
Introduction

Processing of Declarative Knowledge

–Programming in ASP–

Francesco Ricca

Computational Intelligence Curriculum
Institute of Information Systems

Francesco Ricca Datalog

Introduction

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms← done!

How to program in ASP?
Programming methodology

Francesco Ricca Datalog

Introduction

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms← done!

How to program in ASP?
Programming methodology

Francesco Ricca Datalog

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Francesco Ricca Datalog

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Francesco Ricca Datalog

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Francesco Ricca Datalog

Introduction

Problem solving in ASP

The idea of ASP:
1 Write a program representing a computational problem
→ i.e., such that answer sets correspond to solutions

2 Use a solver to find solutions

Programming Steps:
1 Model your domain
→ Single out input/output predicates

2 Write a logic program modeling your problem
→ Use predicates representing relevant entities

→ Hint: take input data separated from derived ones

Francesco Ricca Datalog

Introduction

Direct Encodings when...

Use a “Direct” Encoding with Datalog rules for
Polynomial Problems, Deductive Database, etc.

Example (Reachability)
Problem: Find all nodes reachable from the others.
Input: edge(_, _).

% X is reachable from Y if an edge (X,Y) exists
reachable(X ,Y) :- edge(X ,Y).

% Reachability is transitive
reachable(X ,Y) :- reachable(X ,Z), edge(Z ,Y).

Unfeasible for search problems from NP and beyond: need for
a programming methodology

Francesco Ricca Datalog

Introduction

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive rules→ generate candidate solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

Francesco Ricca Datalog

Introduction

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive rules→ generate candidate solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

Francesco Ricca Datalog

Introduction

Programming Methodology

Guess & Check & Optimize (GCO)
1 Guess solutions→ using disjunctive rules
2 Check admissible ones→ using strong constraints
Optimization problem?
3 Specify Preference criteria→ using weak constraints

In other words...
1 disjunctive rules→ generate candidate solutions
2 constraints→ test solutions discarding unwanted

ones
3 weak constraints→ single out optimal solutions

Francesco Ricca Datalog

Introduction

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P,1) |group(P,2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G),group(P2,G), father(P1,P2).

...so how does it work really?

Francesco Ricca Datalog

Introduction

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P,1) |group(P,2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G),group(P2,G), father(P1,P2).

...so how does it work really?

Francesco Ricca Datalog

Introduction

Guess and Check (Example 1)

Example (Group Assignments)
Problem: We want to partition a set of persons in two groups,

while avoiding that father and children belong to the same group.
Input: persons and fathers are represented by person(_) and father(_, _).

% a disjunctive rule to “guess” all the possible assignments

group(P,1) |group(P,2) :-person(P).

% a constraint to discard unwanted solutions
% i.e., father and children cannot belong to the same group

:-group(P1,G),group(P2,G), father(P1,P2).

...so how does it work really?

Francesco Ricca Datalog

Introduction

Guessing part explained

Consider: group(P,1) |group(P,2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 3 pers. to 2 groups!

Francesco Ricca Datalog

Introduction

Guessing part explained

Consider: group(P,1) |group(P,2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 3 pers. to 2 groups!

Francesco Ricca Datalog

Introduction

Guessing part explained

Consider: group(P,1) |group(P,2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 3 pers. to 2 groups!

Francesco Ricca Datalog

Introduction

Guessing part explained

Consider: group(P,1) |group(P,2) :-person(P).

If the input is: person(john). person(joe). father(john, joe).

Then, the answer set of this single-rule program are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

i.e., one a.s. for each assignment of 3 pers. to 2 groups!

Francesco Ricca Datalog

Introduction

Checking part explained

Consider: group(P,1) |group(P,2) :-person(P).
Now add: :-group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Francesco Ricca Datalog

Introduction

Checking part explained

Consider: group(P,1) |group(P,2) :-person(P).
Now add: :-group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The constraint “discards” two non admissible answers:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 2)}

Francesco Ricca Datalog

Introduction

Guess & Check explained

Consider: group(P,1) |group(P,2) :-person(P).
:-group(P1,G),group(P2,G), father(P1,P2).

If the input is: person(john). person(joe). father(john, joe).

The answer sets are:

{person(john), person(joe), father(john, joe), group(john, 1), group(joe, 2)}
{person(john), person(joe), father(john, joe), group(john, 2), group(joe, 1)}

G&C = Define search space + specify desired solutions

Francesco Ricca Datalog

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Francesco Ricca Datalog

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Francesco Ricca Datalog

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Francesco Ricca Datalog

Introduction

Guess and Check (Example 2)

Example (3-col)
Problem: Given a graph assign one color out of 3 colors to each node such

that two adjacent nodes have always different colors.
Input: a Graph is represented by node(_) and edge(_, _).

% guess a coloring for the nodes
(r) col(X , red) | col(X , yellow) | col(X , green) :- node(X).

% discard colorings where adjacent nodes have the same color
(c) :- edge(X ,Y), col(X ,C), col(Y ,C).

% NB: answer sets are subset minimal→ only one color per node

Francesco Ricca Datalog

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Francesco Ricca Datalog

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Francesco Ricca Datalog

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Francesco Ricca Datalog

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Francesco Ricca Datalog

Introduction

Guess and Check (Example 3)

Example (Hamiltonian Path)
Problem: Find a path in a Graph beginning at the starting node which
contains all nodes of the graph.
Input: node(_) and edge(_, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y).

% A node can be reached only once
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
% All nodes must be reached
:- node(X), not reached(X).
% The path is not cyclic
:- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

| Guess

|
| Check
|
|
|

| Aux. Rules
|

Francesco Ricca Datalog

Introduction

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).

% Ensure that it is Hamiltonian (as before)
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@0,X ,Y ,C]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

Francesco Ricca Datalog

Introduction

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).

% Ensure that it is Hamiltonian (as before)
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@0,X ,Y ,C]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

Francesco Ricca Datalog

Introduction

Guess, Check and Optimize (Example 4)

Example (Traveling Salesman Person)
Problem: Find a path of minimum length in a Weighted Graph beginning at
the starting node which contains all nodes of the graph.
Input: node(_) and edge(_, _, _), and start(_).

% Guess a path
inPath(X ,Y) | outPath(X ,Y) :- edge(X ,Y , _).

% Ensure that it is Hamiltonian (as before)
:- inPath(X ,Y), inPath(X ,Y1),Y <> Y1.
:- inPath(X ,Y), inPath(X1,Y),X <> X1.
:- node(X), not reached(X). :- inPath(X ,Y), start(Y).

reached(X) :- reached(Y), inPath(Y ,X).

reached(X) :- start(X).

% Minimize the sum of distances
:∼ inPath(X ,Y), edge(X ,Y ,C). [C@0,X ,Y ,C]

| Guess

|
| Check
|
|
| Aux. Rules
|

| Optimize

Francesco Ricca Datalog

Introduction

Guess and Check (Example 5)

Example (Strategic Companies)
Problem: There are various products, each one is produced by several
companies. We now have to sell some companies. What are the minimal
sets of strategic companies, such that all products can still be produced? A
company also belong to the set, if all its controlling companies belong to it.
Input: produced_by(_, _, _) and controlled_by(_, _, _, _)

% Guess strategic companies
strategic(Y) | strategic(Z) :- produced_by(X ,Y ,Z).

% Ensure they are strategic
strategic(W) :- controlled_by(W ,X ,Y ,Z),

strategic(X), strategic(Y), strategic(Z).

Exploits minimality... but Checking and guessing interfere!
→ non-HCF encoding→ higher computational complexity?!
→ Indeed, checking Strategic Companies is ΣP

2 -complete

Francesco Ricca Datalog

Introduction

Guess and Check (Example 5)

Example (Strategic Companies)
Problem: There are various products, each one is produced by several
companies. We now have to sell some companies. What are the minimal
sets of strategic companies, such that all products can still be produced? A
company also belong to the set, if all its controlling companies belong to it.
Input: produced_by(_, _, _) and controlled_by(_, _, _, _)

% Guess strategic companies
strategic(Y) | strategic(Z) :- produced_by(X ,Y ,Z).

% Ensure they are strategic
strategic(W) :- controlled_by(W ,X ,Y ,Z),

strategic(X), strategic(Y), strategic(Z).

Exploits minimality... but Checking and guessing interfere!
→ non-HCF encoding→ higher computational complexity?!
→ Indeed, checking Strategic Companies is ΣP

2 -complete

Francesco Ricca Datalog

Introduction

Guess and Check (Example 5)

Example (Strategic Companies)
Problem: There are various products, each one is produced by several
companies. We now have to sell some companies. What are the minimal
sets of strategic companies, such that all products can still be produced? A
company also belong to the set, if all its controlling companies belong to it.
Input: produced_by(_, _, _) and controlled_by(_, _, _, _)

% Guess strategic companies
strategic(Y) | strategic(Z) :- produced_by(X ,Y ,Z).

% Ensure they are strategic
strategic(W) :- controlled_by(W ,X ,Y ,Z),

strategic(X), strategic(Y), strategic(Z).

Exploits minimality... but Checking and guessing interfere!
→ non-HCF encoding→ higher computational complexity?!
→ Indeed, checking Strategic Companies is ΣP

2 -complete

Francesco Ricca Datalog

Introduction

Exercises

Minumim Spanning Tree
Given a weighted graph by means of

edge(Node1,Node2,Cost), and node(N), compute a tree
that starts at a root node, spans that graph, and has

minimum cost.

Seating
A gala dinner has to be organized and table composition

must satisfy a number of requirements:
Each table has nc chairs.
Each guest must be assigned one and only one table.
People liking each other should sit at the same table.
People disliking each other should not sit at the same
table.

Francesco Ricca Datalog

	Introduction

