
Weak Constraints
Aggregates

Processing of Declarative Knowledge

–Weak Constraints and Aggregates–

Francesco Ricca

Computational Intelligence Curriculum
Institute of Information Systems

Francesco Ricca Datalog

Weak Constraints
Aggregates

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints
+ Aggregate atoms

Francesco Ricca Datalog

Weak Constraints
Aggregates

Weak Constraints

Weak Constraints:
express desiderata as soft constraints in CSP
i.e., constraints which should possibly be satisfied

Syntax: :∼ b(X ,Y).

Intuitive meaning: “satisfy b if possible”

Weigth and Priority: ([w@p])
• higher weights/priorities⇒ higher importance
• “@p” can be omitted

Distinguishing Terms: ([w@p,Y])
dom(1).edb(1,2).edb(1,3).
a(X) |na(X) :-dom(X).

:∼ a(X),edb(X ,Y).→ :∼ a(1).
:∼ a(X),edb(X ,Y).[0,Y]→ :∼ a(1).[0,2] :∼ a(1).[0,3]

Francesco Ricca Datalog

Weak Constraints
Aggregates

Weak Constraints

Weak Constraints:
express desiderata as soft constraints in CSP
i.e., constraints which should possibly be satisfied

Syntax: :∼ b(X ,Y).

Intuitive meaning: “satisfy b if possible”

Weigth and Priority: ([w@p])
• higher weights/priorities⇒ higher importance
• “@p” can be omitted

Distinguishing Terms: ([w@p,Y])
dom(1).edb(1,2).edb(1,3).
a(X) |na(X) :-dom(X).

:∼ a(X),edb(X ,Y).→ :∼ a(1).
:∼ a(X),edb(X ,Y).[0,Y]→ :∼ a(1).[0,2] :∼ a(1).[0,3]

Francesco Ricca Datalog

Weak Constraints
Aggregates

Weak Constraints

Weak Constraints:
express desiderata as soft constraints in CSP
i.e., constraints which should possibly be satisfied

Syntax: :∼ b(X ,Y). [w@p,Y]

Intuitive meaning: “satisfy b if possible”

Weigth and Priority: ([w@p])
• higher weights/priorities⇒ higher importance
• “@p” can be omitted

Distinguishing Terms: ([w@p,Y])
dom(1).edb(1,2).edb(1,3).
a(X) |na(X) :-dom(X).

:∼ a(X),edb(X ,Y).→ :∼ a(1).
:∼ a(X),edb(X ,Y).[0,Y]→ :∼ a(1).[0,2] :∼ a(1).[0,3]

Francesco Ricca Datalog

Weak Constraints
Aggregates

Weak Constraints

Weak Constraints:
express desiderata as soft constraints in CSP
i.e., constraints which should possibly be satisfied

Syntax: :∼ b(X ,Y). [w@p,Y]

Intuitive meaning: “satisfy b if possible”

Weigth and Priority: ([w@p])
• higher weights/priorities⇒ higher importance
• “@p” can be omitted

Distinguishing Terms: ([w@p,Y])
dom(1).edb(1,2).edb(1,3).
a(X) |na(X) :-dom(X).

:∼ a(X),edb(X ,Y).→ :∼ a(1).
:∼ a(X),edb(X ,Y).[0,Y]→ :∼ a(1).[0,2] :∼ a(1).[0,3]

Francesco Ricca Datalog

Weak Constraints
Aggregates

Weak Constraints

Weak Constraints:
express desiderata as soft constraints in CSP
i.e., constraints which should possibly be satisfied

Syntax: :∼ b(X ,Y). [w@p,Y]

Intuitive meaning: “satisfy b if possible”

Weigth and Priority: ([w@p])
• higher weights/priorities⇒ higher importance
• “@p” can be omitted

Distinguishing Terms: ([w@p,Y])
dom(1).edb(1,2).edb(1,3).
a(X) |na(X) :-dom(X).
:∼ a(X),edb(X ,Y).→ :∼ a(1).

:∼ a(X),edb(X ,Y).[0,Y]→ :∼ a(1).[0,2] :∼ a(1).[0,3]

Francesco Ricca Datalog

Weak Constraints
Aggregates

Weak Constraints

Weak Constraints:
express desiderata as soft constraints in CSP
i.e., constraints which should possibly be satisfied

Syntax: :∼ b(X ,Y). [w@p,Y]

Intuitive meaning: “satisfy b if possible”

Weigth and Priority: ([w@p])
• higher weights/priorities⇒ higher importance
• “@p” can be omitted

Distinguishing Terms: ([w@p,Y])
dom(1).edb(1,2).edb(1,3).
a(X) |na(X) :-dom(X).
:∼ a(X),edb(X ,Y).→ :∼ a(1).
:∼ a(X),edb(X ,Y).[0,Y]→ :∼ a(1).[0,2] :∼ a(1).[0,3]

Francesco Ricca Datalog

Weak Constraints
Aggregates

Weak Constraints Example

Example (Exams Scheduling)
Problem: Assign course exams to 3 time slots avoiding overlapping of exams
of courses with common students.

Strict Solution:
assign(X , s1) | assign(X , s2) | assign(X , s3) :- course(X).
:- assign(X ,S), assign(Y ,S), commonStudents(X ,Y ,N),N > 0.

Approximate Solution:
assign(X , s1) | assign(X , s2) | assign(X , s3) :- course(X).
% If overlapping is unavoidable, then reduce it “As Much As Possible”
:∼ assign(X ,S), assign(Y ,S), commonStudents(X ,Y ,N),N > 0. [N@0]

NB: Scenarios (models) minimizing the total number of “lost" exams are
preferred.

Francesco Ricca Datalog

Weak Constraints
Aggregates

Semantics of Weak Constraints

Rules(P): set of the rules (including facts and strong
constraints) of P.

WC(P): weak constraints of P.

Semantics:
Without Priorities:
• Answer sets of Rules(P) minimizing the sum of the
weights of the violated constraints in WC(P)
With Priorities:
• minimize the sum of the weights of the violated
constraints in the highest priority level;
• then minimize the sum of the weights of the violated
constraints in the next lower level, etc.

Francesco Ricca Datalog

Weak Constraints
Aggregates

ASP Basics

ASP:
Datalog← done!
+ Default negation← done!
+ Disjunction← done!
+ Integrity Constraints← done!
+ Weak Constraints← done!
+ Aggregate atoms

Francesco Ricca Datalog

Weak Constraints
Aggregates

Aggregate Atom

Lg <1 f{S} <2 Ug

5 < #count{EmpId : emp(EmpId ,Male,Skill ,Salary)} ≤ 10

The atom is true if the number of male employees is greater
than 5 and does not exceed 10.

Formal semantics: extension of the notion of answer set.

Francesco Ricca Datalog

Weak Constraints
Aggregates

Aggregate Functions

Example (Team Building)
% An employee is either included in the team or not
inTeam(I) | outTeam(I) :- emp(I,Sx ,Sk ,Sa).

% The team consists of a certain number of employees
:- nEmp(N), not #count{I : inTeam(I)} = N.

% At least a given number of different skills must be present in the team
:- nSkill(M), not #count{Sk : emp(I,Sx ,Sk ,Sa), inTeam(I)} ≤ M.

% The sum of the salaries of the employees working in the team must not
exceed the given budget
:- budget(B), not #sum{Sa, I : emp(I,Sx ,Sk ,Sa), inTeam(I)} ≤ B.

% The salary of each individual employee is within a specified limit
:-maxSal(M), not #max{Sa : emp(I,Sx ,Sk ,Sa), inTeam(I)} ≤ M.

Francesco Ricca Datalog

Weak Constraints
Aggregates

Aggregate Semantics

Reduct: The reduct FLP (Faber, Leone and Pfeifer) of a
ground program P w.r.t. a set X ⊆ BP is the positive ground
program PX obtained from P by:

deleting all rules with a false literal in the body (w.r.t. X);

Answer Set: An answer set of a program P is a set X ⊆ BP
such that X is a minimal model of PX .

Equivalent to Gelfond & Lifschitz transformation on
aggregate-free programs
More general
Can be used for recursive aggregates, Ex-programs, etc.

Francesco Ricca Datalog

	Weak Constraints
	Aggregates

