{s ′ s.t.Def (s) = Def (s ′)} is decreased by 1, since a
new signature referring to the same template defi-
nition (and having same level) will be extracted
from S .
Thus, there exists an iteration j , such that the dif-
ference j − i has a maximum value bounded by
|{s ′ s.t.Def (s) = Def (s ′)}|, where s is the signa-
ture extracted at iteration i .
E will terminate once level(S ) is 0 and S is emptied
up. 2

Theorem 2 It is given a dlp
T program P , and a

set of template definitions T . It can be decided
in polynomial time whether E terminates when P
and T are taken as input.

Proof. We observe that GT ,P can be built in poly-
nomial time. By Lemma 1 we can show that E
terminates if GT ,P (uP ) is acyclic. Vice versa E
does not terminate if we assume there is a cycle in
GT ,P (uP ).
In order to show this, assume there is a cycle C =
{ut0 , ut1 , . . . , utk , ut0}, with k ≥ 0 in GT ,P (uP ) =
〈N ,E 〉.
Since any node of N is reachable from uP , we can
assume that E either loops infinitely or does not
terminate until some node ut such that (ut , ut0) ∈
E is reached, i.e. until E does not enters C or
a similar cycle. This means that E will extract,

4Although this assumption can be relaxed, we prefer to
introduce it in order to keep the line of reasoning of this
proof clearer.

during some iteration j , a signature s , such that
Def (s) = t , from S , and then at least one s ′ such
that Def (s ′) = t0 and s ′ ∈ Sig(At(P s)) is added
to S .
We can prove that starting from the iteration j
there is no iteration j ′ > j such that S = ∅ at
its beginning. j ′ can exist only if at the iteration
j ′ − 1 a remaining signature slast is extracted and
nothing else is added to S . Define SC as the set of
signatures such that Def (s) ∈ {t0, . . . , tk}, that is,
SC is the set of signatures corresponding to nodes
appearing in C . slast cannot be member of SC ,
because, in this case, an slast will generate new
signatures to be added in S . However, once C is
reached, S will always contain, at the beginning of
any iteration j ′ > j , at least one element of SC .
Indeed, it cannot be avoided that once an element
s ′ ∈ SC is extracted, new elements of SC are in-
serted during the iteration j ′. 2

Definition 6 A set of template definitions T is said
nonrecursive if for any dlp

T program P , the sub-
graph GT ,P (vP ) is acyclic. 2

It is useful to deal with nonrecursive sets of tem-
plate definitions, since they may be safely em-
ployed with any program. Checking whether a set
of template definitions is nonrecursive is quite easy.

Proposition 1 A set of template definitions T is
nonrecursive iff GT ,∅ is acyclic.

Proposition 2 Given a dlp
T program P and a

nonrecursive set of template definitions T , the
number of arcs of GT ,P (uP) is bounded by the
overall size of T and P , i.e., it is O(|T |+ |P |).

Theorem 3 Given a dlp
T program P and a non-

recursive set of template definitions T , the output
P ′ of E on input 〈P ,T 〉 is polynomially larger than
P and T .
Proof. We first observe that each execution of U
adds to P a number of rules (or constraints) whose
overall size is clearly bounded by the size of T (see
Figure 4.1). According to Lemma 1, if T is non-
recursive, the number of U operations carried out
by E is bounded by the maximum level l (bounded
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by the number of nodes of GT ,P (uP ), and thus by
the size of T ) which can be assigned to a node of
GT ,P (uP ), times the number of different template
atoms that occur in P and T . Thus, the size of P ′

is O(|T |2(|T |+ |P |)). 2

In [Dantsin et al., 2001] it’s proved that plain dlp

programs (under the brave reasoning semantics)
entirely capture the complexity class ΣP

2 . This
bounds the expressive power of dlp

T , too. In-
deed, as previously shown, dlp

T programs may
allow to express more succinct encodings of prob-
lems, w.r.t. dlp; but, despite this, the expressive
power is not increased, accordingly to the following
Corollary.

Corollary 1 dlp
T has the same expressive power

as dlp.

Proof. The result is straightforward. Theorem 3
showed as unfolded dlp programs produced as the
output of E are polynomially larger than the input
programs. In addition, dlp

T semantics is defined
in terms of the equivalent, unfolded, dlp program.
Thus, dlp

T has the same expressiveness proper-
ties as dlp. 2

6. System architecture and usage

The dlp
T language has been implemented on

top of the dlv system [Faber et al., 1999; 2001;
Faber and Pfeifer, since 1996]. The current ver-
sion of the language is available through the dlp

T

Web page [Calimeri et al., since 2003]. The overall
architecture of the system is shown in Figure 2.
The dlp

T system work-flow can be described as
follows.
A dlp

T program is sent to a dlp
T pre-parser,

which performs syntactic checks (included non-
recursivity checks), and builds an internal repre-
sentation of the dlp

T program. The dlp
T Inflater

performs the Explode Algorithm and produces an
equivalent dlv program P ′; P ′ is piped towards
the dlv system. The models M (P ′) of P ′, com-
puted by dlv, are then converted in a readable
format through the Post-parser module; the Post-
parser filters out from M (P ′) informations about
internally generated predicates and rules.

The system introduces also some useful features
in order to ease programming. For instance, the

possibility to define some predicates as ‘global’,
just specifying them in the template definition.

#template nD [f1(b1) , · · · , fn(bn)](bn+1)
GLOBAL g1 , · · · , gm

where g1, · · ·, gm is a list of predicate symbols de-
fined as global. This introduces the notion of scope.
The notion is similar to traditional imperative lan-
guages, such as C++, where it is possible to mask
global variables. Intuitively, the meaning of the lo-
cal predicates results from the rules defined within
the template body, while the meaning of the global
predicates results from the rules belonging to the
general program. We refer to function scope in the
former case, and program scope in the latter.

Example 11 In this template definition, node is a
global predicate, while coloring is local, and arc

is an argument.

#template coloring[arc(2)](2) GLOBAL node

{
coloring(Country, red) v

coloring(Country, green) v

coloring(Country, blue) :- node(Country).

:- arc(Country1, Country2),

coloring(Country1, CommonColor),

coloring(Country2, CommonColor).

}

7. Conclusions

In this paper we have addressed some lacks of dlp,
namely code reusability and modularity. We have
presented the dlp

T language, an extension of DLP
allowing to define template predicates.
The proposed language is very promising; the fu-
ture work will have as objectives:

– introducing a clearer model theoretic semantic
and prove its equivalence with the current oper-
ational semantics;

– generalizing template semantics in order to al-
low safe and meaningful forms of recursion be-
tween template definitions;

– introducing new forms of template atoms in or-
der to improve reusability of the same template
definition in different contexts;

– prove the formal equivalence of dlt sub-programs
with semantics for aggregate constructs such as
in [Calimeri et al., 2005];
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– extending the template definition language us-
ing standard languages such as C++, such as in
[Eiter et al., 2005];

– consider program equivalence results [Eiter et
al., 2004] in order to optimize the size of un-
folded programs.

The dlp
T system prototype is available at

http://dlt.gibbi.com.
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