WORKSHOP PROCEEDINGS

ICLP 2008 Workshop on
Answer Set Programming and

Other Computing Paradigms
(ASPOCP 2008)

Edited by Wolfgang Faber and Joohyung Lee
December 13, 2008

Preface

These are working notes of the workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP) 2008, collocated with the 24th International
Conference on Logic Programming (ICLP) 2008 in Udine, Italy.

Since its introduction in the 1990s, answer set programming (ASP) has been
widely applied to various knowledge-intensive tasks and combinatorial search
problems. ASP was found to be closely related to SAT, which has led to a new
method of computing answer sets using SAT solvers and techniques adapted
from SAT. While this has been the most studied relationship, identifying links
between ASP and other computing paradigms, such as constraint satisfaction,
quantified Boolean formulas (QBF), first-order logic (FOL), or databases, to
name just a few, is the subject of active research.

The contributions brought about by these studies are manifold: New methods of
computing answer sets are being developed, based on the relation between ASP
and other paradigms, such as the use of pseudo-Boolean solvers, QBF solvers,
and FOL theorem provers. New and improved languages are proposed, inspired
by language constructs found in related paradigms. In a somewhat orthogonal
way, languages or tasks in other research areas are reduced to ASP, one of the
main benefits being that a computational engine is thereby automatically pro-
vided. Furthermore, language and solver integration is facilitated, allowing for
multi-paradigm problem-solving; currently the integration of ASP with descrip-
tion logics (in the realm of the Semantic Web) and constraint satisfaction are
the main focus of this type of activity.

This year, 2008, marks the 20th anniversary of the stable model semantics, a
foundational event for answer set programming. We expect that during next
decade work on the relation between answer set programming and other com-
puting paradigms will intensify, bringing synergies to all of the involved areas.

This workshop aims at facilitating the discussion about crossing the boundaries
of current ASP techniques, in combination with or inspired by other computing
paradigms. We have received 12 submissions, of which 9 were accepted for
presentation. We thank the contributors for their efforts to provide material of
high quality, we thank the program committee members and reviewers for their
valuable help to guarantee and improve the quality of the workshop, and last
but not least the ICLP officials for making this workshop possible and for their
smooth cooperation.

Wishing you all an informative and enjoyable workshop,

Wolfgang Faber, University of Calabria, Italy
Joohyung Lee, Arizona State University, USA

Programme Chairs

Wolfgang Faber, University of Calabria, Italy
Joohyung Lee, Arizona State University, USA

Programme Committee

Chitta Baral, Arizona State University, USA

Gerhard Brewka, University of Leipzig, Germany

Pedro Cabalar, University of A Coruna, Spain

Marc Denecker, Katholieke Universiteit Leuven, Belgium
Nicola Leone, University of Calabria, Italy

Vladimir Lifschitz, University of Texas at Austin, USA
Fangzhen Lin, Hong Kong University of Science and Technology, China
Thomas Lukasiewicz, University of Oxford, UK

Ilkka Niemeld, Helsinki University of Technology, Finland
Mirostaw Truszezynski, University of Kentucky, USA
Dirk Vermeir, Vrije Universiteit Brussel, Belgium

Stefan Woltran, Vienna University of Technology, Austria
Yan Zhang, University of Western Sydney, Australia
Yuanlin Zhang, Texas Tech University, USA

Additional Reviewers

Giovambattista Ianni
Michael Jakl
Jianmin Ji

Simona Perri
Francesco Ricca
Yisong Wang

Johan Wittocx

II

Contents
Preface 11}

1 Answer-Set Programming Encodings for Argumentation Frameworks
Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran il

2 Efficient Parallel ASP Instantiation via Dynamic Rewriting
Simona Perri, Francesco Ricca, and Saverio Vescio 16l

3 Modeling preferences on resource consumption and production in
ASP
Stefania Costantini and Andrea Formisano 311

4 Towards Logic Programs with Ordered and Unordered Disjunction
Philipp Karger, Nuno Lopes, Daniel Olmedilla, and Axel Polleres [46]

5 Quantified Logic Programs, Revisited
Rachel Ben-Eliyahu - Zohary 61]

6 On Demand Indexing for the DLV Instantiator
Gelsomina Catalano, Nicola Leone, and Simona Perri 7ol

7 Integrating Grounding in the Search Process for Answer Set Com-
puting

Claire Lefevre and Pascal Nicolas 39

8 FO(ID) as an extension of DL with rules
Joost Vennekens and Marc Denecker 104

9 Classical Logic Event Calculus as Answer Set Programming
Joohyung Lee and Ravi Palla 119

11

Answer-Set Programming Encodings for Argumentation
Frameworks

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran

Institut fur Informationssysteme, Technische Univértsivien,
Favoritenstrafle 9-11, A-1040 Vienna, Austria

Abstract. We present reductions from Dung’s argumentation framewak)
and generalizations thereof to logic programs under thav@Rset semantics.
The reduction is based on a fixed disjunctive datalog prodtam interpreter)
and its input which is the only part depending on the AF to pssc We discuss
the reductions, which are the basis for the system ASPARiIdeitail and show
their adequacy in terms of computational complexity.

1 Motivation

Dealing with arguments and counter-arguments in discoss®a daily life process.
We usually employ this process to convince our opponent topoint of view. As
everybody knows, this is sometimes a cumbersome activitgloee we miss a formal
reasoning procedure for argumentation.

This problem is not new. Leibniz (1646—1716) was the first wied to deal with
arguments and their processing by reasoning in a more famaalHe proposed to use
alingua characteristicga knowledge representation (KR) language) to formalige-ar
ments and &alculus ratiocinator(a deduction system) to reason about them. Although
Leibniz’s dream of a complete formalization of science wastibyed in the thirties of
the last century, restricted versions of Leibniz’s dreanvised.

In Artificial Intelligence (Al), the area of argumentatioseg [1] for an excellent
summary) has become one of the central issues within thed&side, providing a
formal treatment for reasoning problems arising in a nunolbérteresting applications
fields, including Multi-Agent Systems and Law Research. hutshell, argumentation
frameworks formalize statements together with a relatienading rebuttals between
them, such that the semantics gives an abstract handlevie #@ inherent conflicts
between statements by selecting admissible subsets of ffereasoning underlying
such argumentation frameworks turned out to be a very gepeérgiple capturing
many other important formalisms from the areas of Al and Kieolge Representations.

The increasing interest in argumentation led to numeroapgsals for formaliza-
tions of argumentation. These approaches differ in mangaspFirst, there are several
ways how “admissibility” of a subset of statements can bengeffi second, the notion
of rebuttal has different meanings (or even additionalti@teships between statements
are taken into account); finally, statements are augmenitbdoniorities, such that the
semantics yields those admissible sets which contaimséates of higher priority.

Argumentation problems are in general intractable, thugldping dedicated al-
gorithms for the different reasoning problems is non-&iivA promising approach to

implement such systems is to use a reduction method, whegitbn problem is trans-
lated into another language, for which sophisticated systready exist. Earlier work
[2, 3] proposed reductions for basic argumentation frammksvto (quantified) proposi-

tional logic. In this work, we present solutions for reasaproblems in different types
of argumentation frameworks by means of computing the ansets of a datalog pro-
gram. To be more specific, the system is capable to computedbeimportant types of

extensions (i.e., admissible, preferred, stable, corapéetd grounded) in Dung’s origi-
nal framework [4], the preference-based argumentationdork [5], the value-based
argumentation framework [6], and the bipolar argumentatiamework [7, 8]. Hence

our system can be used by researchers to compare diffegemantation semantics on
concrete examples within a uniform setting. In fact, inigggtons on the relationship
between different argumentation semantics has receiwedasing interest lately [9].

The declarative programming paradigm Afiswer-Set Programmin@ASP) [10,
11] under the stable-models semantics [12] (which is owgetaformalism) is espe-
cially well suited for our purpose. First, advanced sohsersh as Smodels, DLV, GnT,
Cmodels, Clasp, or ASSAT which are able to deal with largeblenm instances (see
[13]) are available. Thus, using the proposed reductiorhotetlelegates the burden
of optimizations to these systems. Second, language éatensan be used to employ
different extensions to AFs, which so far have not been stlidfor instance, weak
constraints or aggregates could yield interesting sdgdiilored problems for AFs).
Finally, depending on the class of the program one uses fowem gype of extension,
one can show that, in general, the complexity of evaluatighimthe target formalism
is of the same complexity as the original problem. Thus, ppreach is adequate from
a complexity-theoretic point of view.

With the fixed logic program (independent from the concreffe@process), we are
more in the tradition of a classical implementation, beeaus construct an interpreter
in ASP which processes the AF given as input. This is in cehtma e.g., the reductions
to (quantified) propositional logic [2, 3], where one obsagformula which completely
depends on the AF to process. Although there is no advantate anterpreter ap-
proach from a theoretical point of view (as long as the redustare polynomial-time
computable), there are several practical ones. The irgnpis easier to understand,
easier to debug, and easier to extend. Additionally, pgppiroperties like correspon-
dence between answer sets and extensions is simpler. Mwrdéoe input AF can be
changed easily and dynamically without translating thelefmrmula which simplifies
the answering of questions like “What happens if | add this asgument?”.

Our system makes use of the prominent answer-set solver DQ) All necessary
programs to run ASPARTIX and some illustrating examplesaaeelable at

http://www.kr.tuwien.ac.at/research/systems/arguatemn/

2 Preliminaries

In this section, we first give a brief overview of the syntaxi@aemantics of disjunctive
datalog under the answer-sets semantics [12]; for furtaekdround, see [10, 14].

We fix a countable sét of (domain) elementsilso callecconstantsand suppose a
total order< over the domain elements. Agtomis an expressiop(ty, . . .,t,), where

p is apredicateof arity n > 0 and each; is either a variable or an element fré An
atom isgroundif it is free of variables. ByB;, we denote the set of all ground atoms
overl.

A (disjunctive) ruler is of the form

a1 V -V ap - by, ..., bg, notbgi1,..., notby,

withn >0, m >k > 0,n+m > 0,and whereu4, ..., a,,bq,...,b, are atoms, and
“not” stands fordefault negationThe headof r is the setH (r) = {a4,...,a,} and
thebodyof r is B(r) = {b1,...,bx, notbyy1,..., notb,,}. FurthermoreB*(r) =
{b1,..., b} andB~(r) ={bg41,- .., bm}. Arulerisnormalif n < 1 and aconstraint
if n = 0. A rule r is safeif each variable in- occurs inB*(r). A rule r is groundif
no variable occurs in. A factis a ground rule without disjunction and empty body. An
(input) databasds a set of facts. A program is a finite set of disjunctive rukesr a
programP and an input databade, we often write?(D) instead ofD U P. If each
rule in a program is normal (resp. ground), we call the prognarmal (resp. ground).
A program?P is calledstratified if there exists an assignmea-) of integers to the
predicates P, such that for each € P, the following holds: If predicate occurs
in the head of- and predicatg occurs (i) in the positive body of, thena(p) > a(q)
holds; (ii) in the negative body of, thena(p) > a(q) holds.

For any progran®, letUp be the set of all constants appearin@irif no constant
appearsirP, an arbitrary constant is addedfe). Gr(P) is the set of rulesc obtained
by applying, to each rule € P, all possible substitutions from the variables irP to
elements ot/p.

An interpretation] C B, satisfiesa ground ruler iff H(r) NI # () whenever
B*(r) C I andB~(r) NI = (. I satisfies a ground prograf, if eachr € P is
satisfied byl. A non-ground rule (resp., a prograr®) is satisfied by an interpretation
1 iff I satisfies all groundings of (resp.,Gr(P)). I C By, is ananswer sebf P iff it
is a subset-minimal set satisfying tBelfond-Lifschitz reduct

Pl ={H(r):- B (r) | INB (r) =0,r € Gr(P)}.

For a progranP, we denote the set of its answer setsh§(P).

Credulous and skeptical reasoning in terms of programdiisesteas follows. Given
a progranfP and a set of ground atoms Then, we writéP |=. A (credulous reason-
ing), if A is contained in some answer setRyfwe write? |=, A (skeptical reasoning),
if Ais contained in each answer set/f

We briefly recall some complexity results for disjunctivegilo programs. In fact,
since we will deal with fixed programs we focus on results fatadcomplexity. Recall
that data complexity in our context is the complexity of dtieg whetherP(D) E A
when datalog programB are fixed, while input databasésand ground atomgl are
an input of the decision problem. Depending on the concrefimition of =, we give
the complexity results in Table 1 (cf. [15] and the referestteerein).

stratified programsormal programgeneral cage
= P NP 25
s P coNP ny

Table 1. Data Complexity for datalog (all results are completenessilts).

3 Encodings of Basic Argumentation Frameworks

In this section, we first introduce the most important seicaribr basic argumentation
frameworks in some detail. In a distinguished section, ves tprovide encodings for
these semantics in terms of datalog programs.

3.1 Basic Argumentation Frameworks

In order to relate frameworks to programs, we use the ureNérsf domain elements
also in the following basic definition.

Definition 1. An argumentation framework (AR$ a pair F = (A, R) whereA C U

is a set of arguments an C A x A. The pair(a,b) € R means that: attacks (or
defeats). A setS C A of argumentsiefeats (in F'), if there is ana € S, such that
(a,b) € R. An argument. € A is defendedby S C A (in F) iff, for eachb € A, it

holds that, if(b, a) € R, thenS defeatd (in F).

An argumentation framework can be naturally representeddiisected graph.

Example 1.Let F' = (A, R) be an AF withA = {a,b,¢,d,e} andR = {(a,b), (¢, b),
(¢,d), (d,c), (d,e), (e,e)}. The graph representation &fis the following.

@—%%—@f;@—»@ﬁp

Fig. 1. Graph of Example 1.

In order to be able to reason about such frameworks, it isssacg to group ar-
guments with special properties ¢éxtensionsOne of the basic properties of such an
extension is that the arguments are not in conflict with edlclro

Definition 2. LetF' = (4, R) be an AF. A sef C A is said to beconflict-free (inF’),
if there are nau, b € S, such that(a, b) € R. We denote the collection of sets which are
conflict-free (inF) by ¢f (F).

The first concept of extension we present arestiable extensionshich are based
on the idea that an extension should not only be internalhsisbent but also able to
reject the arguments that are outside the extension.

Definition 3. LetF = (A4, R) be an AF. A sef is astable extensioof F', if S € ¢f (F)
and eacha € A\ S is defeated bys in F'. We denote the collection all of stable
extensions of” by stable(F).

The frameworkF from Example 1 has a single stable extens{and}. Indeed
{a,d} is conflict-free, sincex and d are not adjacent. Moreover, each further ele-
mentb, ¢, e is defeated by eithed or d. In turn, {a, ¢} for instance is not contained
in stable(F'), although it is clearly conflict free. The obvious reasonhiate is not
defeated by{a, c}.

Stable semantics in terms of argumentation are considergdite restricted. It is
often sufficient to consider those arguments which are abflefend themselves from
external attacks, like the admissible semantics propogé&ling [4]:

Definition 4. Let F = (A, R) be an AF. A sef5 is anadmissible extensioaf F, if
S € ¢f(F) and eacha € S is defended bys in F'. We denote the collection of all
admissible extensions &fby adm (F').

For the frameworkr” from Example 1, we obtaigdm (F) = {0, {a}, {c},{d},
{a,c},{a,d}}. By definition, the empty set is always an admissible extenghere-
fore reasoning over admissible extensions is also limitedact, some reasoning (for
instance, given an AF' = (A, R), anda € A, is a contained in any extension &f)
becomes trivial wrt admissible extensions. Thus, manyaresers consider maximal
(wrt set-inclusion) admissible sets, called preferre@gesions, as more important.

Definition 5. Let FF = (A, R) be an AF. A sef is apreferred extensioof F, if S €
adm(F) and for eachS’ € adm(F'), S ¢ S’. We denote the collection of all preferred
extensions of" by pref (F).

Obviously, the preferred extensions of framewdtkrom Example 1 aréa, ¢} and
{a,d}. We note that each stable extension is also preferred, butdhverse does not
hold, as witnessed by this example.

Finally, we introduce complete and grounded extensionshkwvbiung considered as
skeptical counterparts of admissible and preferred eidaasrespectively.

Definition 6. Let I’ = (A, R) be an AF. A sef is acomplete extensioof F, if S €
adm(F) and, for eachu € A defended by (in F), a € S holds. The least (wrt set
inclusion) complete extension éfis called thegrounded extensioaf F'. We denote
the collection of all complete (resp., grounded) extersiohF by comp(F) (resp.,
ground(F)).

The complete extensions of framewafkfrom Example 1 ar€a, ¢}, {a,d}, and
{a}, with the last being also the grounded extensions of

We briefly review the complexity of reasoning in AFs. To thislewe define the
following decision problems fot € {stable, adm, pref, comp, ground}:

stable| adm |pref|comp|ground
Crede || NP | NP | NP| NP P
Skept, || cONP|(trivial)| TIZ | P P

Table 2. Complexity for decision problems in argumentation frameso

— Cred.: Given AFF = (A, R) anda € A. Isa contained in som§ € e(F)?
— Skept,: Given AFF' = (A, R) anda € A. Isa contained in eacl € e(F)?

The complexity results are depicted in Table 2 (many of theftoW implicitly
from [16], for the remaining results and discussions seg1&]Jj. All NP-entries as
well as the coNP-entry and tH&} -entry refer to completeness results. A few further
comments are in order: We already mentioned that skep#ealaning over admissi-
ble extensions always is trivially false. Moreover, we ntitat credulous reasoning
over preferred extensions is easier than skeptical reagomnhis is due to the fact that
the additional maximality criterion only comes into play foe latter task. Indeed for
credulous reasoning the following simple observation realtear why there is no in-
crease in complexity compared to credulous reasoning alm@issible extensionsi
is contained in somé& < adm(F) iff a is contained in somé&' € pref (F'). A simi-
lar observation immediately shows why skeptical reasooiver complete extensions
reduces to skeptical reasoning over the grounded exterfSialy, we recall that rea-
soning over the grounded extension is tractable, sincerthenged extension of an AF
F = (A, R) is given by the least fix-point of the operatbf : 24 — 24, defined as
I'r(S) ={a € A | aisdefended bys in F'} (see [4]).

3.2 Encodings

We now provide a fixed encoding. for each extension of type introduced so far,
in such a way that the AF’ is given as an input databageand the answer sets of
the combined program. (F’) are in a certain one-to-one correspondence with the re-
spective extensions. Note that having the fixed progra@t hand, the only translation
required for a given AR is thus its reformulation as inpiit, which is very simple (see
below). With some additions, we can of course combine tHermifit encodings into a
single program, where the user just has to specify which ofxtensions she wants
to compute.

In most cases, we have to guess candidates for the selepedftgxtensions and
then check whether a guessed candidate satisfies the cumddsg conditions. We use
unary predicates(-) andout(-) to make such a guess for a $etC A, wherein(a)
represents that € S. Thus the following notion of correspondence is relevanfar
purposes.

Definition 7. Let S C 2Y be a collection of sets of domain elements and. 25«

a collection of sets of ground atoms. We say tHand Z correspond to each other,
in symbolsS = T iff |S| = |Z] and (i) for eachl € Z, there exists arf € S, such
that{a | in(a) € I} = S; and (ii) for eachS € S, there exists ad € Z, such that
{a]in(a) € I} = S.

Let us first determine how an AF is presented to our progranmsas. In fact, we
encode a given AF' = (A, R) as follows

F = {arg(a) | a € A} U {defeat(a,b) | (a,b) € R}.

The following program fragment guesses, when augmenteﬁ byr a given AF
F = (A, R), any subsef C A and then checks whether the guess is conflict-frééin

e = { In(X) :- notout(X), arg(X);
out(X):- notin(X),arg(X);
- in(X),in(Y), defeat(X,Y)}.

Proposition 1. For any AFF, ¢f (F') = AS(wcf(ﬁ)).
The additional rules for the stability test are as follows:

Tstaple = Tef U { defeated(X):- in(Y"), defeat(Y, X);
- out(X), not defeated(X)}.

The first rule computes those arguments attacked by thertuguess, while the
constraint eliminates those guesses where some argumecomined in the guess
remains undefeated. This brings us to an encoding for séatdmsions, which satisfies
the following correspondence result.

Proposition 2. For any AFF, stable(F') = AS(wstable(ﬁ)).
Next, we give the additional rules for the admissibilityttes

Tadm = Tef U { defeated(X) :- in(Y"), defeat(Y, X);
not_defended(X) :- defeat(Y, X), not defeated(Y);
:- in(X), not_defended(X)}.

The first rule is the same as in,... The second rule derives those arguments
which are not defended by the current guess, i.e., thoseremgis which are defeated
by some other argument, which itself is not defeated by threeatiguess. If such a
non-defended argument is contained in the guess, we halienioae that guess.

~

Proposition 3. For any AFF, adm(F) = AS (7 adm (F)).

We proceed with the encoding for complete extensions, wikialso quite straight-
forward. We define

Teomp = Tadm U { - out(X), not not_defended (X)}.

~

Proposition 4. For any AFF, comp(F) = AS(Tcomp (F)).

We now turn to the grounded extension. Suitably encodinggiegatorl », we can
come up with a stratified program which computes this extendiote that here we
are not able to first guess a candidate for the extension armdheck whether the
guess satisfies certain conditions. Instead, we “fill"ith)-predicate according to the
definition of the operatofz. To compute (without unstratified negation) the required
predicate for being defended, we now make use of the eraeer the domain elements
and we derive corresponding predicates for infimum, supnenamd successor.

Te = {I(X,Y):- arg(X),arg(¥), X <Y
nsuce(X, Z):- (X, Y),t(Y, Z);
suce(X,Y):- It(X,Y), not nsuce(X,Y);
ninf (V) :- It(X,Y);
inf(X):- arg(X), not ninf(X);
nsup(X):- t(X,Y);
sup(X) :- arg(X), not nsup(X)}.

We now define the desired predicatefended(X) which itself is obtained via a
predicatedefended_upto(X,Y’) with the intended meaning that argumeitis de-
fended by the current assignment with respect to all argtsiiér< Y. In other words,
we let rangeY” starting from the infimum and then using the defined succqasati-

cate to derivelefended upto(X,Y') for “increasing”Y . If we arrive at the supremum
element in this way, we finally derivéfended (X). We define

Tdefended = { defended upto(X,Y) :- inf(Y), arg(X), not defeat(Y, X);
defended_upto(X,Y) :- inf(Y),in(Z), defeat(Z,Y), defeat(Y, X);
defended_upto(X,Y) :- suce(Z,Y), defended_upto(X, Z),

not defeat(Y, X);
defended_upto(X,Y) :- suce(Z,Y), defended_upto(X, Z),
in(V), defeat(V,Y"), defeat(Y, X);
defended(X) :- sup(Y), defended_upto(X,Y)}, and
Tground = T< UTdefended U {in(X):- defended(X)}.

Note thatr .04 IS indeed stratified.

~

Proposition 5. For any AFE, ground (F) = AS(Tground (F)).

Obviously, we could have used thiefended(-) predicate in previous programs,
especiallyr.,m, could be defined as

Tef U Tdefended U { :- In(X), not defended(X); :- out(X), defended(X)}.

We now continue with the more involved encoding for prefdregtensions. Com-
pared to the one for admissible extensions, this encodipgines an additional maxi-
mality test. However, this is sometimes quite complicatertoode (see also [19] for a
thorough discussion on this issue).

In fact, to compute the preferred extensions, we will usetaraton technique as
follows: Having computed an admissible extenskinwe make a second guess using
new predicates, sawN(-) andoutN(-), such that they represent a guééso S. For
that guess, we will use disjunction (rather than defaulatieg), which allows thaboth
inN(a) andoutN(a) are contained in a possible answer set (under certain ¢omsl
for eacha. In fact, exactly such answer sets will correspond to théepred extension.
The saturation is therefore performed in such a way that railipatesinN(a) and
outN(a) are derived, for thos®’ which donot characterize an admissible extension.
If this saturation succeeds for eash O S, we want that saturated interpretation to
become an answer set. This can be done by using a saturatidicgtespoil, which is
handled via a constraint not spoil. This ensures that only saturated guesses survive.

Such saturation techniques always require a restrictedfusegation. The predi-
cates defined i~ will serve for this purpose. Two new predicates are needexti-p
icateeq which indicates whether a gueSsrepresented by atonisN(-) andoutN(-)
is equal to the guess faf (represented by atonis(-) andout(-)). The second pred-
icate we define isindefeated(X) which indicates thaX is not defeated by any el-
ement fromS’. Both predicates are computed if.;.rs Via predicates:q_upto(-)
(resp.undefeated_upto(-, -)) in the same manner as we usédended_upto(-, -) for
defended(-) in the moduler jefenqeqs @above. To this end let

Thetpers = 1< U { cqupto(Y) = inf(Y), in(Y), mN(Y);
equpto(Y) - inf(Y), out(Y), outN(Y");
eq-upto(Y') :- succ(Z Y),in(Y),inN(Y), eq_upto(Z);
eq_upto(Y) :- suce(Z,Y), out(Y), outN(Y'), eq_upto(Z);
eq:- sup(Y), eq_upto(Y);
undefeated upto(X,Y) :- 1nf(), outN(X), outN(Y);
undefeated _upto(X,Y) :- inf(YV"), outN(X), not defeat(Y, X);
undefeated upto(X,Y) :- bU.CC(Z Y'), undefeated_upto(X, Z),
outN(Y);

undefeated upto(X,Y) :- succ(Z,Y), undefeated_upto(X, Z),
not defeat(Y, X);

undefeated(X) :- sup(Y), undefeated_upto(X,Y)}

)

Tspoit = { InN(X) V outN(X) :- out(X); 1)
inN(X) :- in(X); 2
spoil :- eq; 3
spoil :- inN(X), inN(Y'), defeat(X,Y); 4)
spoil :- inN(X), outN(Y'), defeat(Y, X)), undefeated(Y); (5)
inN(X) :- spoil, arg(X); (6)
outN (X)) :- spoil, arg(X); (7)
:- notspoil}. (8)

stable adm pref comp ground |
Crede ﬂ'smble(ﬁ) ':(; a 7Tadm(ﬁ) ':(; a 7Tad'm(ﬁ) ':(; a Wco?rbp(ﬁ)):C a ﬂ—gmund(ﬁ)): a
Skepte T stable (F) ':s a (trivial) T pref (F) ':s a TI'gmund(F) '= a Wground(F))= a

Table 3. Overview of the encodings of the reasoning tasks forlAE (A, R) anda € A.

We define

Tpref = Tadm U T helpers) T spoil -

When joined WithF for some AFF = (A, R), the rules ofr,,,,; Work as follows:
(1) and (2) guess a new st C A, which compares to the gueSsC A (characterized
by predicatesn(-) andout(-) as used int,q,) asS C S’. In caseS’ = S, we obtain
predicateeq and derive predicatgpoil (rule (3)). The remaining guessé$ are now
handled as follows. First, rule (4) derives predicateil if the new guess’ contains a
conflict. Second, rule (5) derivepoil if the new guesss’ contains an element which
is attacked by an argument outsidéwhich itself is undefeated (bg’). Hence, we
derivedspoil for thoseS C S’ where eitherS = S’ or S’ did not correspond to an
admissible extension af'. We now finally spoil up the current guess and derive all
inN(a) andoutN(a) in rules (6) and (7). Recall that due to constraint (8) sudileg
interpretation are the only candidates for answer setsuifothem into an answer set,
it is however necessary that we spoiledéachsS’, such thatS C S’; but by definition
this is exactly the case 8 is a preferred extension.

~

Proposition 6. For any AFF, pref (F') = AS(mpref (F)).
We summarize the results from this section.

Theorem 1. For any AFF ande € {stable, adm, comp, ground, pref }, it holds that
e(F) =2 AS(me(F)).

We note that our encodings adequateén the sense that the data complexity of the
encodings mirrors the complexity of the encoded task. Iy epending on the chosen
reasoning task, the adequate encodings are depicted ia 3aRecall that credulous
reasoning over preferred extensions reduces to creduaspning over admissible
extensions; and skeptical reasoning over complete extesséduces to reasoning over
the single grounded extension. The only proper disjungtiegram involved isr, .,
all other are encodings are disjunction-free. Moreoxgf,..,.q is stratified. Stratified
programs have at most one answer set, hence there is no ndestiriguish between
. andf=;. If one now assigns the complexity entries from Table 1 tcetheodings as
depicted in Table 3, one obtains Table 2.

However, we also can encode more involved decision problesing our programs.
As an example consider tH&} -complete problem o€oherence17], which decides
whether for a given AR, pref (F) C stable(F) (recall thatpref (F) D stable(F)
always holds). We can decide this problem by extendipg; in such a way that an
answer-set ofr,,..; survives only if it does not correspond to a stable extendsyn

10

definition, the only possibility to do so, is if some unde@hargument is not contained
in the extension.

Corollary 1. The coherence problem for an AFholds iff the program
Tpres (F) U {v:- out(X), not defeated(X); :- not v}

has no answer set.

4 Encodings for Generalizations of Argumentation Framewoks

4.1 Value-Based Argumentation Frameworks

As a first example for generalizing basic AFs, we deal witlugabased argumentation
frameworks (VAFs) [6] which themselves generalize the gnexice-based argumenta-
tion frameworks [5]. Again we give the definition wrt the uergel{.

Definition 8. A value-based argumentation framework (VA& g 5-tupleF’ = (A, R,
Y, 0, <) whereA C U are argumentsR C A x A, ¥ C U is a non-empty set of
values disjoint from4, o : A — X assigns a value to each argument freim and< is
a preference relation (irreflexive, asymmetric) betwednes

Let< be the transitive closure af. An argument € A defeatsan argumend € A
in F ifand only if (a,b) € Rand (b, a) ¢<.

Using this notion of defeat, we say in accordance to Definifidhat a se5 C A
of argumentslefeatd (in F), if there is arm € .S which defeat$. An argument € A
is defendedy S C A (in F) iff, for eachb € A, it holds that, ifb defeats: in F, then
S defeats in F. Using these notions of defeat and defense, the definitiof8] ifor
conflict-free sets, admissible extensions, and prefentghsions are exactly along the
lines of Definition 2, 4, and 5, respectively.

In order to compute these extensions for VAFs we thus onlyg teslightly adapt
the modules introduced in Section 3.2. In fact, we just ovitewF” for a VAF F' as

F = {arg(a) | a € A} U {attack(a,b) | (a,b) € R} U
{val(a,o(a)) | a € A} U {valpref(w,v) | v < w};
and we require one further module, which now obtainsditfeat(-, -) relation accord-
ingly:
Twaf = { valpref(X, Z) :- valpref(X,Y"), valpref(Y, Z);
pref(X,Y) :- valpref (U, V), val(X, U), val(Y, V);
defeat(X,Y):- attack(X,Y), not pref (Y, X)}.

We obtain the following theorem using the new conceptsi?fmndm@f, as well as
re-usingm g, andm,..; from Section 3.2.

~

Theorem 2. For any VAFF ande € {adm, pref}, e(F) = AS(myar U me(F)).

11

For the other notions of extensions, we can employ our engsdirom Section 3.2
in a similar way. The concrete composition of the modules éw@v depends on the
exact definitions, and whether they make use of the notion @dfaat in a uniform
way. In [20], for instance, stable extensions for a VVAFare defined as those conflict-
free subsets$ of arguments, such that each argument ndf is attacked (rather than
defeated) bys. Still, we can obtain a suitable encoding quite easily usiregfollowing
redefined module:

Tstaple = Tep U { attacked(X) :- in(Y'), attack(Y, X);
- out(X), not attacked(X)}.

~

Theorem 3. For any VAFF, stable(F) =2 AS(Tyar U Tstapie (F)).
The coherence problem for VAFs thus can be decided as fallows
Corollary 2. The coherence problem for a VAFholds iff the program
Topres (F) U {attacked(X) :- in(Y), attack(Y, X);
v:- out(X), not attacked(X); :- notv}
has no answer set.

4.2 Bipolar Argumentation Frameworks

Bipolar argumentation frameworks [7] augment basic AFs bgaond relation between
arguments which indicates supports independent from tefea

Definition 9. A bipolar argumentation framework (BAF) is a tuple = (A, R4, Rs)
whereA C U is a set of arguments, anll; C A x AandR, C A x A are the defeat
(resp., support) relation of".

An argument: defeatsan argument in F' if there exists a sequenes, . .., an+1
of arguments fromd (for n > 1), such thatu; = a, anda,,+1 = b, and either

— (ai,ai+1) € Ry foreachl < i <n —1and(ap,an+1) € Rg; OF
— (a1,a2) € Rgand(a;,a;+1) € Rs foreach2 <i <n.

As before, we say that a s8t C A defeatsan argumenbd in F' if somea € S
defeatsd; an argument € A is defendedy S C A (in F) iff, for eachb € A, it holds
that, if b defeats: in F, thenS defeatd in F. R

Again, we just need to adapt the input databBs&nd incorporate the new defeat-
relation. Other modules from Section 3.2 can then be reusddct, we define for a
given BAFF = (A, R4, Rs),

ﬁ:{arg(a) | a € A} U{attack(a,b) | (a,b) € R4} U {support(a,b) | (a,b) € Rs},
and for the defeat relation we first compute the transitieswte of thesupport(-, -)-
predicate and then definkefeat(-, -) accordingly.
Toaf = { support(X, Z) :- support(X,Y),support(Y, Z);
defeat(X,Y) :- attack(X,Y);
defeat(X,Y):- attack(Z,Y), support(X, Z);
defeat(X,Y):- attack(X, Z), support(Z,Y)}.

12

Following [7], we can use this notion of defeat to define catHiiee sets, stable
extensions, admissible extensions and preferred extesisizactly along the lines of
Definition 2, 3, 4, and 5, respectively.

~

Theorem 4. For any BAFF ande € {stable, adm, pref}, e(F) = AS(mpqr Ume (F)).

More specific variants of admissible extensions from [7]@w&ined by replacing
the notion a conflict-free set by other concepts.

Definition 10. Let F' = (4, Ry, Rs) be a BAF andS C A. ThenS is calledsafein F
if for eacha € A, such thatS defeatss, a ¢ S and there is no sequenes, ..., a,
(n > 2), suchthat; € S, a, = a,and(a;,a;1+1) € Rs, foreachl <i <n — 1. Aset
S is closed undeR; if, for each(a, b) € R;, it holds thata € S if and only ifb € S.

Note that for a BAFF, each safe set (ift) is conflict-free (inF"). We also remark
that a setS of arguments is closed und&y, iff S is closed under the transitive closure
of Rs.

Definition 11. Let F' = (A, Rq, R,) be a BAF. A sef C A is called ans-admissible
extensiorof F' if S is safe (inF') and eachu € S is defended by (in). AsetS C A
is called ac-admissible extensioof F' if S is closed undeR,, conflict-free (inF’),
and eachs € S is defended by (in F'). We denote the collection of altadmissible
extensions (resp. of attadmissible extensions) éfby sadm (F') (resp. bycadm (F)).

We define now further programs as follows

Tsadm = Tadm U { supported(X):- in(Y"), support(Y, X);
:- supported(X), defeated(X) }

Teadm = Tadm U { - support(X,Y),in(X), out(Y);
:- support(X,Y), out(X),in(Y) }.

Finally, one defines-preferred (respe-preferred) extensions as maximal (wrt set-
inclusion)s-admissible (resp:-admissible) extensions.

Definition 12. Let F' = (A, R4, Rs) be a BAF. A sef C A is called ans-preferred
extensionof F if S € sadm(F) and for eachS’ € sadm(F), S ¢ S’. Likewise,
asetS C Ais called ac-preferred extensioof F' if S € cadm(F') and for each
S" € cadm(F), S € S’. By spref (F') (resp.cpref (F)) we denote the collection of all
s-preferred extensions (resp. of alpreferred extensions) df.

Again, we can reuse parts of thg,..-program from Section 3.2. The only additions
necessary are to spoil in case the additional requiremests@ated. We define

! These extensions are calldgadmissible and resg-preferred in [7].

13

Tspref = Tsadm U T helpers U Tspoil U
{ supported(X):- inN(Y"), support(Y, X);
spoil :- supported(X), defeated(X) }

Tepref = Tcadm U T helpers U Tlspoil)
{ spoil:- support(X,Y),inN(X), outN(Y);
spoil :- support(X,Y), outN(X),inN(Y) }.

Theorem 5. For any BAFF ande € {sadm, cadm, spref, cpref }, we havee(F) =

~

.AS(Tf'baf Ume(F)).

Slightly different semantics for BAFs occur in [8], whereethotion of defense is
based onR,, while the notion of conflict remains evaluated with respgecthe more
general concept of defeat as given in Definition 9. Howeusg auch variants can be
encoded within our system by a suitable composition of theeepts introduced so far.

Again, we note that we can put together encodings for cormplet grounded ex-
tensions for BAFs, which have not been studied in the litesat

5 Discussion

In this work we provided logic-program encodings for conmpgtdifferent types of ex-
tensions in Dung’s argumentation framework as well as inesoecent extensions of
it. To the best of our knowledge, so far no system is availallieeh supports such a
broad range of different semantics, although nowadays euwf implementations
exist$. The encoding (together with some examples) is availabltherweb and can
be run with the answer-set solver DLV [10]. We note that DLScesupplies the built-in
predicate< which we used in some of our encodings. Moreover, DLV prowifig-
ther language-extensions which might lead to alternat®dings; for instance weak
constraints could be employed to select the grounded artefrem the admissible, or
prioritization techniques could be used to compute thegprefl extensions.

The work which is closest related to ours is by Niegeal.[21] who also suggest to
use answer-set programming for computing extensions efmaegtation frameworks.
The most important difference is that in their work the pergrhas to be re-computed
for each new instance, while our system relies asirgle fixedprogram which just
requires the actual instance as an input database. We é#hiavvour approach thus is
more reliable and easier extendible to further formalisms.

Future work includes a comparison of the efficiency of défgrimplementations
and an extension of our system by incorporating furthenregetions of semantics, for
instance, the semi-normal semantics [22] or the ideal séosd23].

Acknowledgment§ he authors would like to thank Wolfgang Faber for comments o
an earlier draft of this paper. This work was partially suped by the Austrian Science
Fund (FWF) under grant P20704-N18.

2 See http:/iwww.csc.liv.ac.ukazwyner/software.html for an overview.

14

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Bench-Capon, T.J.M., Dunne, P.E.: Argumentation ifieid intelligence. Artif. Intell.171
(2007) 619-641

Besnard, P., Doutre, S.: Checking the acceptability adftaofarguments. In: Proceedings
NMR’04. (2004) 59-64

Egly, U., Woltran, S.: Reasoning in argumentation framw using quantified boolean
formulas. In: Proceedings COMMA06, IOS Press (2006) 1331

. Dung, P.M.: On the acceptability of arguments and its &mental role in nonmonotonic

reasoning, logic programming and n-person games. Artiélllrv7 (1995) 321-358

. Amgoud, L., Cayrol, C.: A reasoning model based on the ymtidn of acceptable argu-

ments. Ann. Math. Artif. Intell34 (2002) 197-215

. Bench-Capon, T.J.M.: Persuasion in practical argumsinigwalue-based argumentation

frameworks. J. Log. Compul3 (2003) 429-448

. Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptahilitarguments in bipolar argumen-

tation frameworks. In: Proceedings ECSQARU’05. VolumeBB7LNCS., Springer (2005)
378-389

. Amgoud, L., Cayrol, C., Lagasquie, M.C., Livet, P.. Onddgrity in argumentation frame-

works. International Journal of Intelligent Syste@8(2008) 1-32

. Baroni, P., Giacomin, M.: A systematic classification gfuanentation frameworks where

semantics agree. In: Proceedings COMMA08, |OS Press (280848

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, @erri, S., Scarcello, F.: The dlv system
for knowledge representation and reasoning. ACM Trans. fitonb.og.7 (2006) 499-562
Niemela, I.: Logic programming with stable model setizanas a constraint programming
paradigm. Ann. Math. Artif. Intell25 (1999) 241-273

Gelfond, M., Lifschitz, V.: Classical negation in logicograms and disjunctive databases.
New Generation Compu®.(1991) 365-386

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Sbhaiy Truszczyhski, M.: The first
answer set programming system competition. In: ProcesdifiN\MR’07. Volume 4483 of
LNCS., Springer (2007) 3-17

Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datglo ACM Trans. Database Syst2
(1997) 364-418

Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Coregity and expressive power of logic
programming. ACM Computing Surveas (2001) 374-425

Dimopoulos, Y., Torres, A.: Graph theoretical struetuin logic programs and default theo-
ries. Theor. Comput. ScL70(1996) 209-244

Dunne, P.E., Bench-Capon, T.J.M.: Coherence in fingaraent systems. Artif. Intelll41
(2002) 187-203

Coste-Marquis, S., Devred, C., Marquis, P.: Symmetrgumentation frameworks. In:
Proceedings ECSQARU’05. Volume 3571 of LNCS., Springef8®17-328

Eiter, T., Polleres, A.: Towards automated integrabbguess and check programs in an-
swer set programming: a meta-interpreter and applicatidieeory and Practice of Logic
Programmings (2006) 23—-60

Bench-Capon, T.J.M.: Value-based argumentation framies. In: Proceedings NMR’02.
(2002) 443-454

Nieves, J.C., Osorio, M., Cortés, U.: Preferred exterssas stable models. Theory and
Practice of Logic Programming (2008) 527-543

Caminada, M.: Semi-stable semantics. In: Proceedi@jd/@A 06, |OS Press (2006) 121—
130

Dung, P.M., Mancarella, P., Toni, F.: Computing ide&ical argumentation. Artif. Intell.
171(2007) 642-674

15

Efficient Parallel ASP Instantiation
via Dynamic Rewriting*

Simona Perri, Francesco Ricca, and Saverio Vescio

Dipartimento di Matematica, Univeraitella Calabria, 87030 Rende, Italy
{perri,ricca,vescio}@mt.unical.it

Abstract. Answer Set Programming (ASP) is a powerful formalism for knowl-
edge representation and reasoning. The computation of most ASknsyfste
lows a two-phase approach: an instantiation (or grounding) phaseagena
variable-free program which is then evaluated by propositional algosithrthe
second phase. The instantiation process may be very expensieejatigpfor
real-world problems, where huge input data are often to be dealt with.

A method that exploits the capabilities of multi-processor machines for wapro
ing instantiation performance has been recently proposed. This métiole;
mented in the grounding module of the ASP system DLV, proved to betiefiec
especially when dealing with programs consisting of many rules.

In this paper, a dynamic rewriting of input rules is proposed that ergsaticc
efficacy of the parallel evaluation also in the case of programs with egryles.
The effect of the technique is twofold: on the one hand, a kind of cadigdism is
induced by rewriting each rule at running time; on the other hand, theleamk

is dynamically distributed among processing units according to an heuristics
Dynamic rewriting was implemented, and an experimental analysis was con
ducted that confirms the effectiveness of the technique. In partichlamew
parallel implementation always outperforms the (sequential) DLV instantiato
and compared with the previous parallel method offers a very relgeamtespe-
cially in the case of programs with very few rules.

1 Introduction

In the last few years, multi-core/multi-processor ardititees have become standard,
thus making Symmetric MultiProcessing (SMP) [1] commorodts entry-level sys-
tems and PCs. The principle behind SMP architectures is sienple: two or more
identical processors connect to a single shared main mereoapling simultaneous
multithread execution. Such technology has been recergipiged with profit in the
field of Answer Set Programming (ASP).

ASP is a declarative approach to programming proposed iartse of nonmono-
tonic reasoning and logic programming [2—7] which featwrdsgh declarative nature
combined with a relatively high expressive power [8, 9]. fehare nowadays a number
of systems that support ASP and its variants [8, 10-17]. Tdraet modules of ASP

* Supported by M.I.U.R. within projects “Potenziamento e Applicazioni dettagrammazione
Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappresentazith conoscenza:
estensioni e tecniche di ottimizzazione.”

16

systems work on a ground instantiation of the input progrEimas, an input prograr®
first undergoes the so-called instantiation process, wirictuces a prograf’ seman-
tically equivalent tgP, but not containing any variable. This phase is computatign
very expensive (see [7,9]); thus, having an efficient in&#ion procedure is, in gen-
eral, crucial for the performance of the entire ASP systénteed, recent applications
of ASP in different emerging areas (see e.g., [18-21]), lewidenced the practical
need for faster and scalable ASP instantiators.

In [22] a technique for the parallel instantiation of ASP gnams was proposed,
allowing for the performance of instantiators to be impbty exploiting the power of
multiprocessor computers. The technique takes advanfesgeree structural properties
of input programs in order to reduce the usage of concurreantrol mechanisms [1],
and, thus, the so-called parallel overhead. The stratemsés on two different aspects
of the instantiation process: on the one hand, it examinesstiucture of the input
programP, splits it into modules (or sub-programs) and, accordinth&interdepen-
dencies between the modules, decides which of them can begs®d in parallel; on
the other hand, it parallelizes the evaluation of rules wiach module. This strategy
has been implemented into the instantiator module of the &&em DLV [8], thus
obtaining a parallel ASP instantiator.

This parallel system proved to be effective especially i itistantiation of pro-
grams consisting of several rules with a large amount oftijatia [22]. However, it
is not fully exploitable in case of programs with few rulesieTreason for this behav-
ior can be easily understood by considering the followirgjudictive encoding for the
well-known 3-Colorability problem:

(r) col(X,red) V col(X,yellow) V col(X,green) :— node(X).
(¢) = col(X,C), col(Y,C), edge(X,Y).

Predicatesiode andedge represent the input graph; rule) guesses the possible
colorings of the graph, and the constrainf imposes that two adjacent nodes cannot
have the same color.

In this case, the technique proceeds by first instantigtingthus computing the
extension ofol, and then, only once this is done, by processing the constrgi Thus,
such encoding does not allow the existing technique to mla&esvaluation parallel
at all. However, one may provide different encodings (witbrenrules) for the same
problem, which are more amenable for the technique. In gértais would require the
user to knowhowthe evaluation process works, while writing a program: ijeauch
a requirement is not desirable for a fully declarative systidevertheless, an automatic
rewriting of the input program for an equivalent one, whogal@ation can be made
more parallel, could make this optimization process trarespt to the user.

In this paper, a dynamic rewriting of input rules is proposieat enhances the ef-
ficacy of the existing parallel evaluation technique, e&glcin the case of programs
with very few rules. The basic idea is to rewrite input rulegxecution time in order
to induce a form of Or-parallelism [23—-26]. This can be oh¢al, given a rule:, by
“splitting” the extension of one single body predicatef r in several parts. Each part
is associated with a different temporary predicate; anmedah of those predicates, say
pi, @ new rule, obtained by replacipgwith p;, is produced. The so-created rules will

17

be instantiated in parallel in place of when they are done, a realign step gets rid of
the new names in order to obtain the same output of the otigigarithm.

However, the choice of the most convenient predicate td isptiot trivial; indeed,
a “bad” split might reduce or neutralize the benefits of daliam, thus making the
overall time consumed by the parallel evaluation not opitif@ad, in some corner case,
even worse than the time required to instantiate the origimeoding). Thus, an heuris-
tic has also been proposed to select the “best” predicagitarsorder to minimize the
parallel execution time. Summarizing, the contributiohths paper are the following:

- A technique is presented for rewriting rules of ASP proggamsuch a way that
they can be evaluated in parallel; rules are rewritten atui@n time, thus dynam-
ically distributing the workload among processing units.

An heuristic for selecting the most convenient way for liéwg a rule is proposed
aiming at minimizing the parallel time.

An implementation of the dynamic rewriting was done inte pgarallel version of
the DLV instantiator.

An experimental analysis was conducted for assessingtimigque.

The results of the experiments show that the new parallelementation always
outperforms the (sequential) DLV instantiator, and, coragavith the previous parallel
method, offers a very relevant gain especially in case afjiamms with few rules.

2 Answer Set Programming

In this section, we briefly recall syntax and semantics ofudgrsSet Programming.

Syntax. A variable or a constant istarm An atomis a(ty, ..., t,,), wherea is apred-
icateof arity n andty, ..., t,, are terms. Aliteral is either apositive literalp or anega-
tive literal not p, wherep is an atom. Adisjunctive rule(rule, for short)r is a formula
ay V -V oa, —by, -, bk, not bgy1,---, not by.whereay, - an,by, -, by
are atoms and > 0, m > k > 0. The disjunctiorn; V --- V a, is theheadof r,
while the conjunctiomy, ..., bg, not bg41,..., not by, is thebodyof r. A rule without
head literals (i.en. = 0) is usually referred to as antegrity constraint If the body is
empty (i.e.k = m = 0), itis called afact

H(r) denotes the sdlu, ..., a,, } of the head atoms, and B(r) the set{b,, ..., by,
not byy1,...,not b, } of the body literals. B (r) (resp.,B~(r)) denotes the set of
atoms occurring positively (resp., negatively)Br). A rule r is safeif each variable
appearing in- appears also in some positive body literat-of

An ASP program?P is a finite set of safe rules. An atom, a literal, a rule, or & pro
gram isgroundif no variables appear in it. Accordingly with the databaseninology,
a predicate occurring only ifactsis referred to as aBDB predicate, all others dBB
predicates; the set of facts Bfis denoted bye DB(P).

Semantics. Let P be a program. Thelerbrand Universeand theHerbrand Basef P
are defined in the standard way and denote@pyand Bp, respectively.

Given a ruler occurring inP, a ground instanceof r is a rule obtained fromr
by replacing every variabl& in r by o(X), whereo is a substitution mapping the

18

variables occurring im to constants it/»; ground(P) denotes the set of all the ground
instances of the rules occurring

An interpretationfor P is a set of ground atoms, that is, an interpretation is a $ubse
I of Bp. A ground positive literald is true (resp.falsg w.r.t. I if A € I (resp.,A ¢ I).

A ground negative literahot A is true w.r.t. I if A is false w.r.t.I; otherwisenot A

is false w.r.t.I. Letr be a ground rule iground(P). The head of- is true w.r.t. I if

H(r)N1I # (. The body ofr istruew.r.t. T if all body literals ofr are true w.r.t (i.e.,
Bt(r) C IandB~(r) NI = @) and isfalsew.r.t. I otherwise. The rule is satisfied
(ortrue) w.r.t. I if its head is true w.r.t7 or its body is false w.r.tl.

A modelfor P is an interpretatiod/ for P such that every rule € ground(P) is
true w.r.t. M. A model M for P is minimalif no model NV for P exists such thad is a
proper subset ai/. The set of all minimal models fdP is denoted byVIM(P).

Given a ground prograr® and an interpretatiof, thereductof P w.r.t. I is the
subsetP! of P, which is obtained fronP by deleting rules in which a body literal is
false w.r.t.I. Note that the above definition of reduct, proposed in [2ifippdifies the
original definition of Gelfond-Lifschitz (GL) transform [2but is fully equivalent to
the GL transform for the definition of answer sets [27].

Let I be an interpretation for a prograf I is ananswer sefor stable model) for
P if I € MM(P') (i.e., I is a minimal model for the program’) [28, 2]. The set of
all answer sets fdP is denoted byAN S(P).

3 Parallel Instantiation of ASP programs

In this Section a sketchy description of the parallel ins&ion algorithm of [22] is
provided. A detailed discussion about this technique isobtihe scope of this paper;
for further insights we refer the reader to [22].

Given an input prograr®, the algorithm efficiently generates a ground instantia-
tion of the input program that has the same answer sets asiltheng, but is much
smaller in general. In order to generate a small ground progequivalent taP, the
parallel instantiator computes ground instances of rutegaining only atoms which
can possibly be derived frofR, and thus avoiding the combinatorial explosion which
can be obtained by naively considering all the atoms in thibide@d Base. This is done
by taking into account some structural information of thpunprogram, concerning
the dependencies among IDB predicates.

In particular, each prograr® is associated with a graph, called thependency
Graphof P, which, intuitively, describes how predicates depend arhesher. More
in detail, given a prograr®, the Dependency Grapbf P is a directed grapliip =
(N, E), whereN is a set of nodes an# is a set of arcsV contains a node for each
IDB predicate ofP, andE contains an are = (p, q) if there is a ruler in P such that
q occurs in the head of andp occurs in a positive literal of the body of

The graphGp induces a subdivision dP into subprograms (also calledodule}
allowing for a modular evaluation. We say that a rule P definesa predicatey if p
appears in the head of For each strongly connected component (SQTpf Gp, the

* A strongly connected component of a directed graph is a maximal sobiée vertices, such
that every vertex is reachable from every other vertex.

19

set of rules defining all the predicatesthis calledmoduleof C' and is denoted bfp...
A rule r occurring in a moduléP, (i.e., defining some predicatec C) is said to be
recursiveif there is a predicatg € C occurring in the positive body of, otherwisey
is said to be amxit rule As an example, consider the following progrémwherea is
an EDB predicate, and its dependency grégh

(X, Y)Vs(Y) = q(X),q(Y),not t(X,Y). P g
PXY) - qX)HX.Y). J J

te——s

the strongly connected components@®@§ are {s}, {¢} and{p,¢}. They corre-
spond to the three following modulesp(X,Y)V s(Y) :—q(X), ¢(Y),not t(X,Y). },

{ a(X) =a(X). }, and{ p(X,¥) —q(X), (X, Y). p(X,Y)V s(¥)=q(X),q(Y),
not t(X,Y). t¢(X,Y):—p(X,Y),s(Y).} Note that the first and second module do not
contain recursive rules, while the third one contains orierele, namelyp(X,Y) v
s(Y):—q(X),q(Y),not t(X,Y), and two recursive rules.

The dependency graph induces a partial ordering among BsSdefined as fol-
lows: for any pair of SCCsl, B of Gp, we say thai3 directly depends odl if there is
an arc from a predicate of to a predicate oB3; and, B depend®n A if there is a path
in the Dependency Graph frorito B.

Intuitively, this partial ordering guarantees that a nadprecedes a nodB if the
program module correspondingtohas to be evaluated before the ondsoMoreover,
if two components do not depend on each other, they can beatedlin parallel.

The parallel instantiation algorithm exploits this pdrtiadering in order to both
produce a small instantiation and identify modules that loarevaluated in parallel.

It follows a pattern similar to the classical producer-agnsrs problem. Ananager
thread (acting as a producer) identifies the componentsalependency graph of the
input prograntP that can run in parallel, and delegates their instantiatios number
of instantiatorthreads (acting as consumers).

TheParallel_Instantiateprocedure, shown in Figure 1, acts as a manager. It receives
as input both a prograr® to be instantiated and its Dependency Grdpk; and it
outputs a set of ground ruld$, such thatANS(P) = ANS(II U EDB(P)). First
of all, the algorithm creates a new set of atofshat will contain the subset of the
Herbrand Base significant for the instantiation; more iradle$ will contain, for each
predicatep in the program, the extension pf that is, the set of all the ground atoms
having the predicate name p{significant for the instantiation).

Initially, S = EDB(P), andII = (). Then, the manager checks, whether some
SCCC can be instantiated; in particular, it checks if there is s@ther componer&’
such thatC' depends oi©’ andC” has not been evaluated yet. As soon as a component
C is processable, a ne@omponentinstantiatahread is spawned for instantiatidg

ProcedureComponentinstantiatorin turn, takes as input, among the others, the
component”' to be instantiated and the s&f for each atonu belonging toC', and
for each ruler defininga, it computes the ground instancesrafontaining only atoms
which can possibly be derived frof. At the same time, it updates the setvith the

20

Procedure Parallel_Instantiate (P: Program; Gp: DependencyGraph; var IT: GroundProgram)
begin
var S: SetOfAtoms; var C: SetOfPredicates;
S = EDB(P); Il :=0;
while Gp # 0 do
take a SCC C' from G'p that can run in parallel
Spawn(ComponentInstantiator, P, C, S, Il ,Gp)
end while
end;
Procedure Componentlnstantiator (P: Program; C: Component;var S: SetOfAtoms;
var [I: GroundProgram; var Gp: DependencyGraph)
begin
var N/'S: SetOfAtoms; var AS: SetOfAtoms;
AS:=0;NS:=0;
for each r € Exit(C,P); do
Z, = Spawn (InstantiateRule,r, S, AS,N'S, IT);
for each r € Ezit(C,P); do
Join_with_thread(Z,);
do
AS:=NS;NS:=0;
for each r € Recursive(C, P); do
I, = Spawn (Instantiate Rule,r, S, AS,N'S, IT);
for each r € Recursive(C, P); do
Jjoin_with_thread(Z.);
S:=SUAS,
while NS # 0
Remove C from Gp;
end Procedure;
Procedure InstantiateRule (r: rule; S: SetOfAtoms; AS: SetOfAtoms
var N'S: SetOfAtomsvar IT: GroundProgram)
/% Given S and AS, builds all the ground instances of r, adds them to I1, and add to N'S
the head atoms of the newly generated ground rules. */

Fig. 1. The Parallel Instantiation Procedures.

atoms occurring in the heads of the ruledbfTo this end, each rulein the program
module ofC' is processed by calling procedurestantiateRuleThis, given the set of
atoms which are known to be significant up to now, builds @ldhound instances of
adds them td7, and marks as significant the head atoms of the newly gedenaltes.

It is worth noting that, exit rules are instantiated by a Braall to InstantiateRulg
whereas recursive ones are processed several times actirdi semi-riave evaluation
technique [29], where at each iteratioonly the significant information derived during
iterationn — 1 has to be used. This is implemented by partitioning signifieéoms into
three setsAS, S, andN'S. NS is filled with atoms computed during current iteration
(sayn); AS contains atoms computed during previous iteration ¢say 1); and, S
contains the ones previously computed (up to iteratien2).

Initially, AS and 'S are empty; the exit rules contained in the program module
of C are evaluated and, in particular, one new thread for eadirdei, running pro-
cedurelnstantiateRuleis spawned. Only once all the threads are done, recurdies ru
are processed (do-while loop). At the beginning of eaclaiten, \/'S is assigned to
AS, i.e. the new information derived during iteratieris considered as significant in-
formation for iterationr + 1. Then, for each recursive rule, a new thread is spawned,

21

running procedurénstantiateRulewhich receives as input and AS; when all threads
terminate AS is added taS (since it has already been exploited). The evaluation stops
whenever no new information has been derived (/& = #). Eventually, component
C'is removed from/!.

Proposition 1. [22] Let P be an ASP program, ant’ be the ground program gen-
erated by the algorithrRarallel_Instantiate ThenANS(P) = ANS(II U EDB(P))
(i.e.P andII U EDB(P) have the same answer sets). O

4 Parallel Instantiation via Dynamic Rewriting

In this section, a rewriting technique is described thateigks the parallel instantiation
algorithm of the previous Section.

Some Motivation. As already pointed out, there are problem encodings thabtlo n
allow the instantiation technique described in Sectio 3nake the evaluation parallel
at all; the following encoding of the 3-Colorability probfe is an example for that:

(r) col(X,red) V col(X,yellow) V col(X, green) :— node(X).
(¢) = col(X,C), col(Y,C), edge(X,Y).

However, one may provide different encodings for the sanablpm, which are
more amenable for the application of the technique. Ovealifiying, since each rule
of the input program is processed by one processing unitjramethink of rewriting
it into an equivalent program containing several rules.iRstance, the following is a
possible rewriting for the constraifit), of the 3-Colorability encoding reported above:

(1) = col(X,C), col(Y,C), edgel(X,Y).
(c2) = col(X,C), col(Y,C), edge2(X,Y).

The set of edges Bplit upinto two subsets, represented by predicatgs 1 andedge2.
The evaluation of constrain{s;) and(cz) is equivalent to the evaluation of the original
constraintc, modulo renaming, but the computation now can be carriednopérallel
by two different processing units (instantiators).

This rewriting strategy can be straightforwardly extenéedallowing more than
two instantiators to work in parallel, and it can be genegliin order to deal with any
program. However, there are different, sometimes manysw@gpply it. For instance,
another possible encoding for 3-Colorability could be oi#d by working on a literal
whose predicate namedsl, and by introducing new predicated; . . . col,, (obtained
by distributing the extension @bl). Hereafter, with a small abuse of notation we indi-
cate as extension of a literiahe extension of the predicgteorresponding td (having
the same name d§ Note that, differently fromedge, col is not anE D B predicate (it
occurs in the head of rulg)); thus, in this case, a rewriting preserving the original
semantics, would require to further modify the originalgmam. Indeed, the extension
of col is not known a-priori; thus, the split @bl has to be induced by the split of the
predicates it depends on by means of other rules. This mdydean intricate rewriting
of the entire program (not only rules to be split) and a pdgsilower instantiation.

However, the extension of the predicate to be split is knouning the instantiation
when the rule is taken for evaluating it. Thus, if the rewagtis performed at execution

22

time, a rule can be split without involving the entire pragtaMoreover, it can be eas-
ily automatized in order to be transparently applied. Nbt,tthis strategy somewhat
induces a form 0Or-parallelism[23—26], which is here simulated via rewriting.

Dynamic Rewriting. The enhanced parallel instantiation algorithms are now de-
scribed in detail that are based on the idea described above.

ProcedureComponentinstantiatassed in the algorithm of Section 3 is replaced by
a new one, calle€omponentinstantiatoRew reported in Figure 2. It takes as input
the component’ to be instantiated and the set of significant atginand for each atom
a belonging toC, and for each rule defininga, it computes the ground instancesrof

At the beginning, the new set of atomsS and 'S (which initially are empty) are
created; then, exit rules are evaluated. More in detaih e&them is rewritten into a set
of new exit rules which are added & This is done by calling the proceduRewrite
which is detailed in the following. At this point, a threadhning InstantiateRules
spawned for each exit rule. Only when all the threads are ,doimetion Realign (i)
restoresS and AS by removing all the ground atoms inserted by procedRerite
(i) properly formats the output ground rules in such a waat tsplit predicates” do
not appear; (iii) deletes from the prograPrall the rules containing split predicates and
reintroduces the original ones. Now, asG@omponentinstantiatorecursive rules are
evaluated according to a semifma schema. Also in this case, rules are first rewrit-
ten and the output is “realigned”. However, since recursiles are processed several
times, this strategy is applied at each iteration of the thleAtoop.

One may think that, recursive rules could be “split” only enlout this choice is not
correct in the general case. Indeed, if the split predicatedursive, its extension may
change at each iteration; hence, the distribution madenguhe rewriting step could
not be sufficient to compute all the ground instances of thigiral rule. In addition,
this choice has a relevant side-effect: at each iteratiemtbrkload is dynamically re-
distributed among instantiators, thus inducing a dynaoad Ibalancing. Note that this
feature intervenes just in case of the evaluation of reeeingiles, which are often the
most time consuming part of the computation.

ProcedureRewriteis now described in detail. It receives as input: the nule
be “split”, the setsS and AS containing the extensions of the body predicates, and the
programP. Rewritefirst selects, according to an heuristics, a positive literaplit, say
[, in the body ofr; then, it replaces in P by a set of rules; (i = 1,..., k). Eachr;
is obtained from- by substituting with a new literall; having a freshnew predicate
name built by concatenatingto the name of. This is done by functiorgplitRules
whereas proceduiistribute creates the extension of the new literglé = 1, ..., k)
by uniformly distributing the extension éf(both S and AS are affected).

Concerning the selection of the literal to split, the chdies to be carefully made,
since it may strongly affect the cost of the instantiatiorubés; a good heuristics should
minimize it. It is well-known that this cost strictly depesxdn the order of evaluation
of body literals, since computing all the possible instntins of a rule is equivalent
to computing all the answers of a conjunctive query joining éxtensions of literals
of the rule body. However, the choice of the split literal miaffuence the time spent

2 If a predicate with this name already exists, another string which doeppeaaelsewhere in
the program is appended to the name.

23

on instantiating each split rule, whatever the join orderotder to help the intuition,
suppose that the rute: h(X) : —a(X),b(X), ¢(X). hasto be splitin ten parts, and that
the size of the extensions of b, andc are 10, 20, and 30, respectively. The following
table reports the number of operations (i.e. comparisoesjied to instantiate a single
split rule of r in the worst case, by varying the literal to split (on the cohs) and
by considering three different body orders (on the rows)eNbat, any other order is
equivalent to one of the table w.r.t. the number of operation

order/splifsplit a [split b[split ¢
ABC 620 620, 800
ACB 630 900 630
CBA 1200 660 660

Looking at the table, some considerations can be made dfait the order ABC is
the most efficient; moreover, in each order, the number ofadfmas is minimum when
one of the first two literals is split. Note also that, the Siftéhe extension alone is not a
good discriminant for choosing the literal to split. Indetee table shows that splitting
on ¢ (which has the largest extension) is always a bad choicereslsehere is an order
(CBA) in which, even if the split literal is the smallesf)the number of operations is the
highest. Similar considerations still hold if more precéstimations of costs are made.
According to these considerations, the heuristics prappbsee consists of selecting an
optimal ordering and splitting the first literal in this ord8uch heuristics tries, on the
one hand, to minimize the overall (sequential) executioretiand, on the other hand,
to distribute the workload in order to minimize the paraigécution time.

Since the ordering problem has already been investigat@damffective strategy
[31] has already been successfully implemented in DLV, & dacided to adopt it.

This choice has also another important consequence: dirthe factors the heuris-
tics is based on are always already computed during the datigy its implementa-
tion does not introduce any overhead.

Proposition Let P be an ASP program, and be the ground program generated by
the algorithmParallel_Instantiatewhere procedur€omponentinstantiatoRewis used
instead ofComponentinstantiatopthen AN.S(P) = ANS(II U EDB(P)).

Proof. (sketch) This follows from Proposition 1 €@omponentinstantiatoRewpro-
duces the same output@bmponentinstantiatarhen invoked on the same input. First,
observe that the ground instances of exit rules producetiéoywto procedures are the
same modulo a renaming, that is performed by the realign §tepcerning recursive
rules, their evaluation is obtained by applying severaétrihe same algorithm used for
the exit ones, where the output of each iteration is usedpag for the next one. Thus,
since the realign step is performed at the end of each iter#te thesis follows. O

5 Experiments

In order to check the validity of the dynamic rewriting, it svamplemented into the
parallel grounding engine of [22]. The resulting system e@apared with the previous
one on a collection of benchmark programs taken from diffedemains.

Both problems whose encodings cannot be evaluated in pawdth the existing
technique were considered, and problems where the olditpehapplies. All of them
have already been used for assessing ASP instantiatosperice ([8, 32, 33]).

24

Procedure Componentinstantiator_Rew (P: Program; C: Component; var S: SetOfAtoms;
var [I: GroundProgram, var G-»: DependencyGraph)
begin
var AS, N'S: SetOfAtoms;
AS =0, NS:=0;
for each r € Ezit(C, P); do
Rewrite (1, S, AS,P); // this will add new exit rules
for each r € Ezit(C, P); do
I, = Spawn (Instantiate Rule,r, S, AS,N'S, IT);
for each r € Exit(C, P); do
Join_with_thread(Z,);
Realign(Il S,AS);

do
AS :=NS;NS:=0;
for each r € Recursive(C,P); do
Rewrite (r,S, AS,P); // this will add new recursive rules
for each r € Recursive(C,P); do
I, = Spawn (InstantiateRule,r, S, AS,N'S, IT);
for each r € Recursive(C,P); do
Join_with_thread(Z,),
Realign(I1 S,AS P);
S:=SUAS;
while NS #0

Remove C' from Gp;
end Procedure;

Procedure Rewrite (r: Rule; var S: SetOfAtoms; var AS: SetOfAtoms;var P: Program)
begin

Select ! € B(r); /laccording to an heuristics

P =P U SplitRules(r,);

P=P\ {1}

Distribute(l,S ,AS);
end Procedure;

Program Function SplitRules (r: Rule; I: Literal)

/i
Given rule r, returns a program containing rules r; (i = 1, ..., k) obtained from r
by replacing | with a new literal l; having a fresh new name built by concatenating i
to the name of l.

*/

Procedure Distribute (I: Literal; var S: SetOfAtoms; var AS: SetOfAtoms)
begin
for each a € S; do
if a has the same name of |
index s_id = DetectSplit(a);
/I create atom as_jq whose name is built by concatenating s_id
/I to the name of a and add it to S .;
S=SU{as.ia};
end Procedure;

Procedure Realign (IT: GroundProgram; var S: SetOfAtoms; var AS: SetOfAtoms;
var P: Program)
/i
For each ground rule r € II, if B(r) contains a split literal l; replace its name with
the original one; restore S and AS by removing all the ground atoms inserted
by function Distribute; replace rules originated by SplitRules with the original ones.
*/

Fig. 2. The Parallel Instantiation Pocedures enhanced by Dynamic Rewriting.

The system was built with GCC 4.1.2, dynamically linking fhesix Thread Li-
brary. Experiments were performed on a machine equippédutwid Intel Xeon “Wood-
crest” (quad core) processors clocked at 3.00GHz with 4 MB=oEl 2 Cache and 4GB
of RAM, running Debian GNU Linux 4.0.

The implementation allows the user for setting the numbesptifs as an input ar-
gument. For our experiments, this number was set to 8 whiititickes with the number
of available processors (if the extension of the split éiteontains: instances where
z < 8 then exactlyr split rules are geenrated). Actually, an experimentalysisinot
reported here for space reasons) confirmed that this fixtidgét optimal. The total
time needed to instantiate the inputs was measured. In trddtain more trustworthy
results, each single experiment was repeated three time$adh the average and stan-
dard deviation of the results are reported. In the followthg benchmark problems are
described, and finally, the results of the experiments grerted and discussed.

5.1 Benchmark Problems and Data

A brief description of the problems considered for the ekpents follows. In or-
der to meet space constraints, encodings are not preseutdtidy are available at
http://www.mat.unical.it/parallel/parallebench08.tar.gzip To help the understanding
of the results some information is given on the number ofsrofeeach program. About
data, we considered for each problem three instances @&asirrg size.

3-Colorability. This well-known problem asks for an assignment of three reoto
the nodes of a graph, in such a way that adjacent nodes alveagsdifferent colors.
The encoding of this problem consists of one rule and onet@ins Three simplex
graphs were generated with the Stanford GraphBase lib8diy py using the function
simplex(n,n,—2,0,0,0,0), (n € {140,150, 170}).

Reachability. Given a finite directed grapf = (V, A), we want to compute all pairs
of nodes(a, b) € V' x V such thab is reachable frona through a nonempty sequence
of arcs inA. The encoding of this problem consists of one exit rule aretansive one.
Tree graphs were generated [35] having pair (number ofdevelmber of siblings):
(12,2), (14,2), and (10,3), respectively.

Hamiltonian Path. A classical NP-complete problem in graph theory, and canxbe e
pressed as follows: given a directed gr&@ph- (V, F) and a node: € V of this graph,
does there exist a path @ starting ate and passing through each nodelinexactly
once? The encoding of this problem consists of several,rafesof these is recursive.
Instances were generated, by using a tool by Patrik Simdn$3@]), having 5800,
6500 and 7200 nodes, respectively.

Player. A data integration problem [18]. Given some tables contgjmiiscording data,
find a repair where some key constraints are satisfied. Treglergof this problem con-
sists of several rules, and one constraint. The considaratbmly generated databases
have 32000, 39000, 45500 tuples.

n-Queens.The&8-queens puzzle is the problem of putting eight chess queeaa&x8
chessboard such that none of them is able to capture anyustimgy the standard chess
gueen’s moves. The-queens puzzle is the more general problem of plagiogieens
on annxn chessboard(> 4). The encoding consists of one rule and four constraints.
Instances were considered having {37,39,41}.

26

Problem serial no_split! split|split vs nasplit]
3coly 60.76 (0.58) 60.79 (0.10) 9.24 (0.09 657%
3cola 92.00 (0.55) 91.97 (0.06) 13.28(0.10 692%
3cols 171.30 (0.29)171.36 (0.20) 24.80 (0.29 690%
reach 14.20 (0.03) 14.26 (0.02) 2.24 (0.08 634%
reachs 268.13 (0.31)267.98 (0.60) 35.12(0.14 763%
reachs 802.35 (10.74)805.47 (0.40)101.51(0.62, 790%
hampathy| 229.43 (0.13)141.02 (0.29) 33.35 (0.87 423%
hampathz| 303.66 (0.92)185.83 (0.56)) 45.49 (0.35 409%
hampaths| 377.85 (0.48)231.89 (1.07) 57.73 (0.47, 402%
queensi 4.79 (0.01) 2.29(0.04) 0.76(0.03 301%
queenss 5.89(0.01) 2.79(0.02) 0.93(0.01 300%
queenss 7.16 (0.01) 3.38(0.03) 1.08(0.02 312%
playery 141.94 (2.02) 61.16 (0.08) 20.78 (0.26| 296%
players 289.72 (0.62)126.48 (2.19) 41.95 (0.15] 301%
players |481.65 (11.23)209.88 (1.15) 69.84 (0.16 300%

Table 1. Effect of the enhanced technique - Average Times and Standardt@evia
5.2 Experimental Results and Discussion

The performance of the compared systems is summarized Ia Taln particular, the
first three columns report the average instantiation tinaesl Gtandard deviation) for
the serial instantiation, the old parallel instantiatod &ine new one, respectively; the
last column shows percentage gains given by the new tecbmiqu. the old one.

First of all, notice that for 3-Colorability and Reachatyilihe old technique does not
apply, thus the time reported in column “split” coincides with the serial execution
time for those problems; conversely, the time required leyitistances of Hamiltonian
Path, n-Queens and Player already benefits of the presenuarefthan one processor.

It is worth noting that, where the old technique has no effiaet best performance
is near to the theoretical maximum obtainable with eightpssors. For example, in
reachs the execution time changes from 805 seconds to 101 (i.e adpmint 790%).

The better performance obtained in the case of Reachaility 3-Colorability) is
due to the dynamic workload distribution made in case ofnsee rules.

Looking at the remaining problems the picture is still vepod: the introduction
of the dynamic rewriting always allows to significantly inope performance. Indeed,
for these problems, the old technique already allows foresimteresting improvements
w.r.t. the serial execution. But the combination of the techiniques is always the best
performer, and reaches performance gains up to 700% We.tdrial version.

In particular, when comparing the old parallel instantiatith the new one, gains
range from 296% oplayer, to 423% ofhampath,. Note that, the better performance
obtained for Hamiltonian Path is due (as for Reachabildytht dynamic workload dis-
tribution made in the presence of recursive rules. Indeadhikionian Path and Reach-
ability are the only ones exploiting recursion among protsen Table 1.

Such good results may be further improved by applying mophisticated tech-
nique for the distribution of the extension of the literaklit.

6 Related Work and Conclusions
In this paper a new strategy is proposed for increasing leéisah into the instantiation

process of ASP programs. This strategy allows performamioe improved by perform-
ing a dynamic rewriting of the input program that, when comeloi with existing paral-

27

lel instantiation techniques, naturally induces both afof of Or-parallelism [23-26]
and a dynamic load-balancing technique. The techniquemaleimented into the par-
allel DLV instantiator and an experimental analysis wasdemted that confirmed the
effectiveness of the technique. In particular, the new Iarenplementation always
outperforms the (sequential) DLV instantiator, and corafawith the previous parallel
method offers a very relevant gain especially in case ofiarog with very few rules.

Concerning related work, there are several studies abaallglatechniques for
the evaluation of ASP programs that focus on both the prtiposi (model search)
phase [37—-39], and the instantiation phase [40, 22]. Abdwmutatter group of proposals
(which, evidently, is the only one strictly-related to thsrk), there are two distinct
approaches: in [40] a parallelization technique was desigor the ASP instantiator
Lparse [41]; whereas, in [22] the instantiator of the ASResysDLV was parallelized.
Although the two approaches have several differences coimgeboth the input lan-
guage and the exploited technology (clusters vs shared nygnboth of them proceed
by delegating the instantiation of rules of the program tifedent processing units.
Thus, the method proposed in this paper, which was sucdlgssfiplemented as an
extension of the parallel DLV instantiator, may also be &eldpo increase parallelism
in case of the Lparse-based one (e.g. one might rewrite phe program, by splitting
a domain predicate, just before launching the parallel agatwn). Regarding load-
balancing, it is worth pointing out that, in [40] the disuiibn of work to processing
units is statically determined at the beginning of the cotagon while, in the approach
described in this paper, the work is distributed at runnimgt

Our work is also related to the efforts of parallelizing thaleation of Datalog [42—
45], dating back to 90’s. In many of them, only restrictedssks of Datalog programs
are parallelized; whereas, the most general ones (repiorfé8, 45]) are applicable to
normal Datalog programs. Clearly, none of them considep#wiliarities of disjunc-
tive programs and unstratified negation. More in detail] [@®vides the theoretical
foundations for the so-callembpy and constraitechnique, whereas [45] enhances it in
such a way that the communication overhead in distributetesys can be minimized.
The copy and constrain technique works as follows: ruleseplkcated with additional
constraints attached to each copy; such constraints aggaged by exploiting an hash
function and allow for selecting a subset of the tuples. Tiiteioed restricted rules are
evaluated in parallel. Our technique shares the idea dfisglthe instantiation of each
rule, but has several differences that allow for obtainingeffective implementation.
Indeed, in [43, 45] copied rules are generated and statiaaBociated to instantiators
according to an hash function which is independent from threeat instance in input.
Conversely, in our technique, the distribution of predécattensions is performed dy-
namically, before assigning the rules to instantiatorgaking into account the “actual”
predicate extensions. In this way, the non-trivial prob[éB] of choosing an hash func-
tion that properly distributes the load is completely agaidh our approach. Moreover,
the evaluation of conditions attached to the rule bodieinduhe instantiation phase
would require to either modify the standard instantiatioocedure (for efficiently se-
lecting the tuples from the predicate extensions accortirgdded constraints) or to

% Since the enhancements introduced in [45] are not relevant in our sgnN§MP machines
with shared memoy in the following we focus on [43]).

28

incur in a possible non negligible overhead due to theiratin. As far as future
work is concerned, it is planned to further study both loathbcing techniques and
heuristics. A possibility is to extend to our framework dgmia load redistribution tech-
nigues like the one in [46].

References

1. Stallings, W.: Operating systems (3rd ed.): internals and designigleac Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1998)
2. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs Bigjunctive Databases.
NGC 9 (1991) 365-385
3. Lifschitz, V.: Answer Set Planning. In Schreye, D.D., ed.: |G@% 23-37
4. Marek, V.W., Truszczyski, M.: Stable Models and an Alternative Logic Programming
Paradigm. In: The Logic Programming Paradigm-A 25-Year Petsjge¢1999) 375-398
5. Baral, C.: Knowledge Representation, Reasoning and Declaratiger Solving. CUP
(2003)
6. Gelfond, M., Leone, N.: Logic Programming and Knowledge Regméation — the A-Prolog
perspective . Artificial Intelligenc&381-2) (2002) 3—38
7. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TORZ?3) (1997) 364-418
8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S8arcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TQB)(2006) 499-562
9. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Eegsive Power of Logic
Programming. ACM Computing Surve$8(3) (2001) 374-425
10. Janhunen, T., Nientgll.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7.
LNCS 2923, (2004) 331-335
11. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. ULRNMR’05. LNCS
3662, (2005) 447-451
12. Simons, P., Niem@] I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligencel38(2002) 181-234
13. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Cddtizen answer set solving.
Proc. of IJCAI 2007, 386—-392
14. Lin, F.,, Zhao, Y.: ASSAT: computing answer sets of a logic pnoglbg SAT solvers. Artifi-
cial Intelligencel57(1-2) (2004) 115-137
15. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Séte8dnhanced to Non-tight
Programs. In: LPNMR-7. LNCS 2923, (2004) 346—350
16. Anger, C., Konczak, K., Linke, TNoMbRe: A System for Non-Monotonic Reasoning. In:
LPNMR’01. LNCS 2173, (2001) 406—410
17. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, The nomore++ Approach to
Answer Set Solving. Proc. of LPAR 2005, 95-109
18. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink,Gfeco, G., lanni, G., Katka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Stankég, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and hsistent Data. Proc.
of ACM SIGMOD 2005, 915-917
19. Curia, R., Ettorre, M., liritano, S., Rullo, P.: Textual Documeat-Processing and Feature
Extraction in OLEX. In: Proceedings of Data Mining 2005, Skiathos, Ge¢2005)
20. Massacci, F.: Computer Aided Security Requirements Engineeritty AP Non-
monotonic Reasoning, ASP and Constraints, Seminar N 05171. Da@smutihar (2005)
21. Ruffolo, M., Leone, N., Manna, M., Sacca’, D., Zavatto, Axpiting ASP for Semantic
Information Extraction. Proc. of ASP05, Bath, UK (2005) 248-262

29

22.

23.

24.

25.
26.
27.

28.
. Ullman, J.D.: Principles of Database and Knowledge Base Sys@ungputer Science Press

30
31.
32
33
34
35
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.

46.

Calimeri, F., Perri, S., Ricca, F.: Experimenting with Parallelism fedtistantiation of ASP
Programs. J. of Algorithms in Cognition, Informatics and Logic (208&)1-3) 34 - 54.
Leone, N., Restuccia, P., Romeo, M., Rullo, P.: Expliciting Paraihelisthe Semi-Naive
Algorithm for the Bottom-up Evaluation of Datalog Programs. Databasénidogy4(4)
(1993) 245-158

Gupta, G., Pontelli, E., Ali, K.A.M., Carlsson, M., HermenegildaM¥ Parallel execution
of prolog programs: a survey. ACM Transactions on Programmimgyuage Systen3(4)
(2001) 472-602

de Kergommeaux, J.C., Codognet, P.: Parallel Logic Progmagn8ystems. ACM Comput.
Surv.26(3) (1994) 295-336

Gupta, G., Jayaraman, B.: Analysis of Or-Parallel Executiond#od\CM Transactions on
Programming Language Systet4) (1993) 659-680

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregatessjartive logic programs: Se-
mantics and complexity. In: JELIA 2004. LNCS 3229, (2004) 200-212

Przymusinski, T.C.: Stable Semantics for Disjunctive Progran®C 81(1991) 401-424

(1989)

Garey, M.R., Johnson, D.S.: Computers and Intractability, A &tocthe Theory of NP-
Completeness. W.H. Freeman and Company (1979)

Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantidigrdoin-Ordering Methods.
Proc of LPNMR 2001, LNCS 2173, (2001) 280-294

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., SchauybTruszczyski, M.: The
first answer set programming system competition. In: LPNMR 200C8M483, 3-17
Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancingifdtantiator by backjumping
techniques. AMAI51(2—4) (2007) 195-228.

Knuth, D.E.: The Stanford GraphBase : A Platform for Combinat@omputing. ACM
Press, New York (1994)

Giorgio, T., Leone, N., Vincenzino, L., Panetta, C.: Experimenaiith recursive queries in
database and logic programming systems. TRPL®ambridge University Press (2007) 1-37
Simons, P.: Extending and Implementing the Stable Model SemantiBsthesis, Helsinki
University of Technology, Finland (2000)

Finkel, R.A., Marek, V.W., Moore, N., Truszczynski, M.: Cpuating stable models in par-
allel. In: Proc. of ASP'01 Workshop, Stanford (2001) 72—76

Gressmann, J., Janhunen, T., Mercer, R.E., Schaubhi€leTS., Tichy, R.: Platypus: A
Platform for Distributed Answer Set Solving. Proc. of LPNMR 2005,-2239

Pontelli, E., EI-Khatib, O.: Exploiting Vertical Parallelism from Answet 8rograms. In:
Proc. of ASP’01 Workshop, Stanford (2001) 174-180

Balduccini, M., Pontelli, E., Elkhatib, O., Le, H.: Issues in paralketcrtion of non-
monotonic reasoning systems. Parallel Compulih@) (2005) 608—647

Niemed, |., Simons, P.. Smodels — An Implementation of the Stable Model artd We
founded Semantics for Normal Logic Programs. In: LPNMR'97. LINT265, 420-429
Wolfson, O., Silberschatz, A.: Distributed Processing of LogigRnms. Proc. of ACM
SIGMOD 1998, 329-336

Wolfson, O., Ozeri, A.: A new paradigm for parallel and distributeleé-processing. In:
ACM SIGMOD 1990, 133-142

Ganguly, S., Silberschatz, A., Tsur, S.: A Framework for thalRh Processing of Datalog
Queries. In: SIGMOD Conference 1990, Atlantic City, NJ, 23-25, 199990) 143-152
Zhang, W., Wang, K., Chau, S.C.: Data Partition and Parallel Btialuof Datalog Pro-
grams. |IEEE TKDE/(1) (1995) 163-176

Dewan, H.M., Stolfo, S.J., Heandez, M., Hwang, J.J.: Predictive dynamic load balancing of
parallel and distributed rule and query processing. Proc. of ACM SIBM 994, 277-288

30

Modeling preferences on resource consumption
and production in ASP

Stefania Costantini* and Andrea Formisano**

Abstract. Recently we have proposed RASP, an extension of Answer
Set Programming that permits declarative specification and reasoning on
consumption and production of resources. In this paper, we extend this
framework to allow the declarative specification of preferences among al-
ternative use of different resources. We provide syntax and semantics for
the resulting formalism, where preferences expressed on resource usage
induce a preference order on answer sets.

Key words: Answer set programming, quantitative reasoning, prefer-
ences, non-monotonic logic programming, language extensions.

Introduction

As it is well-known, Answer Set Programming (ASP) is a form of logic pro-
gramming based on the answer set semantics [13], where solutions to a given
problem are represented in terms of selected models (answer sets) of the corre-
sponding logic program [19]. ASP is nowadays applied in many areas, including
problem solving, configuration, information integration, security analysis, agent
systems, semantic web, and planning (see, among others, [5, 2, 18, 22, 14] and
the references therein).

However, the possibility was lacking of performing some kind of quantitative
reasoning which is instead possible in non-classical logics such as, for instance,
Linear Logics [15] and Description Logics [3]. In recent work [8], an extension
of ASP, called RASP (standing for Resourced ASP), has been proposed so to
support declarative reasoning on consumption and production of resources.

In this paper, we go further in this extension, by adding declarative prefer-
ences to the specification of production/consumption processes. In particular, in
realizing the same process (modeled through the firing of rules), one may prefer
to produce and/or consume certain resources rather than another ones. This
extension can be particularly useful in configuration applications where one can,
for instance, prefer to save money while spending more time or vice versa or
may prefer to employ a certain amount of cheap components rather than a little
amount of expensive parts.

Let us briefly recall syntax and intended semantics of RASP programs
through a simple example. We will then modify such example to informally in-
troduce preferences. A RASP program is composed of r-facts and r-rules, where

* Universita di L’Aquila. Email: stefcost@di.univaqg.it
** Universita di Perugia. Email: formis@dipmat.unipg.it

31

numbers associated with the heads of r-facts and rules indicate which amount of
a certain resource is respectively: available, in case of r-facts; produced, in case
of r-rules, where production can take place if the body holds (this implies that
required resources are either available or produced). Available or produced re-
sources can in turn be consumed: quantities are associated to atoms occurring in
the bodies of r-rules as well. The example concerns the preparation of desserts:

cake:1l «— egq:3, flour:4, sugar:3. flour:8. €gg:3.

ice_cream:1 «— egg:2, sugar:2, milk:2. sugar:6. malk:3.
Atoms of the form q:a are called amount-atoms, where the amount-symbol a de-
notes the quantity of that resource which is either produced (if the amount-atom
is in the head of a rule), or consumed (if it is in the body), or available (if it is
a fact), respectively. We may notice that different solutions stem, in this case,
from the fact that, with the available ingredients, one may prepare either a cake
or an ice-cream, but not both.

Usual ASP literals (possibly involving negation-as-failure) may freely occur in
RASP rules. Semantics of a RASP program is determined by interpreting usual
literals as in ASP (i.e., by exploiting stable model semantics) and amount-atoms
in an auxiliary algebraic structure (that supports operations and comparisons).
For instance, we could modify the above rule by requiring that ice-cream can be
made only if there is a fridge and there is someone who is a good cook:

ice_cream:1 «— eqg:2, sugar:2, milk:2, fridge, a_cook _is_here.
a_cook_is_here — is_here(remy), is_here(linguini).
is_here(remy). is_here(linguini).
Intuitively, the first rule of this program is applicable only in correspondence of
models that satisfy the literals fridge and a_cook_is_here.

RASP offers some constructs to express limited forms of preferences on re-
source consumption/production. For instance, a number of budget policies are
exploitable to control rule firings and, consequently, to influence what resources
to produce and in which quantity, and whether the firing of r-rules is optional
or mandatory. The various policies can be combined in a mixed strategy by
choosing one of them for each single rule of the program. These features, among
others, are fully dealt with in [8]. In what follows we develop a general and more
expressive form of preferences on resource usage.

Recall the initial example and suppose you might prepare a cake either with
corn flour or with potato flour. The following rules express the two possibilities,
but do not say which one you would prefer, assuming both of them to be feasible:

cake:1 «— egg:3, flour:4, sugar:3.
cake:1 — egq:3, potato_flour:3, sugar:3.

We propose in this paper P-RASP (RASP with preferences), to allow one to
explicitly state which resource (s)he would prefer to use, e.g., the formulation

cake:1 — potato_flour:3>flour:4, egqg:3, sugar:3.

32

indicates that consuming potato flour is preferred onto consuming corn flour. Or
also, if the recipe includes milk, one might prefer to use skim milk if available:

cake:1 «— potato_flour:3>flour:4, skim_milk:2>whole_milk:2, egg:3, sugar:3.

In this reformulation, we have two preference lists (or for short p-lists). Actually,
p-lists may involve any number of amount-atoms. The intuitive reading is that
leftmost elements of a p-list have higher priority. P-lists may occur in the head
of r-rules, as shown in the example below, where one prefers to employ available
ingredients to make an ice-cream instead of two cups of zabaglione:

ice_cream:1>zabaglione:2 «— skim_malk:2>whole_milk:2, egg:2, sugar:3.

The introduction of p-lists requires a concept of preferred answer set. In
case several p-lists occur either in one rule or in different r-rules, it is necessary
to establish which answer set better satisfies the preferences. Intuitively, if we
choose to consider as “better” the answer sets which satisfy the higher number
of leftmost elements, in the last example we would have: producing an ice-cream
with skim milk is the best solution. Producing: (a) an ice-cream with whole milk
or (b) two zabagliones with skim milk would be equally good (but worse than
the previous solution) as each of them employs the leftmost element of one p-list.
Producing two zabagliones with whole milk is the less preferred solution. Clearly,
one has to choose the best possible solution, given the available resources. One
might choose other strategies, e.g. one might give higher priorities to p-lists in
rule heads, where consequently solution (a) above would become better than
(b). One may also imagine to introduce a choice among different strategies to
be employed in different contexts. Finally, preferences may be conditional. One
may for instance prefer skim milk when on a diet, i.e. the last rule may become:

ice_cream:1>zabaglione:2 — (skim_milk:2>whole_milk:2 IF diet),
egg:2, sugar:3.

If diet does not hold, then the preference list reduces to a disjunction, i.e. either
skim milk or whole milk can be indistinctly used. This generalizes to several
p-lists, like in the example below:
(ice_cream:1>zabaglione:2 IF summer) «—
(skim_milk:2>whole_milk:2 IF diet), egg:2, sugar:3.

In this paper, we propose a definition of P-RASP and its semantics, we briefly
addresses the complexity and the implementation issues, and outline a compari-
son with related work. We notice that P-RASP has been fully implemented but
for the sake of space, a description of the implementation is out of the scope of
this paper. The interested reader can refer to [8, 9].

1 From RASP to P-RASP: Syntax

In order to formally introduce syntax and semantics of P-RASP, we need to
briefly summarize the basic notions about RASP syntax as presented in [8, 10].

33

To accommodate the new language expressions that involve resources and
their quantities, the underlying language of RASP is partitioned into Program
symbols and Resource symbols. Precisely, let (II,C,V) be an alphabet where
II = [IpUIIR is a set of predicate symbols such that IIpNIIr =0, C =CpUCR
is a set of symbols of constant such that Cp NCr = @, and V is a set of variable
symbols. The elements of Cr are said amount-symbols, while the elements of ITp
are said resource-predicates. A program-term is either a variable or a constant
symbol. An amount-term is either a variable or an amount-symbol.

Amount-atoms are introduced in addition to plain ASP atoms, here called
program atoms. Let A(X,Y") denote the collection of all expressions of the form
p(t1, ... tn), with p € X and {t1,...,¢,} C Y. Then, a program atom is an
element of A(Ip,CUV). An amount-atom is an expression of the form g:a where
q € IrUA(IIR,CUYV) and a is an amount-term. Let 7 = Il U A(Ilg,C). We
call elements of 7 resource-symbols. E.g., in the two expressions p:3 and ¢(2):b, p
and ¢(2) are resource-symbols (with p,q € IIg and 2 € C) aimed at defining two
resources which are available in quantity 3 and b, resp., (with 3,b € Cr amount-
symbols). Expressions such as p(X):V where V, X are variable symbols are also
allowed, as resources can be either directly specified as constants or derived.
Notice that the set of variables is not partitioned, as the same variable may occur
both as a program term and as an amount-term. Ground amount- or program-
atoms contain no variables. As usual, a program-literal L is a program-atom A
or the negation not A of a program-atom (intended as negation-as-failure).! If
L = A (resp., L = not A) then L denotes not A (resp., A).

Definition 1. A resource-literal (r-literal) is either a program-literal or an
amount-atom.

Therefore, we do not allow negation of amount-atoms. (See [8] for a discussion
about this point.) Finally, we distinguish between plain rules and rules that
involve amount-atoms. In particular, a program-rule is defined as a regular ASP
rule, including the case of ASP constraints, i.e., rules with empty head. Beside
program-rules we introduce resource-rules which differ from program rules in
that they may contain amount-atoms.?

Definition 2. A resource-proper-rule has the form
H <+« By,...,By (1)

where Bi,...,Bi, k > 0 are r-literals and H 1is either a program-atom or a
(non-empty) list of amount-atoms.

Resource-facts are intended to model the fixed amount of resources that are
available “from the beginning”. They are defined as follows:

! We will only deal with negation-as-failure. Though, classical negation of program
literals could be used in (P-)RASP programs and treated as usually done in ASP.

2 A more general definition of r-rule is given in [8] that offers the possibility of express-
ing bounds on the (finite) number of times each r-rule is fired. Here, for simplicity,
we restrict ourselves to the simpler case in which each r-rule may be fired at most
once. The treatment of the general case does not offer significant differences.

34

Definition 3. A resource-fact (r-fact, for short) has the form H «— . , where
H is an amount-atom q:a and a is an amount-symbol.

According to the definition, the amount of an initially available resource has to
be explicitly stated. Thus, in an r-fact the amount-term a cannot be a variable.

Definition 4. A resource-rule (r-rule, for short) can be either a resource-
proper-rule or a resource-fact. A RASP-rule (rule, for short) v is either a
program-rule or a resource-rule. An r-program is a finite set of RASP-rules.

Remark 1. Notice that we admit several amount-atoms in the head of a resource-
proper-rule, while the case in which a rule « has an empty head is admitted only
if v is a program-rule (i.e., v is an ASP constraint).

The list of amount-atoms composing the head of an r-rule has to be intended
conjunctively, i.e., as a collection of those resources that are all contemporane-
ously produced by firing the rule.

P-RASP programs are obtained from RASP programs by introducing alter-
natives in using resources expressed by preference lists:

Definition 5. A preference-list of amount-atoms (p-list, for short) is a writing
of the form qi:a1>--->qn:ap, where h = 2 and q1,...,qn are pairwise distinct
resource-symbols. We say that the amount-atom q;:a; has grade of preference i
in the p-list.

We have now to extend the definition of an r-rule accordingly. This is done by
including p-lists in r-literals:

Definition 6. A P-RASP resource-literal (r-literal) is either a program-literal
or an amount-atom or a p-list.

In practice, P-RASP rules differ from RASP rules in that p-lists are admitted
in place of amount-atoms. More precisely, the syntax of an r-rule in P-RASP is
defined as in Def. 2 where in (1) some of the By, ..., Bi, H may be p-lists.

Intuitively speaking, a p-list plays a role similar to an exclusive disjunction of
amount-atoms. If a p-list occurs in the body (resp. head) of a rule, it encodes the
requirement that one (and only one) resource among qi, ...,y has to be con-
sumed (resp. produced), in the indicated amount, if the rule is fired. Moreover,
q; is preferred to g;, for i < j.

Remark 2. The kind of preference among alternative uses of resources expressed
by p-lists has a local scope: each p-list is seen in the context of a particular rule
(which models a specific process in manipulating some amounts of resources).
Clearly, such a local aspect is strictly correlated with the constraints on global re-
source balance and resource availability. Consequently, preferences locally stated
for different rules might/should be expected to interact “over distance” with
those expressed in other rules. Nevertheless, different preference orders on the
same amount-atoms can be expressed in different p-lists.

35

Ezxample 1. Assembling different PCs requires different sets of components
(motherboard, processor(s), ram modules, etc.) and preference might be im-
posed depending on the kind of PC. For instance, in case of servers one might
prefer SCSI disks rather than EIDE disks and vice versa for normal PCs:

cpu:h. scsihd:5. eidehd:9. motherboard:7. ram_module:20.
pc(server):1 «— cpu:2, (scsihd:2>eidehd:2), motherboard:1, ram_module:4.
pe(desk):1 «— cpu:l, (eidehd:2>scsihd:2), motherboard:1, ram_module:2.

Notice that completely antithetic orders are expressed in the two r-rules. Never-
theless, both r-rules might be fired at the same time, since enough resources are
available.

2 Semantics of P-RASP

In this section, we first define the semantics of ground P-RASP programs. The
general case is then easily dealt with by considering the grounding of a program
P to be the set of all ground instances of rules of P that are obtainable through
ground substitutions using constants occurring in P.

Semantics of a (ground) P-RASP program is determined by interpreting
program-literals as in ASP and amount-atoms in an auxiliary algebraic structure
that supports operations and comparisons. The rationale behind the proposed
semantic definition is the following. On the one hand, we translate each r-rule
into a fragment of a plain ASP program, so that we do not have to modify the
definition of stability which remains the same: this is of some importance in
order to make the several theoretical and practical advances in ASP still avail-
able for RASP and P-RASP. However, an answer set of a P-RASP program will
support the firing of an r-rule only if: the rule is satisfied (in the usual way) as
concerns its program-literals; and the requested amounts are allocated for all the
resource-atoms. Hence, an interpretation (and consequently an answer set) for
an r-program has two components: a set of program atoms and an allocation of
actual quantities to amount-atoms.

In describing the semantics of an r-program P we will proceed as follows. First
we fix an algebraic structure to represent quantities and support operations on
them. Then, we develop a representation for collections of amounts with positive
balance. Each of these collections will be a potential allocation of quantities to all
the amount-atoms relative to a single resource symbol in P. Then, we introduce
the notion of r-interpretation of P by selecting an allocation of amounts for each
resource symbol in P.

Modeling Amounts. Amounts are modeled by choosing a collection @) of
quantities, the operations to combine and compare quantities, and a mapping
Kk : Cr — @ that associates quantities to amount-symbols. A natural choice is
) = Z. In this case, positive (resp. negative) integers model produced (resp. con-
sumed) amounts of resources. Alternative options for @ are obviously viable. (For
instance, one could choose @ to be the set of rational numbers.) For the sake
of simplicity, in the rest of the presentation, we will adopt a simplification by

36

identifying Cr with Z (and k being the identity). This will not cause loss in the
generality of the treatment.

Notation. Before going on, we introduce some useful notation. Given two sets
X,Y, let FM(X) denote the collection of all finite multisets of elements of X,
and let Y denote the collection of all (total) functions having X and Y as
domain and codomain, respectively. For any (multi)set Z of integers, > (Z)
denotes their sum (e.g., > ({2,5,3,3,5]}) = 18).

Given a collection S of (non-empty) sets, a choice function c(-) for S is a
function having S as domain and such that for each s in S, ¢(s) is an element
of s. In other words, ¢(-) chooses exactly one element from each set in S.

In order to deal with the preference order syntactically expressed by a p-list,
we consider each amount-atom in a p-list as marked with an integer index. Such
indexes are intended to represent the grade of preference of the amount-atoms
(cf., Def. 5). Operationally, for each p-list, its composing amount-atoms will be
associated, from left to right, with successive indexes starting from 1; for simple
amount-atoms, the index will always be 0.

As mentioned, the elements of) = 7Z provide the interpretations for amount
symbols. To deal with the preference orders expressed by p-lists, we need a
structure slightly richer that). In fact, to take into account of the prefer-
ence grades, we will interpret amount-atoms in N x Q. We call amount cou-
ples the elements of N x). For instance: an interpretation for a p-list such as
skim_milk:2>whole_milk:2, occurring in the head of an r-rule, will involve one
of the couples (1,2) and (2, 2), where the first components of the couples reflect
the grades of preference and the second elements are the quantities.® For single
amount-atoms (in a head of an r-rule), such as egg:2, no preference is involved
and a potential interpretation is the amount couple (0, 2).

Given an amount couple r = (n,x), let grade(r) = n and amount(r) = z.
We extend such a notation to sets and multisets, as one expects: namely, if X
is a multiset then grade(X) is defined as the multiset {n | (n,z) is in X [}, and
similarly for amount(X). E.g., if X = {(1,2),(2,4), (3,1), (1, 2) |} then grade(X)
is {{1,2,3,1]} and amount(X) is {{2,4,1,2}.

Interpretation of P-RASP Programs. An interpretation for P must deter-
mine an allocation of amounts for all occurrences of such amount symbols in P.
We represent produced quantities (corresponding to amount-atoms in heads) by
positive values, while negative values model consumed amounts (corresponding
to amount-atoms in bodies). Since amounts and resource-symbols are used to
model production and consumption of “real world” objects, we must take into
account the obvious constraint that we cannot consume more than what is pro-
duced. In other words, for each resource symbol ¢, the overall sum of quantities
allocated to amount-atoms of the form g:a must not be negative. The collection
Sp of all potential allocations (i.e., those having a non-negative global balance)—
for any single resource-symbol occurring in P (considered as a set of rules)—is

3 Recall that we are identifying the set of amount-symbols Cr with the domain of
quantities @ = Z. Consequently, the symbol 2 in the amount couple (1,2) is an
element of @, whereas the symbol 2 in skim_milk:2 is an element of Cg.

37

the following collection of mappings:

Sp = {F e (FMINxQ))F|0< Z < U amount(F(v)))} (2)

yeEP

The rationale behind the definition of Sp is as follows. Let ¢ be a fixed resource-
symbol. Each element F' € Sp is a function that associates to every rule v € P a
(possibly empty) multiset F(y) of amount couples, assigning certain quantities
to each occurrence of amount-atoms of the form ¢:a in . All such F's satisfy, by
definition of Sp, the requirement that, considering the entire P, the global sum
of all the quantities F' assigns must be non-negative. As we will see later, only
some of these allocations will actually be acceptable as a basis for a model.

An r-interpretation of the amount symbols in a ground r-program P is defined
by providing a mapping p : 7Tg — Sp. Such a function determines, for each
resource-symbol ¢ € T, a mapping ((q) € Sp. In turn, this mapping u(q) assigns
to each rule v € P a multiset 1(q)(7y) of quantities, as explained above. The use
of multisets allows us to handle multiple copies of the same amount-atom. Each
of them corresponds to a different amount of resource to be taken into account.

Let B(X,Y) denote the collection of all ground atoms built up from predicate
symbols in X and terms in Y. We have the following

Definition 7. An r-interpretation for a (ground) r-program P is a pair T =
(I,), with I C B(IIp,C) and u: 7 — Sp.

Intuitively: I plays the role of a usual answer set assigning truth values to
program-literals; p describes an allocation of resources.

Ezample 2. Let IIp = {have_black_powder, have_gun_powder} and Il =
{saltpeter, charcoal, sulfur}, and consider the following program P;:

(v1) have_black_powder <« saltpeter:15, charcoal:3, sulfur:2.

(v2) have_gun_powder «— saltpeter:7, charcoal:3.

(v3) sulfur:4. (v4) saltpeter:18. (v5) charcoal:5.
An r-interpretation for Py is (I,u) with I = {have_gun_powder} and p
such that u(saltpeter)(v2) = {(0,=7)]}, n(saltpeter)(vs) = {(0,18)],
p(charcoal)(y2) = {(0,=3)}, plcharcoal)(vs) = {{0,5)], n(sulfur)(ys) =
{{0,4)]}, and p(g)(vi) = {]} otherwise.

The firing of an r-rule (which involves consumption/production of resources)
can happen only if the truth values of the program-literals satisfy the rule. We
reflect the fact that the satisfaction of an r-rule v depends on the truth of its
program-literals by introducing a suitable fragment of ASP program 7. Let the
r-rule v have L1, ..., Ly as program-literals and Ry, ..., Rj as amount-atoms (or
p-lists). The ASP-program 7 is so defined:

{« Li,...,« Ly} if the head of y consists of amount-atoms or p-lists

{« Li,...,« Ly, if v has the program-atom H as head
H—Ly,. . .,Ly} andh>0

{~} otherwise (e.g., 7y is a program-rule).

/’y\:

38

Def. 8, to be seen, states that in order to be a model, an r-interpretation Z
that allocates non-void amounts to some amount-atoms of «y (i.e., v is fired), has
to model the ASP-rules in 7. (Notice that if v is a program rule then 7 = {v}.)

So far we have developed a semantic structure in which r-rules are inter-
pretable by singling-out suitable collections of amount couples.

Different ways of allocating amount of resources to an r-program are possible.
In order to be acceptable, an allocation has to reflect, for each p-list r in P, one
of the admissible choices that r implicitly represents. In order to extract from P
the information about such admissible choices we need some further notation.

Let ¢ be either an amount-atom or a p-list in a resource-rule ~. Let

; _ {(0,q,a)} if £ is q:a
elify(t) = {{<17Q1,a1>, v (hoqnaan)}y i s qrar> - >qpap

We will use setify to represent the amount-atoms of rules as triples denoting:
the position in each preference list where they occur; the resource-symbol they
contain; the amount that is required for this resource-symbol in that preference
list. We generalize the notion to any multiset X of amount-atoms and p-lists:
setify(X) = { setify(¢) | £ in X }}.

Let r-head () and r-body(7y) denote the multiset of amount-atoms or p-lists
occurring in the head and in the body of v, respectively. In order to distinguish,
in the representation, between amount-atoms occurring in heads and in bodies,
we define setify, () and setify, (y) as the multisets { setify(x) | x € r-body(~) |}
and { setify(z) | x € r-head(7y) }}, respectively.

At this point we can associate to each r-rule 7, a set R(y) of multisets,
intended to represent the collection of admissible choices we mentioned above:

R() = {{{0.0.0) | {i.0,0) = c1(51) and 1 in setify, ()}
U {{(i,q,—a) | (i,q,a) = c2(S2) and Sy in setify, ()}
| for ¢; and ¢ choice functions for setify, (v) and setify,(v), resp.

where ¢; (resp. ¢g) ranges on all possible choice functions for setify, () (resp.
for setify,(v)). Each element of R(y) represents a possible admissible selection
of one amount-atom from each of the p-lists in v and an actual allocation of an
amount to it. Negative quantities are associated to amount-atoms of the body
of 7, as these resources are consumed.* Vice versa, the quantities associated to
amount-atoms occurring in the head are positive, as these resources are produced.

Definition 8. Let T = (I, u) be an r-interpretation for a (ground) r-program
P. T is an answer set for P if the following conditions hold:

o for all rules v € P

(vaemwam=0) v (U {tha0 o) s u@m1} erE)

qETR

4 To be precise, the admissible quantity corresponds to the negation of the amount
occurring in an amount-atom of the body. One may also specify negative byproducts
directly in the body, as in the amount-atom ¢:-2, for instance. In this case, amounts
of ¢ are produced and not consumed (cf., [8]).

39

e [is a stable model for the ASP-program]3, so defined

P-ufs

v s a program-rule in P, or
v is a resource-rule in P and 3q € Tr (1(q)(y) # 0)

The two disjuncts in the formula in Def. 8 correspond to the two cases: a) the
rule « is not fired, so null amounts are allocated to all its amount-atoms; b) the
rule v is actually fired and all needed amounts are allocated (by definition this
happens if and only if 3¢ € 75 (u(q) (v) # @) holds). (Again, notice that case b)
imposes that the amount couples assigned by u to a resource ¢ in a rule «y reflect
one of the possible choices in R(7).)

We now formally introduce the notion resource balance:

Definition 9. Let T = (I, u) be an answer set for a (ground) r-program P. The
resource balance for P, w.r.t. (I,), is the mapping ¢ : TR — Q defined as:

o(g) = ({[Z (amount(u(q)(v))) | v e P]})

which summarizes consumptions and productions of all resources.

Finally, we say that an r-interpretation Z is an answer set of an r-program P
if it is an answer set for the grounding of P.

Note that the above definition however does not in general fulfill the pref-
erences expressed through p-lists. In order to impose a preference order on the
answer sets of an r-program, we need to provide a preference criterion PC to
compare answer sets. Such a criterion should impose an order on the collection of
answer sets by reflecting the (preference grades in the) p-lists. Any criterion has
to take into account that each rule determines a (partial) preference ordering on
answer sets. In a sense, PC should aggregate/combine all “local” partial order
to obtain a global one.

Fundamental techniques for combining preferences (seen as generic binary
relations) can be found for instance in [1]. Regarding combination of preferences
in Logic Programming, criteria are also given, for instance, in [4, 7, 6, 21].

Here we will just consider for P-RASP two of the simpler criteria among the
variety of alternative possible choices. As a first example, we directly exploit the
ordering of amount-atoms in the p-lists (i.e., their relative position). For any
multiset m in FM(N x Q) and ¢ € N, let be 8;(m) = |{ {i,v) | (¢,v) is in m }|.
A partial order on answer sets can be defined as follows. Given two answer sets
Ty = (I1, 1) and Ty = (Io, po) for an r-program P, with puy # po, let m; be the

multiset
mi = U pi(a)(7),
~YEP,q€TR

for 4 € {1,2}, and let j be the minimum natural number such that 3;(mq) #
Bj(ma). We put Z; <1 Iy if and only if 8;(m1) > B;(ma2).

Our first preference criterion PCy states that Z; is preferred to Zo if it holds
that Z; <1 Zo. The preferred answer sets with respect to PCy are those answer
sets that are <;-minimal. In a sense, the criterion PC; has a “positional flavor”:
the answer sets that selects the highest possible number of leftmost elements (in

40

the p-lists) are preferred. Our second criterion brings into play the magnitude of
the preference grades. This can be done by considering the grades as weights and
by optimizing with respect to the global weight expressed by the entire answer
set. (Clearly, more complex assignments of weights are viable.) For any answer
set T = (I,) let
w@ = > grade(u(q)(7))-

~YEP,qETR
Given Z; and Z, as before, we put Z; <2 Zp if and only if w;j(m;) < w;(ms).
Consequently, our second preference criterion PCy states that Z; is preferred to
7o if it holds that Z7 <o Zs. As before, the preferred answer sets, with respect
to PCs, are those that are <s-minimal.

3 Conditional preferences on resources.

Let us extend the syntax of r-rules by admitting p-lists (or amount-atoms) whose
activation is subject to the truth of a conjunctive condition. A conditional p-list
(cp-list, for short) is a writing of the form

(r if Ly,...,Ly)

where r is a p-list g1:a1> - - - >qp:ap, (or simply an amount-atom), and L1, ..., Ly,
are program-literals. The intended meaning of a cp-list occurring in the body
of a r-rule v (the case of the head is analogous) is that whenever ~ is fired the
rule has to consume one of the resources occurring in r. If the firing occurs in
correspondence of an answer set that satisfies the literals L1, ..., L,,, then the
choice of which resource to consume is determined by the preference expressed
by the p-list. Otherwise, if any of the L; is not satisfied, a non-deterministic
choice is performed. (Hence the conjunction Ly, ..., L., need not to be satisfied
in order to fire v.) More precisely, the r-rule containing the cp-list becomes, if
Ly,...,L,, does not hold, equivalent to h r-rules, each containing exactly one of
the amount-atoms g;:a;, in place of the cp-list.

Such an extension of P-RASP can be treated by translating the rules involv-
ing cp-lists into regular r-rules. For instance, the rule

H«— By,...,B,(r ¢f L1,...,Lp)

is translated into this fragment of r-program:

P < not np. np < not p.

—mnp,Ly,..., L. —p, L. forie{l,...,m}
H «— By,...,Bg,rp.

H — By,...,By,q;:a;,pq;,np. for j e {1,...,h}
npg; < pq;. pg; — not npg;. fori,je{l,... ,h},i#j

where p, np, npg; and pg; (for each j € {1,...,h}) are fresh program atoms.
Consequently, the semantics of cp-lists is given in terms of that of p-lists.
Similarly, one can introduce cp-lists with different semantics. For example,
one might imagine a cp-list that, differently from the previous case, when some
L; does not hold the firing does not require any consumption of resources in r.

41

4 On Complexity and Implementation of P-RASP

The analysis of the complexity of PRASP can be made by establishing a rela-
tionship with LPOD [7]. In this approach, one can define rules of the form:

A1 X A2 X AnHBOdy

meaning that one or more of the A;’s can be derived provided that Body holds,
where A; is the best preferred option, A, the second best, and so on. These
preferences can be expressed only in the head of rules and have a global flavor,
i.e., their scope is the entire program. Apart from the notation, there is a clear
similarity with P-RASP p-lists when occurring in the head of r-rules. Then, by
considering resource atoms as plain atoms and adapting the syntax, a PRASP
r-rule with a p-list in the head and no p-lists in the body can be considered to
be an LPOD rule (and, vice versa, an LPOD program can be considered to be
a RASP program by substituting, e.g., each A; by A;:1).
As concerns an r-rule, say -y;, with p-lists in the body, i.e., of the form:

H«~— ... ,B;>...>Byg, ...

we can rephrase it in LPOD terms as the set of rules (where g; is a fresh symbol)

H—...;q...
q; — B1.
qi < By.
B x ... X By.

We may notice that the k atoms in the p-list have been replaced in ~; by
the single atom ¢;, but then they appear in the LPOD fact. In addition, we
have introduced k new rules composed of two atoms each: therefore, we have
substituted k atoms with k 4+ 2k 4+ 1 atoms, which ensures that the program
resulting from this transformation is just linearly larger than the original one.
For the transformed program, as discussed in [7], credulous reasoning is either
Y2, complete or stays in A% according to the chosen preference criterion for
selecting preferred answer sets (all this considering that credulous reasoning for
plain RASP it has been proved in [10] to be NP-complete).

The approach of [20] has the same complexity, which means that each of
the three formalisms (LPOD, [20] and P-RASP) can in principle be translated
into each other (but only as far as preferences are concerned, as neither [20]
nor [7] deal with resources). However, if one considers the programming style,
then P-RASP is significantly different from the mentioned approaches as they
provide global preferences, i.e., imposed all over the program, while in P-RASP
preferences are local to rules: i.e., the same amount-atoms might be ordered
differently in different p-lists, cf., Example 1. Reflecting such a “locality” char-
acter by means of global preferences would originate as seen above an unnatural
representation, also making it harder to design an efficient implementation and
to prove its correctness. Therefore, we have chosen to provide an “autonomous”

42

semantics which better reflects, in our opinion, the intuitive meaning that a
programmer assigns to resources and quantities.

Remark 3. The above discussion suggests that the approach to preferences that
we have presented in this paper can be extended from amount atoms to any kind
of atoms, as shown in the following example, where when looking for a path one
prefers green edges to red edges (whenever both are available). This might, e.g.,
model the configuration of a car navigator when one prefers a kind of road upon
another one. However, the semantic account of such usage of p-lists remains to
be assessed.

path(X,Y) « (green_edge(X, Z) > red_edge(X, Z))
path(X,Y) « (green_edge(X, Z) >red_edge(X, 7)), path(Z,Y)

As regards the implementation, a solver for (P-)RASP built on top of an
existing ASP-solver is described in [9, 10]. Basically, a preliminary translation
converts an r-program into ASP, by rendering the semantics presented in Sec-
tion 2. This ASP program is then joined to an ASP specification of an inference
engine which performs the real reasoning on resources allocation and that re-
mains independent from the particular r-program at hand. Preference criteria
(as well as some cost-based features and budget policies) are encoded in the
inference engine by exploiting optimization statement commonly supported by
ASP-solvers such as smodels or clasp.

5 Related Work

In RASP, we adopt the original intuition of linear logic, i.e., “give me as many As
as I might need and I will give you one B’s” in the context of the ASP semantics.
Despite of the limitations (e.g., finite domain) we stay within a decidable setting.
For a comparison between RASP and the various approaches to resource-based
reasoning, the interested reader can refer to [8, 10]. Concerning preferences, we
are not aware of approaches to preferences in linear logic. Thus, in order to
understand whether P-RASP might be rephrased as a fragment of linear logic,
a direct comparison would be needed, that can be a subject of future work.

Concerning preferences in logic programming and non-monotonic reasoning,
here we briefly mention some of the existing approaches. (See [12] for a com-
prehensive treatment of preferences in non-monotonic reasoning.) As interesting
attempts to introduce preference in (constraint) prolog-like logic programming,
we mention [17, 16, 11]

Various forms of preferences have also been introduced in ASP (see [12]).
Most of the proposed approaches are based on establishing priorities/preferences
among rules. In [4], A-Prolog is enriched with ordered disjunction and prefer-
ences among rules are handled by means of a rule-naming mechanism. In the
case of ordered logic programs [23], preferences are expressed through a partial
order imposed on the set of rules. The order is used to implement defeating

43

of less-preferred rules. Other approaches express priorities among answer sets.
Intuitively, this is done by declaring those atoms whose truth is “preferred” (typi-
cally, in these cases some forms of disjunction in the heads of rules is introduced).
In prioritized logic programs [20], a set of priorities determines preferences on
literals: from priorities, a preference relation on answer sets is drawn. In [7]
preferences on atoms are modeled by ordered disjunction in the head of rules.
Considering a given answer set of a program, for each rule a degree of satisfac-
tion is determined depending on which atom of the head is satisfied. Satisfaction
degrees of all rules are then combined, according to some criterion, to rank the
answer sets. Through similar ideas, a Preference Description Language is defined
in [6] to formalize penalty-based preference handling in ASO. A comparison of
these approaches can be found in [23].

Notice that in almost all the above mentioned cases, preferences are expressed
globally, e.g., by providing an order relation that applies on all the rules (or
atoms) of the program. In P-RASP, as shown, preferences are imposed, by using
p-lists, on some of the atoms of a rule. In this sense preference in P-RASP has
a local character, cf., Remark 2 and Example 1.

Conclusions

In this paper, we have presented a refinement of the RASP approach (that
allows for production/consumption of resources in ASP) to include preferences
on which resources to exploit/produce. Preferences are expressed by means of
p-lists of amount-atoms, where leftmost ones are assumed to have higher priority
in consumption/production. P-lists, that can be conditional, can in fact occur
both in the body and in the head of r-rules. We have extended both syntax and
semantics of RASP to account for this kind of preferences and we have introduced
a concept of preferred answer set as a partial ordering among possible solution
according to a certain strategy.

In future work, we intend to further generalize P-RASP by introducing pref-
erences among sets of amount-atoms (i.e., one might e.g. prefer to use resources
a and b instead of resources x, y and z), as well as (explicit) preferences on rules.
We intend to apply P-RASP to practical problems, e.g., of configuration, so as to
have the ground for defining and experimenting different strategies for choosing
preferred answer sets.

References

[1] H. Andréka, M. Ryan, and P.-Y. Schobbens. Operators and laws for combining
preference relations. J. Log. Comput., 12(1):13-53, 2002.

[2] C. Anger, T. Schaub, and M. Truszczyniski. ASPARAGUS — the Dagstuhl Initia-
tive. ALP Newsletter, 17(3), 2004. See http://asparagus.cs.uni-potsdam.de.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2003.

[4] M. Balduccini and V. S. Mellarkod. CR-Prologs with ordered disjunction. In
Proc. of ASP’03, 2003.

44

[5]
(6]
[7]

(8]

(9]

(10]

(11]

(12]

(19]
20]
(21]

(22]

C. Baral. Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, 2003.

G. Brewka. Complex preferences for answer set optimization. In Proc. of KR’04,
2004.

G. Brewka, I. Niemel&, and T. Syrjénen. Logic programs with ordered disjunction.
Comput. Intell., 20(2):335-357, 2004.

S. Costantini and A. Formisano. Modeling resource production and consumption
in answer set programming. In Proc. of ASP07, 2007. Extended version in www.
dipmat.unipg.it/~formis/papers/report2008_04.ps.gz.

S. Costantini and A. Formisano. Modeling preferences on resource consumption
and production in ASP. Rep. 9/08, Dip. di Matematica e Informatica, Univ. di
Perugia, 2008. In www.dipmat.unipg.it/~formis/papers/report2008_09.ps.gz.
S. Costantini and A. Formisano. Ground RASP: complexity and implementation.
Rep. 16/08, Dip. di Matematica e Informatica, Univ. di Perugia, 2008. In www.
dipmat.unipg.it/~formis/papers/report2008_16.ps.gz.

B. Cui and T. Swift. Preference logic grammars: Fixed point semantics and ap-
plication to data standardization. Artif. Intell., 138(1-2):117-147, 2002.

J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and survey
of preference handling approaches in nonmonotonic reasoning. Comput. Intell.,
20(12):308-334, 2004.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proc. of ICLP’88, pp. 1070-1080. The MIT Press, 1988.

M. Gelfond. Answer sets. In Handbook of Knowledge Representation, chapter 7.
Elsevier, 2007.

J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

K. Govindarajan, B. Jayaraman, and S. Mantha. Preference queries in deductive
databases. New Generation Comput., 19(1):57-86, 2000.

H.-F. Guo and B. Jayaraman. Mode-directed preferences for logic programs. In
Proc. of ACM-SAC’05, pp. 1414-1418, 2005.

N. Leone. Logic programming and nonmonotonic reasoning: From theory to sys-
tems and applications. In C. Baral, G. Brewka, and J. S. Schlipf, editors, Logic
Programming and Nonmonotonic Reasoning, 9th International Conference, LP-
NMR 2007, page 1, 2007.

V. W. Marek and M. Truszczyrniski. Stable logic programming - an alternative logic
programming paradigm, pp. 375-398. Springer, 1999.

C. Sakama and K. Inoue. Prioritized logic programming and its application to
commonsense reasoning. Artif. Intell., 123(1-2):185-222, 2000.

T. C. Son and E. Pontelli. Planning with preferences using logic programming.
TPLP, 6(5):559-607, 2006.

M. Truszczynski. Logic programming for knowledge representation. In V. Dahl
and I. Niemel4, editors, Logic Programming, 23rd International Conference, ICLP
2007.

D. Van Nieuwenborgh and D. Vermeir. Preferred answer sets for ordered logic
programs. TPLP, 6(1-2):107-167, 2006.

45

Towards Logic Programs with
Ordered and Unordered Disjunction*

Philipp Karger!, Nuno Lopes?, Daniel Olmedilla', and Axel Polleres?

! 1.3S Research Center & Leibniz University of Hannover, Germany
2 DERI Galway, National University of Ireland

Abstract. Logic Programming paradigms that allow for expressing pref-
erences have drawn a lot of research interest over the last years. Among
them, the principle of ordered disjunction was developed to express totally
ordered preferences for alternatives in rule heads. In this paper we intro-
duce an extension of this approach called Disjunctive Logic Programs
with Ordered Disjunction (DLPOD) that combines ordered disjunction
with common disjunction in rule heads. By this extension, we enhance
the preference notions expressible with totally ordered disjunctions to par-
tially ordered preferences. Furthermore, we show that computing optimal
stable models for DLPODs still stays in X% for head-cycle free programs
and establish X% upper bounds for the general case.

1 Introduction

Expressing preferences in logic programs has been a research issue in the com-
munity for quite some time now. One can distinguish two directions: preferences
between rules of a logic program and preferences among literals. In both cases,
typically the semantics of the approaches require a total order preference relation
to be imposed in the preference expressions. But requiring total order preferences
is a restriction that does not fit the world of subjective expressions: total order
preferences do not allow for cases where for several options it is not known which
one is preferred. But such cases, called indifferences, are common, be it due to
incomplete information about the world or due to the lack of decision of a user
between options.

In this paper we present an approach for preferences in logic programming
that allows to specify partially ordered preferences among literals. We achieve
this by combining two things which were handled separately until now: first, the
usual disjunction common in disjunctive logic programs (DLP) [1-3]; second, the
preference approach of Brewka et al. [4] called Logic Programming with Ordered
Disjunction (LPOD). LPOD is an extension to logic programming that introduces
a special disjunction denoted by the operator x that exploits the order of literals
in a disjunction in order to express preferences among these literals. We argue
that allowing either ordered or unordered disjunctions alone in the head of a

* This work has been supported by Science Foundation Ireland under the Lion project
(SF1/02/CE1/1131) and by the European FP6 project inContext (IST-034718)

46

program’s rules is not sufficient whenever it comes to statements of indifference
in the preferences. Typically, one may be indifferent between some options but
still prefer some others rather than defining a total order between all the options.
In our approach, we propose to use the semantics of the ordered disjunction to
express preferences and the disjunction to express indifferences. For example, the
preference concerning the activities for a night may then look as follows (inspired
by the example given in [4]):

pub X (cinema V tv).

The intuition behind this expression is that pub is the most preferred option and,
in case pub is not possible, both cinema and tv are equally preferred.

The remainder of the paper is structured as follows. In Section 2 we recall
definitions about DLP and LPODs used later in the paper. In Section 3, we
detail our new language including syntax and semantics definition. An encoding
of partial order preferences in DLPODs is given in Section 4. Section 5 provides
an implementation of our approach and in Section 6 general complexity results
for computing optimal answer sets of a DLPOD are given. We want to point
out that this section marks preliminary results in the sense that we have not yet
nailed down exact complexity bounds for the newly defined language and that
some proofs are admittedly sketchy due to space restrictions.

2 Preliminaries

The stable model semantics extends the typical least model semantics for logic
programs (where all rules are definite Horn clauses) to so-called normal logic
programs, i.e. programms allowing negation as failure in rule bodies. Logic pro-
gramming under the answer set semantics, often referred to as “Answer Set Pro-
gramming”’, further extends the stable model semantics by features such as var-
ious forms of disjunction. In the following, we review the definitions of two such
forms of disjunction, which we will refer to later in the paper. Namely, we will
introduce Disjunctive Logic Programs (DLPs) and Logic Programs with Ordered
Disjunction (LPOD).

In this paper we will mostly restrict our elaborations and examples to proposi-
tional programs. As usual in answer set programming rules containing variables—
also called rule schemata—are considered as representations of their instantiations
where variables are replaced by the constants occurring in the program.

2.1 Disjunctive Logic Programming

pred con
)

Given disjoint sets of predicate, constant and variable symbols, o o™ and
oV respectively, an atom can be defined as p(t1, . .., t,) wherep € o4, t1,.. ., t,
€ 0" U o and n is called the arity of p. Atoms such that n = 0 are called
propositional. A literal is an atom a or its negation —a ('—’ represents classical
negation).

47

Definition 1 (DLP). A disjunctive logic program (DLP) P is defined as a set
of rules r of the form hiV ...V h; < b1,..., by, 00t bypy1,...,00t b, where
each h; (b;) is a literal and not represents negation as failure. We further define
Head(r) = {h1,...,n}, Body™(r) = {b1,..., by}, Body™ (r) = {bms1,---,bn},
and Lit(P) as the set of all literals occurring in P.

Variables present in a program P are assumed to be a shorthand notation
representing each element of the Herbrand Universe of program P, HUp, which
corresponds to the set of all constants ¢ € o™ present in P. The semantics of
DLPs is defined as usual by its disjunctive stable models, or answer sets, i.e., a
set of literals S is an answer set of P if and only if it is a minimal Herbrand model
of the Gelfond-Lifschitz reduct P°, see [5, 1] for details.

Head-Cycle Free Logic Programs [6] are a special kind of disjunctive logic
programs which will be of interest later in the paper. They are defined based on
the notion of a program’s dependency graph:

Definition 2 (Dependency graph). The dependency graph of a Logic Program
P is defined as a directed graph where every literal that occurs in P is represented
as node | and there is an edge from ' to | if there is a rule in P such that
l € Head(r) and " € Body™ (r).

Definition 3 (Head-Cycle Free). P is head-cycle free if its dependency graph
does not contain directed cycles that go through two literals occurring in the same
rule head.

2.2 Logic Programming with Ordered Disjunction

In [4], Brewka et al. describe so-called Logic Programs with Ordered Disjunction
(LPOD) for expressing preferences in logic programming based on a special kind of
disjunction called ordered disjunction and denoted by x. It expresses a disjunction
while at the same time building up a preference order between the single disjuncts.
This ordered disjunction is—similarly to DLP—only allowed to appear in a rule’s
head. A typical example rule is “pub x cinema X tv.” stating that pub is preferred
to be true. If for some reason pub can not hold, cinema would be the second
option, and so on. Due to space restrictions we ommit a formal presentation of
LPODs and their semantics and refer the reader to [4].

2.3 Other Related Work

There is a lot of work about modeling and exploiting preferences in logic programs,
we refer the reader to [7, 8] for a complete overview. To the best of our knowledge,
none of the existing approaches to preference handling in logic programs allow for
partial order preferences expressions. For the sake of completeness, we want to
mention the work presented in [9]. There, LPODs are used as a basis for the policy
language PPDL describing the behaviour of a network node and allowing for
preference definitions between possible actions a node can perform. This approach
models partial order preferences by assigning levels to elemets of distinct branches

48

of the partial order. However, this leveling approach does not work with all partial
order preferences. For instance, the one described in our Example 5 later in the
paper: there is no unique level assignment that keeps B and D as well as C
and D incomparable but the semantics of partial orders defines both pairs as
incomparable.

3 DLPOD—Disjunctive Logic Programs with Ordered
Disjunction

In this section we will detail our approach to combine ordered and unordered
disjunctions. In a few words: we allow both, ordered disjunctions indicated by the
operator x and normal disjunctions indicated by the operator V in a rule’s head.
Based on this we can extend the example given in [4] and define the rule

pub x (cinema V tv) < not sunny.

Here we allow an indifference between the two options cinema and tv. Intu-
itively, in case the body of the rule is true, a user prefers pub to be true, that is,
to be contained in the answer set. If pub can not be satisfied (e.g., another rule
remedies the possibility of visiting a pub), it is considered equal if either of the
options cinema and tv are true. In the following we will first provide a detailed
definition of how such rules look like and second, we define their exact semantics.

3.1 Syntax

Our syntax simply extends Logic Programs with Ordered Disjunction from [4]
with the common disjunction ‘v’ used in Disjunctive Logic Programming.

Definition 4 (Ordered Disjunctive Term). An ordered disjunctive term is a
(possibly nested) term of literals C1, . . .,Cy connected by V or x. We define such
terms recursively as follows.
— Any literal L is an Ordered Disjunctive Term.
— If t; and ty are Ordered Disjunctive Terms, then (t; X t2) and (t1 V ta3) are
Ordered Disjunctive Terms as well.

We define a DLPOD as an extended logic program with an Ordered Disjunc-
tive Term in the head:

Definition 5 (Disj. Log. Program with Ordered Disjunction). A Disjunc-
tive Logic Program with Ordered Disjunction (DLPOD) P is a set of rules of the
form r = Head, < Body,. where Body, = B1,...,Bpy,not By,11,...,not By,
such that all B; (1 < i < k) are literals and Head, is an Ordered Disjunctive
Term. We further define Body™ (r) = {B1, ..., Bn}, Body™(r) = {Bmi1,---, Bk}

In the following we define the semantics of a DLPOD by first introducing
answer sets of a DLPOD and subsequently defining a preference relation among
those answer sets.

49

3.2 Answer Sets of a DLPOD

The definition of the answer sets of a DLPOD is based on an extended notion
of split programs as they are introduced in [4]. For defining split programs of a
DLPOD we first define what an Ordered Disjunctive Normal Form (ODNF) of a
rule is. Then, we show how to transform each rule’s head into this normal form.
Based on rules given in this normal form and on the definition of the option of
such a rule, we can define the split programs of a DLPOD.

Definition 6 (Ordered Disjunctive Normal Form (ODNF)). The Ordered
Disjunctive Normal Form of an Ordered Disjunctive Term is

n o m;

\/)(Cw» = (0171 X ... X Cl,ml)\/~-~v(0n,1 X .. XCn,mn)

i=1j=1
We call (Ci1 % ... % Ciy,) the i-th Ordered Disjunct of the ODNF. We say that
a rule r is in ODNF if Head(r) is in ODNF.

We treat arbitrarily nested DLPOD rules as shorthand for DLPOD rules in
ODNTF. Ie., given an ordered disjunctive term S and subterms a, b and ¢ of S the
following rewriting rules can be used to expand S to ODNF:

ax (bVe)= (axb)V(axec) (1)
(avVb)xec= (axc)V(bxc) (2)
(axb)xc=axbxec (3)
ax(bxec)=axbxc (4)

Ezample 1. By exhaustive application of these rules, we can transform any rule
in a program into ODNF. For instance

pub X (cinema V tv) < not sunny.
yields the following rule in ODNF":

(pub x cinema) V (pub x tv) «— not sunny.
o

Using the rewriting rules (1)—(4), hereafter we will define the semantics of
a DLPOD P in terms of rules in ODNF only. We begin with the definition of
the split programs of P which—intuitively—denote combinations of all options
of each rule:

Definition 7 (Option of a rule). Let r be a DLPOD rule in ODNEF:

\/ >< Ci,j — bOdy

i=1Jj=1
where m; is the number of literals in the i-th Ordered Disjunct of r. An option of
ris any rule of the form (j; < m;):

50

Cle V CZ,jg V...V Cn,jn «— body,

not 0171, not CLQ, PN ,not Cl,j1—17
not 0271, not 0272, . ,’I’LOt 0273'2_1,
not Cp1,n0t Cja,...,not Cyj, 1.

Ezample 2. The ODNF rule (pub x cinema) V (pub X tv) < not sunny. has
the following four options (for example purposes repeated atoms are not removed):
pub V pub «— not sunny.

pub V tv < not sunny, not pub.
cinema V pub < not sunny, not pub.

cinema V tv < not sunny, not pub, not pub.

<

Definition 8 (Split program of a DLPOD). A split program P’ of a DLPOD
P is obtained by replacing each rule in P by one of its options.

It is important to note that—in contrast to [4]—the split programs of DLPODs
are disjunctive logic programs.

Example 3. Given the following DLPOD P:
pub x (cinema V tv) « not sunny.

beach V hiking «— sunny.

We obtain the following four split programs:

1. pub < not sunny. 3. cinemaVpub < not sunny, not pub.
beach V hiking «— sunny. beach V hiking «— sunny.

2. pubV tv < not sunny, not pub. 4. cinema V tv < not sunny, not pub.
beach V hiking «— sunny. beach V hiking «— sunny. o

Analogously to disjunctive logic programs, we define head-cycle-freeness [6]
for DLPODs as follows:

Definition 9 (Dependency graph). The dependency graph of a DLPOD P is
the directed graph containing all literals in P as nodes such that there is an edge
from I to | iff there is a rule r in P such that | € Head(r) and ' € Body™ (r).

Definition 10 (Head-Cycle Free). A DLPOD P is head-cycle free if its depen-
dency graph does not contain directed cycles that go through two literals occurring
in two ordered disjuncts C; and C; (i # j) of the same rule head.

The following observation can be easily verified:
Proposition 1. Split programs of head-cycle free DLPODs are head-cycle free.

The possible optimal answer sets of a DLPOD are the answer sets of all split
programs. In the following section we will explain in detail which answer set we
call optimal according to the original DLPOD.

o1

3.3 Optimal Answer Sets of a DLPOD

For the definition of the semantics of a DLPOD we still miss the notion of preferred
answer sets of a DLPOD. So far, we have shown how the possible answer sets of a
DLPOD are defined. In this section we will detail how to compare these possible
answer sets in order to find the optimal ones (i.e., the most preferred answer sets
according to the ordered and unordered disjunctions in the rules’ heads). First, we
define the Satisfaction Degree Vector as a measurement of how much an answer
set satisfies a DLPOD rule:

Definition 11 (Satisfaction Degree Vector). Let r be a DLPOD rule of the
form n m;
r= \/ X Cij— Aq, ..., A;,not By,...,not By,

i=1j=1
and let S be a set of literals. The satisfaction degree vector D of r in S is a vector
of the form D = (dy,...,dy) representing degrees of satisfaction for each disjunct
in r’s head where each d; is either a natural number or the constant e. We define
the dimensions of the Satisfaction Degree Vector as follows:

1. D=(1,...,1) if (a) Body;" Z S, or (b) Body, NS # 0, or otherwise
2. di=€ifCi; €S forall1 < j <m;,
3. d; = min{t|Ci,t < S}

We denote the Satisfaction Degree Vector of v in S by Degg(r).

Intuitively, in this definition, we assign to each Ordered Disjunct a penalty
representing how much the answer set satisfies the disjunct. For each rule, these
penalties build up a vector of degree values—one dimension for each disjunct. We
choose degree ¢ for head disjuncts which do not overlap with S (cf. Condition 2).
With e we denote that a particular disjunct does not tell anything about how much
an answer set is preferred. Further, like in [4], we assign the best satisfaction degree
(i.e., the vector (1,...,1)) in case a rule’s body is not satisfied (cf. Conditions 1):
there is no reason to be dissatisfied if a rule does not apply for a particular answer
set.

Ezample 4. Let us again consider the rule
r = (pub x cinema) V (pub X tv) «— not sunny.

Since this rule has two Ordered Disjuncts, any Satisfaction Degree Vector has
two dimensions. The set of literals {pub} as well as {sunny} satisfies this rule
to degree (1,1) (applied condition 3. and condition I.(b), respectively). The set
{cinema} satisfies r to degree (2,¢€) and the set {tv} satisfies r to degree (e, 2). ©

Definition 12 (Preference acc. to a rule). A set of literals Sy is preferred to
another Sy according to a rule r (denoted as Sy =, S2) iff Degs, (r) = (d3,...,d})
Pareto-dominates Degs, (r) = (d3,...,d?). That is, the following two conditions
hold:

1L.Vi(dl<d? vdl=eV d?=¢c)

2. Jdidl <d? (d} #£end?+e) .

92

Intuitively, we require all dimensions in Degg, (1) to show a smaller or equal
number than in Degg, () and in at least one dimension Degg, (r) has to show a
strictly smaller number than Degg, (). The constant e plays the role of a place-
holder which is, roughly speaking, equal to any number (cf. Condition 1). As
we will see in Section 4, this € provides us with the “incomparability” needed to
capture partial orders.

Now, we finally extend the preference notion to a relation comparing sets of
literals according to a whole DLPOD:

Definition 13 (Preference acc. to a program). A set of literals Sy is pre-
ferred to another Sy according to a set of rules R = {ry,...,r,} (denoted as Sy
Sa) iff 3i(S1 =r, S2) A =Fj(S2 =, S1).

The conditions in both definitions follow the fair principle of Pareto optimality:
an object is preferred if it is better or equal to another in all attributes (in our
case in all Ordered Disjuncts or in all rules, respectively) and strictly better in at
least one attribute. Finally, we provide the Definition of a preferred answer set of
a program P:

Definition 14 (Preferred Answer Set). Given a DLPOD P, one of its split
programs P’, and an answer set S of P'. S is called a preferred answer set (of P)
if there is no answer set S’ of P’ for which S' = S holds.

4 Encoding Partial Order Preferences into DLPODs

As hinted already in the introduction part, DLPOD-programs extend the ap-
proach of preferences in logic programming towards partial order preference re-
lations. In this section we detail how to actually model partial order preference
relations with Ordered Disjunctive Terms. For this, we specify a transformation
of a partial order of literals into a Disjunctive Normal Form yielding a partial
order preference statement in a rule’s head.

Definition 15 (Transformation of a Partial Order). Given a Partial Order
< over a set of literals S and its corresponding covering relation <, (that is, <,
contains the transitive reflexive reduction of <), the transformation P of < into
an Ordered Disjunctive Term is defined as: P(<,S) = \/;_(C1 x ... x Cy;) such
that (VC; : C; € S) A (—3C: C <. C1) A (-3C : C <. C) AN (Vi : C; <x Ciy1).

Intuitively speaking, given a partial order preference relation represented by
its Hasse-diagram [10], for each possible path from an element with no incoming
edges to an element with no outgoing edges, we create an Ordered Disjunct (C; X
...xC%) where C1 is a node with no incoming edge, Cj, is a node with no outgoing
edge, and there is an edge between any pair C;, C;11.

]

Ezample 5.
Given the preference relation < over the set of literals

S ={A,B,C,D, E} as depicted in the Hasse diagram on x A
the right hand side, the transformation P(<,S) yields B \D
the following Ordered Disjunctive Term:] /
C
(AxBxCxE)V(AxDxE). e o

This transformation provides us with the means for modelling partial order
preferences in DLPODs: now every partial order preference expressed for literals
can be formulated as the head of a rule in a DLPOD.

5 Implementation

As for a possible implementation, we extend the implementation of LPOD by
Brewka et al. [11] towards DLPODs. As we shall see, this is not entirely straight-
forward. Concretely, in [11] the LPOD semantics is implemented on top of a
standard solver for non-disjunctive logic programs based on the observation that
each split program corresponds to guessing exactly one degree for each rule with
ordered disjunction. Our approach and [11] basically share the following procedure
to compute a preferred answer set given a program P:

1. Guess a particular satisfaction degree vector for each rule (i.e., a split pro-
gram) and compute the answer sets for this guess. This is encoded in a in
program called generator G(P).

2. For each answer set S, check whether there is no split program which yields a
better answer set than S. This is encoded in a program T'(P, S) called tester,
which is called in an interleaved fashion for each answer set generated by
G(P). Whenever the tester does not find a better answer set, S is a preferred
answer set.

This is analog to [11] except for the following three modifications. First, in
order to generate all possible splits we need to guess a satisfaction degree vector
per rule (instead of a single degree value). Second, we need to generate the answer
sets for each split, which is—as opposed to LPODs—a disjunctive logic program.
Third, we need to modify the tester program which establishes whether a better
answer set can be found.

Before adapting the formal definitions of Brewka et al.’s generator and tester
we need to prove two lemmata. The first Lemma states that one can replace a
head symbol h in a disjunctive rule of a program P with a new symbol A’ by
adding some extra rules without changing the semantics of P:

Lemma 1 (Ground head atom replacement). Letr = hyV...Vh;V.. . Vh, —
Body,.. be a rule in a disjunctive logic program P such that h; is ground, and let
further P'=P\rU{hiV...Vh,V...Vh, < Body. h < h;. h; — h}.}

such that hl does not occur in P. Then S is an answer set of P if and only if
S' = SU{h; | h; € S} is an answer set of P'.

o4

Similarly, we note that a part of the body of r can essentially be “outsourced”
to an external rule by the following Lemma:

Lemma 2 (Body replacement). Let r = Head < Bodyy, Bodys. be a rule in
a disjunctive logic program P, and let further

P'=P\rU{Head < V', Bodys.t/ «— Body,.}

such that b does not occur in P. Then S is an answer set of P if and only if
S" = SU{V | Body; true in S} is an answer set of P’.

Using these lemmata, we are almost ready to go ahead to define the generator
program. For this definition we make use of the cardinality constraint notation
L{ly,...1,}U [12] in the head of a rule. Here, Iy, ...,l, are literals and L (lower
bound) and U (upper bound) are natural numbers. The intuition is that this
statement holds if at least L and at most U of the literals [y, ..., [, are satisfied.

Definition 16 (Generator Program, adapts [11, Def. 10]). Let r be the
rule of a DLPOD of the form

Hl,l X ... X H1’m1V
Hi71 X ... X H17m7\/ — Body,«.

Hyq1 x ... x Hym,
Then the transformation G(r) is defined as the following set of rules:

(a) { Heri(),... eri(mi)}l — Body,.|1<1i<n}
(b) U{hiV...Vhrp<bri,...,bpn,Body,.}
() UA hri—Hijcri(j) Hij—hriycri(j) [1<i<n,1<j <mi}
(d) (@] { bri — cm'(j),not Hiq1,...,not Hij_1. | 1<1<n,1<5< mL}
(e) U{ < not Hia,...,not Him,,...,

not Hi7171, . .,not Hifl,m,;_l,

not H;1,...,not H; j_1,

H; j,not cri(j),

not Hi+1,1, . .,7’L0t Hi+1,m7¢+17- ..

not Hy1,...,not Hym, .| 1<i<n,1<j<m}

Finally, the transformation G(P) of a complete DLPOD s the union of all its
transformed rules:

G(P) = | J{G(r)|r € P}.

Here, the newly introduced predicates ¢, ;, hyi, by (1 < i < n) stand for
“choice”, “head”, and “body” auxiliary symbols. Whereas the ¢, ; plays the role
of modeling the choice of an actual degree vector, the h,; and b, ; predicates are
auxiliary symbols used according to Lemmas 1 and 2 for a particular choice. Rules
(a) are guessing a particular choice option forming a split. Using this choice, rules

99

(b) to (e) represent the actual rules in the split program for the particular choice,
by using Lemma 1 in rules (c) and Lemma 2 in rules (d). Finally, rules (e) ensure
that — in case all other ordered disjuncts k # ¢ are false — we must choose to add
H; ; if no better literal H;; in disjunct ¢ with [< j is already in the model. ?

Ezample 6. Let us consider the following rule r = (A x B) V (C' x D) «— Body.
Then, the transformation G(r) looks as follows:

(a) Heri(1),er,1(2)}1 < Body.
1{er2(1),¢r,2(2)}1 «— Body.

(b) hr,1 V hr,z ‘_br,h br,z, Body.

(C) hr,l «— A, Cr,l(l)- A «— hr,l, CT71(1)
hr,1 — B,Cnl(?). B — hrvl,cr,1(2).
hr,z — C, Cryg(l). C — hng, Cr,g(l)
hr,z «— D,CT72(2). D «— hr,g, CT,2(2).

(d) bra1 < cri(l),not A.

br — ¢r1(2),n0t A, not B.
r2 «— CTQ(),not C.
r2 — cr2(2),not Cynot D.
(e) <—A not ¢r,1(1),not B,not C,not D.
—notA, B,not ¢r1(2),not C,not D.
—notA,notB, C,not cr2(1),not D.
—notA, notB,notC, D, not ¢, 2(2). o

Proposition 2. Let P be a DLPOD. Then (i) G(P) is polynomial in the size of
P and (ii) S is an answer set of G(P) if and only if SN Lit(P) is an answer set
of P.

Proof. [sketch] (i) is easy to see by looking at the rules (a) to (e). The idea for
(ii) is similar to the analogous Proposition 2 in [11] where we additionally need to
apply Lemma 1 and 2. Intuitively, each “guess” of the ¢, ;(j) in rules (a) yields a
split program in the sense that each rule not belonging to that particular guess is

“projected” away by putting ¢, ;(j) in the bodies of rules (c) and (d). By lemmas 1
and 2 now, rule (b) exactly corresponds to the guess rule in the split program
corresponding to the guess modeled in (a). O

Each answer set S of G(P) is subsequently tested by a tester program T'(P, S)
for whether it is a preferred answer set.

Definition 17 (Tester Program). Let P be a DLPOD and S be a set of literals.
The tester program checking whether there is a better answer set than S is defined
as follows:

T(P,S) = G(P)
U {0O;,;. | Hij € StU{rule(r). | r € P}
U {better(r) « rule(r),O; j, Hix. [T € P,1<i<n,1<k<m;1<j<k}

3 For the interested reader, rules (a) roughly correspond to the rule in equation (8)
in [11], rules (b)—(d) to rule (4) in [11], and finally rules (e) to rule (5) in [11].

96

U {worse(r) « rule(r),Osx, Hij. [T € P,L1<i<n,1<k<m;1<j<k}
U {better Rule(R) « better(R),not worse(R).
worseRule(R) «— worse not better(R).
worseSet «— worseRule
betterSet «— better Rule(R), not worseSet.
«— not betterSet.

(R),
(R).

Intuitively, the predicate better(r) fires if there is a dimension 7 in r’s satisfac-
tion degree vector according to S such that T'(P, S) found an answer set S’ with a
satisfaction degree vector that is better in position i. Conversely, worse(r) fires if
a dimension can be found where S’ is worse. Note that we do not need to encode
€ in the Tester, since the rules defining better(r) and worse(r), respectively, are
only constructed for comparable options, i.e., pairs of literals occurring in the
same disjunct of the same rule. Next, S’ >, S (expressed by better Rule(r)) holds
if there is a dimension where S’ is better least but there is no dimension where
S’ is worse. Analogously, worseRule(r) determines rules such that S >, S’. By
the remaining two rules and the final constraint, answer set S’ only “survives”, if
it is better in some rule and not worse in any rule. Thus, only those answer sets
S’ S “pass”, (cf. Definition 13).

Proposition 3. Let S be an answer set of G(P). If T(P,S) does not have any
consistent answer sets, then S is an optimal answer set of P.

By this result, we can implement DLPOD using a standard solver for disjunc-
tive logic programming such as GnT [13]. We further note that LPODs are just
a special case of DLPODs:

Proposition 4. LPODs are a special case of DLPODs and the preferred answer
set of an LPOD computed by G(P) and T'(P,S) correspond 1-to-1 to the preferred
answer sets computed by the generator and tester presented in [11].

Proof. [sketch] This is easy to see by the correspondence of G(P) and T'(P,S)
modulo application of lemmas 1 and 2, i.e., the answer sets of the generator and
tester programs outlined in [11] only differ by the auxiliary symbols h,; and b, ;
which are introduced according to both lemmata. O

6 Complexity

In the following, we sketch some complexity results for DLPODs which mainly
derive from lifting respective results from normal LPODS to the disjunctive case.
At this point, we focus on establishing membership results and leave hardness
proofs for future work.

Considering the complexity of finding an optimal answer set for LPODs we
observe the following. Firstly, it is easy to see that determining whether an optimal
answer set exists is not more difficult than determining whether “any” answer
set exists, i.e. we can straightforwardly lift Theorem 1 from [11], by the X%-
completeness of disjunctive logic programs [3].

o7

Theorem 1. Deciding whether a DLPOD P has an optimal answer set is X% -
complete.

The same “lifting” to the second level of the polynomial hierarchy also works
for checking whether S is optimal.

Theorem 2. Deciding whether an answer set S of a DLPOD is an optimal an-
swer set is in II5.

Proof. [sketch] Membership: analogously to [11]. O

We also conjecture hardness, but leave the proof to future work at this point.
The idea would be that in variation of the proof for co-NP-hardness for the non-
disjunctive LPOD case—see [11, Proof of Theorem 2]—we should be able to use,
instead of a reduction of SAT, a variation of the “standard” disjunctive encoding
of QSAT with two quantifier alternations into ASP, see e.g. [14].

Theorem 3. Given a DLPOD P and a literal l € Lit(P), deciding whether there
exists an optimal answer set S such that | € S is in X¥.

Again, we conjecture hardness, but leave the in-depth investigation to future
work. For the moment, let us just focus on membership, which we show by arguing
that the algorithm sketched in the previous section indeed can be brought down
to XL

Proof. Membership: First note that the algorithm from [11] can, with slight mod-
ifications, be used to solve exactly this decision problem. Namely, we need to
simply add to the “outer” G(P) computation the constraint “«— not l.” invali-
dating answer sets that do not contain [in the initial guess to G(P). Obviously,

this modification yields an algorithm which is in the complexity class X% I
remains to be shown that this indeed boils down to Eg — NP¥2. Here the idea

is the following: As 2525 = (NPNP)>% we should be able to use the “outer” X%
oracle also to compute the “inner” NP oracle calls. In the following, we will sketch
how the algorithm of Section 5 can be modified accordingly.

Note that, since G(P) is a disjunctive logic program, it can—following the
same approach as GnT [13]—be rewritten to two normal logic programs: first,
Gen(G(P)) which takes care of computing the supported models of G(P) and
second, Test(G(P), M) which tests for each supported model M whether it is
indeed a stable model. Again, the test succeeds by non-existence of an answer set
for Test(G(P), M).

After disambiguating symbols occurring in T (P, M) and Test(G(P), M) by
replacing symbols within Test(G(P), M) we obtain Test'(G(P), M). This guar-
antees no “interferences” between the two test modules, which then can simply be
combined into a joint tester: T(P, M)UTest'(G(P), M). We end up in a modified
algorithm for computing optimal answer sets which proceeds as follows:

— Compute an answer set of Gen(G(P))
— Determine whether T'(P, M) U Test'(G(P), M) has no answer set

98

where Gen(-) and Test(-,-) are the transformations as defined in [13]. Clearly,
since Gen(G(P)) is solvable in NP, and T'(P, M) U Test'(G(P), M) is solvable in
X% we have shown membership of optimal answer set computation of a DLPOD
in X%, m

We note that DLPODs preserve the better computational properties when
only head-cycle free programs are considered. Actually, all examples in this paper
fall in this class of programs.

Theorem 4. Given a head-cycle-free DLPOD P and a literal I € Lit(P), decid-
ing whether there exists an optimal answer set S such that | € S is X% -complete.

Proof. Hardness follows immediately from hardness of this problem for non-
disjunctive LPODs. As for membership, we have stated already in Proposition 1
that each split program of a head-cycle-free program is head-cycle-free again.
Thus, we can observe that guessing a split and checking whether an answer set
S exists such that [€ S is doable in NP and likewise checking non-existence of a
better answer set is in co-NP which brings the overall problem down to X%. [

In fact, we note that using the methodology in [14] we could even obtain an
algorithm encoding optimal answer set computation for head-cycle-free DLPODs
into a single disjunctive logic program, instead of interleaved computations.

As next steps, we plan to experimentally compare all three possible implemen-
tations, (i) the interleaved computation from Section 5, (ii) its refinement from the
proof of Theorem 3, as well as (iii) the integrated encodings for head-cycle-free
programs following [14]. We note that many X%-complete problems have more
concise encodings than the metainterpreter-based encoding in [14] and plan to
explore such more concise encodings for the head-cycle-free case.

7 Conclusions and Future Work

In this paper, we have presented a new approach for modelling preferences in
logic programs. By extending the approach of Logic Programs with Ordered Dis-
junction with normal disjunction in the head of rules, we introduce partial order
preference expressions for non-monotonic reasoning. We show how to transform a
DLPOD into an interleaved disjunctive logic program which allows normal ASP
solvers to compute preferred answer sets. Furthermore, we show that comput-
ing optimal stable models for our extension still stays in X% for head-cycle free
programs and establish X% upper bounds for the general case.

For future work we plan to experimentally evaluate variants of the generator
and tester programs provided in Section 5 with dierent ASP solvers. We remark
that our considerations have so far been restricted to DLPODs in (ordered) dis-
junctive normal form and that the naive transformation to this normal form by
applying “distributivity” rewriting rules potentially leads to exponential blowup.
A generalization of the definition of the semantics to arbitrarily nested ordered
disjunctive terms along with the investigation of the applicability of cheaper,
structure-preserving normal form transformations is on our agenda.

99

In this work we focused on a Pareto-semantic based preference notion. We are
aware that in [4] two other preference notions (namely cardinality-preferred and
inclusion-preferred) are introduced. However, at the same time they are proven to
be not general enough (see the motivation for Def. 11 in [4]). We argue that these
two preferences are based on counting and hence do not reflect the qualitative na-
ture of partial order preferences. However, we leave to future work considerations
of integrating these preferences into our approach.

For basing our language extensions on solid ground, we are planning to add
the hardness proofs for Theorem 2 and Theorem 3. As already stated at the
end of Section 6, we plan to compare and evaluate the different implementation
strategies outlined in Sections 5 and 6.

References

1. Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. New Generation
Computing 9 (1991) 401-424

2. Minker, J., Rajasekar, A., Lobo, J.: Foundations of Disjunctive Logic Programming.
MIT Press (1992)

3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on
Database Systems 22(3) (September 1997) 364-418

4. Brewka, G., Niemeld, 1., Syrjdnen, T.: Logic programs with ordered disjunction.
Computational Intelligence 20 (May 2004) 335-357(23)

5. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9 (1991) 365-385

6. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Pro-
grams. Annals of Mathematics and Artificial Intelligence 12 (1994) 53-87

7. Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: Towards a classification of pref-
erence handling approaches in nonmonotonic reasoning. Computational Intelligence
20 (2003) 308-334

8. Niemeld, I.: Language extensions and software engineering for ASP. Technical
report, European Working group on Answer Set Programming (2005)

9. Bertino, E., Mileo, A., Provetti, A.: PDL with preferences. In: Sixth IEEE Interna-
tional Workshop on Policies for Distributed Systems and Networks (POLICY’05),
Los Alamitos, CA, USA, IEEE Computer Society (2005) 213-222

10. Skiena, S.: 5.4.2 Hasse Diagrams. In: Implementing Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica. Addison-Wesley (1990) 163, 169-170,
and 206208

11. Brewka, G., Niemela, 1., Syrjanen, T.: Implementing ordered disjunction using
answer set solvers for normal programs. In: JELIA ’02: Proceedings of the European
Conference on Logics in Artificial Intelligence, London, UK, Springer-Verlag (2002)
444-455

12. Simons, P.: Extending the smodels system with cardinality and weight constraints.
In: Logic-Based Artificial Intelligence, Kluwer Academic Publishers (2000) 491-521

13. Janhunen, T., Niemeld, I.. GnT — A Solver for Disjunctive Logic Programs. In:
LPNMR 2004. (2004) 331-335

14. Eiter, T., Polleres, A.: Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory and Prac-
tice of Logic Programming (TPLP) 6(1-2) (2006) 23-60

60

Quantified Logic Programs, Revisited

Rachel Ben-Eliyahu - Zohary

Ben-Gurion University and Jerusalem College of Engineering
Israel
rachel@bgu.ac.il

Abstract. We consider again quantified logic programs (QLP). QLP
is a logic program where a positive number not greater than 1 called
dominance is associated with each rule in the program. The intuition
is that rules with higher dominance are more plausible or more reliable.
Literals in the answer sets of QLPs are also annotated with weights, with
the intuition that a literal with a higher weight is more likely to be true.
We present three different applications of QLPs: Ontology Matching,
Ranking of search results, and Inheritance Networks. We also address
the problem of computing answer sets of QLPs. We show that we can
compute the answer sets by first using existing state of the art tools for
answer set generation, and then applying a polynomial time forward-
chaining like algorithm, called the Proof-Rank Algorithm in order to
compute the weight of each literal in the answer set.

1 Introduction

Answer set semantics, as defined by Gelfond and Lifschitz [6, 7], and all other
known classical semantics for general logic programs like the well founded seman-
tics [5] treat all rules equally. That is, all the rules in the program are considered
to be of the same importance, or reliability, or dominance. In this paper, we sug-
gest that sometimes it is desirable to rank the rules in the program, and argue
that an answer set of a program with ranked rules should be a set of ranked
literals. We call logic programs with rank on rules quantified logic programs.

Many forms of quantified logic program exist in the literature (e.g. [3,8-
10]). To distinguish the programs presented here from the rest we will call them
nonmonotonic quantified logic programs, or QLPs, in short. QLPs have the fol-
lowing five features. As far as we can tell, none of the quantified logic programs
suggested in the past have all of the characteristics listed below:

1. The language of the program is the language of extended logic programs
(that is, the programs have classical negation in addition to negation by
failure).

2. Each rule in the program has a rank associated with it. Rules with higher
rank are considered more reliable.

3. Each literal in an answer set of the program has a rank associated with it.
Literals with higher ranks are considered more plausible.

61

4. The programs are a generalization of extended logic programs under answer
set semantics.

5. The answer sets of the programs can be computed very efficiently using
the state of the art systems for computing answer sets of extended logic
programs.

In the sequel, we will provide a detailed comparison to existing work.

The need for QLPs as presented here has emerged in an ontology matching
project. We wanted to develop a tool for semiautomatic interactive matching.
The tool should have worked as follows. It should suggest to the user certain
possible matches, based on some preliminary information on the similarity of the
concepts. Then, the user should accept or decline some of the matches presented
to her. The user’s feedback on the right matching should be feed into a reasoning
engine that will calculate what are the next plausible matches based on the user’s
input.

The problem was that if we adopt logic programs with stable model semantics
as a reasoning engine we would get the result that some pairs of nodes are the
next candidates for a match and some are not, but all the pairs that are a
possible match have the same stand. We have no way to distinguish between
the possible pairs and order them somehow according to the likelihood of them
being matched. Using QLPs instead of standard logic programs, we were able
to develop a reasoning tool that provides ordering among the possible matches.
This motivating example will be explained in detail in the following sections.

Once we have develop QLPs for ontology matching, we have found two addi-
tional application domains for QLPs: page rank and Inheritance Networks. We
will elaborate on this in the sequel as well.

2 Preliminary Definitions

In this section we briefly review preliminary definitions used in extended logic
programs. Note that only the propositional fragment of these logics is considered
here. The extension of this work to first-order logic programs will be discussed
in future work.Thus, whenever a a logic program with variables is used, it is
referred to as an abbreviation of its grounded version.

A literal is an expression of the form ¢ or —¢ where / is a propositional letter
and the symbol ‘—’ denotes classical negation. A propositional ELP (Extended
Logic Program) is a collection of rules of the form

L1 <—LQ,...,Lm,nOthJrl,...,TLOth

where n,m > 0, the symbol 'not’ denotes negation by default and each L; is
a literal. Ly is the head of the rule and the literals to the right of the arrow
are called the body of the rule. If the head is empty then the rule is called an
integrity clause. The literals Lo, ..., L,, are said to appear positive in the rule,
while the literals L,41,..., L, are said to appear negative in the rule. When
m—+mn = 0, the rule is called “body-free”. Sometimes we will call body-free rules

62

observations. Sometimes we will write body-free rule L;«— simply as L; (that
is, without the arrow).

An ELP IT is given semantics using answer sets [7], which are defined as
follows: Let lits(II) denote the set of literals obtained using the propositional
letters occurring in 7. By a context [1] we mean any subset of lits(IT).

Let P be a negation-by-default-free ELP. A context S is closed under P if
for each rule Ly «— Lo,..., Ly, if Lo,...L,, € S then Ly € S. An answer set
of P is any minimal context S such that (1) S is closed under P and (2) if S is
inconsistent then S = lits(IT).

For general ELPs answer sets are defined as follows: Let the reduct of P w.r.t.
the context S, denoted by red(P,S), be the ELP obtained from P by deleting
(¢) each rule that has not L in its body, for some L € S, and (i¢) all remaining
subformulas of the form not L from rule bodies. Then, any context S which is
an answer set of red(P, S) is an answer set of P.

Definition 21 A set of literals S satisfies the body of a rule § if all the literals
that appear positive in the body of § are in S and all the literals that appear
negative in § are not in S.

According to [1], a proof of a literal is a sequence of rules that can be used
to derive the literal from the program. The authors of [1] provide a definition
of a proof of a disjunctive LP. Here we take the non-disjunctive version of the
definition:

Definition 22 (Proof) /1] A literal L has a proof w.r.t. a set of literals S and
a logic program II if and only if there is a sequence of rules 6y, ...,0, from IT
such that:

1. for all 1 < i < n the literal in the head of §; belongs to S.

2. there exists 1 < i < n such that L is the head of ¢;.

3. for all 1 < i < mn, the body of §; is satisfied by S.

4. 61 has no literals that appear positive in its body, and for each 1 < i < n,
each literal that appears positive in the body of 0; is in the head of some §;
for some 1 < j <1

The following is Lemma B.5 from [1] restricted for the case of nondisjunctive
LP:

Lemma 1 ([1]). Let IT be a logic program and let S be an answer set of II.
Then each literal in S has a proof with respect to II and S.

3 Definition of QLP

In this section we formally define QLPs and their semantics.

Definition 31 (QLP) Quantified Logic Program, or in short, QLP is a logic
program where a positive number ps which is less or equal to 1 is associated with
each rule 6. We will call ps the dominance of 0. Given a QLP II, we will denote
by I the set of rules in I (that is, II is IT where we ignore the dominance of
each rule).

63

Intuitively, in QLPs the rules are annotated with numbers that are supposed
to amount to their reliability. The answer sets of a QLP IT are the same as the
answer sets of its corresponding ELP I , except that each literal in an answer set
has also a number attached to it certifying to its plausibility. The basic idea is as
follows. According to Lemma B.5 of [1] cited in the previous section, each literal
in an answer set has a proof. If the strongest proof of a literal L; in an answer
set is based on rules that are more reliable than the rules used in the strongest
proof of a different literal Ly, then L; should have a higher rank attached to it.
We next define the strength, or the dominance of a proof.

Definition 32 (dominance of a proof) Let IT be a QLP, S an answer set of
II, L €S anddy,...,0n a proof of L w.r.t. Il and S. The dominance of the proof
01y ..., Op 98 P5, * ... x p5, , where ps, is the dominance of 6;.

So the dominance of a proof is the product of the dominance of the rules
used in the proof. Now we can define the answer set of a QLP.

Definition 33 (QAS) A Quantified Answer Set, or in short, QAS, is an an-
swer set where a positive number which is less or equal to 1 is associated with
each literal in the answer set. Given a QAS S, we will denote by S the set of
literals in S (that s, S is S where we ignore the number associated with each
literal).

The dominance of a literal is the highest dominance of a proof of the literal.

Definition 34 (dominance of a literal in an answer set) Let Il be a QLP,
S an answer set of II and L € S. The dominance of L is the mazimum domi-
nance of any proof of L w.r.t. S and II.

Definition 35 (QAS of a QLP) A QAS S is a QAS of a QLP II iff the fol-
lowing conditions hold:

1. S is an answer set of ﬁ;
2. The number associated with each literal in S is its dominance w.r.t. I and

S.

Note that if we assign dominance 1 to all the rules in the programs the QLP will
be actually a standard ELP.

4 Applications

4.1 Ontology matching

Ontology typically provides a vocabulary that describes a domain of interest and
a specification of the meaning of terms used in the vocabulary. For example, the
United Nations Development Program and Dun & Bradstreet combined their
efforts to develop the UNSPSC ontology, which provides terminology for prod-
ucts and services (www.unspsc.org). Ontology matching is a promising solution

64

to the semantic heterogeneity problem, as it finds correspondences between se-
mantically related entities of ontologies. These correspondences can be used for
various tasks, such as ontology merging, query answering, data translation, or
for navigation on the semantic web.

Matching ontologies enables the knowledge and data expressed in the matched
ontologies to interoperate. The distributed nature of ontology development has
led to a large number of different ontologies covering the same or overlapping
domains. In order for two parties to understand each other, they should use the
same formal representation for the shared conceptualization (namely, use the
same ontology). Unfortunately, it is not easy to convince everybody to agree on
the same ontology for a domain, and when you have different ontologies for the
same domain, the problem shows up: parties with different ontologies do not
understand each other.

In a research that we have conducted for a consortium of imaging machines
companies, we had to develop a semi-automatic interactive tool for ontology
matching. We were looking for an efficient algorithm that when given two on-
tologies, will output a table of matching candidates between concepts of the
two ontologies. The algorithm should have offered the user initial matching can-
didates, and the user should decide which ones to accept, and which ones to
decline. The algorithm should recalculate new matching candidates, given the
user’s feedback.

Suppose we would like to match the two ontologies depicted in Figure 1, where
the edges represent an Is-A relation. The concepts are shortened as follows: V-
Vehicles, LV - Land Vehicles, C- Car, Cs - Cars, T-Trucks, A- Airplanes, Tn -
Train, D-Diesel, E-Electronic, P-Pickup, H-Hybrid. Assume we want to use logic
programming as a reasoning tool for deciding which pair to match at each stage.
We can use the logic program IT having the following rules.

Ontology 1 Concept(V), Concept (Cs), Concept(T), Concept(A), Concept(D),
Concept(E), Concept(P). IsA(C,V), IsA(T,V), IsA(A,V), IsA(D,C), IsA(E,C),
IsA(P,T).

Ontology 2 Concept(LV), Concept (C), Concept(T), Concept(H). IsA(C,LV),
IsA(T,LV), IsA(H,C), IsA(D,C).

Child to Father matching default

Match(x,y)«—Match(z',y"), [IsA(x', z), [sA(y', y), not ~Match(z,y).

The “child to father” matching defaults asserts that if two concepts match,
then by default, unless the contrary is known, their corresponding super classes
match. Suppose now that the user gives us the information that concept Diesel
in Ontology 1 matches concept Diesel in Ontology 2, and we add the rule r :
Match(D, D)«— to the program. In the answer set of II| J{r} we have the follow-
ing literals (in addition to the literals that describe the otologies): Match(C's, C),
Match(V,VL). And of course, if D and D had more ancestors in the ontolgy
hierrachy we would have even more “Match” literals.

Intuitively, if it is given that two concepts match, it is more likely that their
immediate predecessors match than the other predecessors. We would like the

65

Diesel

|

Elecronic

Pickup

Fig. 1. Two ontologies to be matched.

66

system to be able to suggest that Clars and Car are the next best possible
match.

The problem is that, using the standard ELP, we have no way to distinguish
between the “Match” literals, and therefore we cannot suggest to the user which
one is probably the next match. Another problem with using the standard logic
programming paradigm, is that it does not allow us to state that some rules are
more reliable than others. For example, we would like to use another rule, that
states the following:

Father to Child matching default
Match(x',y')«—Match(z,y), [sA(z',x), [sA(y',y), not ~Match(z',y").

However, the father-to child matching rule and the child to father matching rule
are not of the same strength. If two concepts match, it is more likely that their im-
mediate superclass match than two of their subclasses. Moreover, we would like
to state in advance, before getting the initial feedback from the user, that some
matches are more plausible than the other, or in other words, that, for example,
Match(Diesel, Diesel) is more likely than Match(Electronic, Diesel). We can
guess this using wordnet::similarity [11] (see also http://wn-similarity.sourceforge.net).

Given the limitations of standard ELP illustrated above and of other ap-
proaches developed in the past (see for example [4]), we have decided to develop
the semantics of QLPs. Using QLP, the interactive ontology matching could
work as follows. First, based on concept-similarity tools like wordnet::similarity,
we suggest to the user the match between Diesel of Ontology 1 and Diesel of
Ontology 2. Suppose the user confirms this match. We continue with the QLP
I, that includes the description of the two ontologies (the literals in the ontol-
ogy description each has dominance 1) and the following rules. The numbers in
brackets are the dominance.

Match(x,y) «— Match(z',y), [sA(z', z), [sA(y ,y), not ~Match(x,y) (0.8)
Match(x',y') «— Match(z,y), [sA(z',x), [sA(y ,y), not ~Match(z',y') (0.3)
Match(Diesel, Diesel) (1)

The answer set Sy of IT; is computed, and once the dominance of the lit-
erals in S; is computed, it is easy to see that Match(Car,Cars) is the literal
with the highest dominance (0.8). We now suggest to the user the match be-
tween Cars of Ontology 1 and Car of Ontology 2. Suppose the user confirms
this match. So we continue with the QLP IIo = IL|J{Match(Cars,Car)},
where {Match(Cars, Car)} has dominance 1. The answer set Sy of IT5 is com-
puted, and once the dominance of the literals in Sy is computed, it is easy to
see that Match(Vehicles, Landyehicles) is the literal with the highest domi-
nance (0.8). We now suggest to the user the match between Vehicles of Ontol-
ogy 1 and Land Vehicles of Ontology 2. Suppose the user denies this match.
So we continue with the QLP II3 = s\ J{—Match(Vehicles, Land_Vehicles)}

67

(=Match(Vehicles, Land_Vehicles) having weight 1) and so on. This interactive
process continues until all possible matches are suggested or alternatively, until
the user decides to stop it. It seems to us that the tool described above could
not be developed using the standard ELP.

4.2 Dynamic Page Rank

Search engines apply sophisticated algorithms in order to rank the pages that
match the query posed by the user. The pages are then displayed in order ac-
cording to their rank. Suppose we would like to use dynamic ranking. That is,
instead of ordering the pages in advance, re-order them according to the user
actions. If a user clicks on a link and stays there for more than 3 seconds, it
means that the page is relevant. If the user clicks on a link and does not stay
their more than half a second, it means that it is not relevant. We then want to
move pages that are similar to the relevant page higher in the ordering.

Suppose that we have already identified categories by which to judge whether
two pages are similar: e.g., the IP address, the language they are written in, the
type of the page, etc. Moreover, suppose that we have a similarity algorithm
that decides how much two pages are similar based on these criteria. Based on
the information provided by the similarity algorithm, we can classify any two
pages as “somewhat similar”,“similar”, ”very similar”, ”"almost identical”, etc
. In general, we can classify any two pages as similary, similars, ..., similar,
according to their level of similarity. Then we can have the following rules, for
1<i<n:

Relevant(y)«—Similar;(z,y), Relevant(x), not ~Relevant(y)

The rule asserts that if a page x is relevant and page y is similar to = and if we
do not know that page y is not relevant, then page y is relevant as well. Since
we have several levels of similarity, the dominance of each such rule should be in
proportion to the level of similarity that the predicate similar used in the rule
represents. For this purpose we can use QLPs.

Dynamic ordering can also be useful in other search episodes such as searching
in an electronic mailbox. We can find criteria according to which we can classify
messages: name of sender, [P address, does the message has attachment,the date
of the message, etc.

4.3 Inheritance Networks

A considerable effort was invested in the past in order to provide formal se-
mantics to multiple inheritance networks (see for example [2,13,12]). We will
provide here two examples that demonstrate how QLPs can help in representing
inheritance in an intuitive way.

68

4.3.1 Penguins and Birds Suppose we formalize the famous defaults “birds
fly”, “penguins do not fly”, and the observation “Pit is a penguin” in ELP:

1
2
3
4

Bird(z) «— Penguin(x)
- Fly(x) «— Penguin(x), not Fly(z)
Fly(xz) «— Bird(z), not ~Fly(z)
)

penguin(Pit) «—

o~ o~ o~ o~
—_— — — ~—

The above program has two answer sets: 1. { Penguin(Pit), Bird(Pit), Fly(Pit)},
and 2. { Penguin(Pit), Bird(Pit), ~Fly(Pit)}. Intuitively, we prefer the 2nd an-
swer set, but the standard ELP is not capable of conveying this. We argue that
with QLPs we can obtain the desired result. We need first the defintion of pre-
ferred answer set:

Definition 41 (Preferred Answer Set) Let IT be a QLP and let S and S’ be
two QASs of II. We say that S is preferred over S’ is the average of the weight
of the literals in S is greater than the average of the weight of the literals in S’.

The intuition behind this definition is that the higher the average of the weights
of the literals in the answer set is, the more sense the answer set makes because
the literals were inferred using rules that are more reliable.

Back to QLP- if we represent the knowledge in QLP, we will assign dominance
1 to rules 1 and 4, and assign to Rule 3 dominance which is smaller than that of
Rule 2 (e.g. Rule 3 will have dominance 0.8 and Rule 4 -0.95). This is because
the rule “birds fly” has many more exceptions than the rule “Penguins do not
fly”. Then we will get the result that answer set 2 is the preferred answer set.

Nixon

Republican

Quaker

-
\'/

Fig. 2. The Nixon Diamond

4.3.2 Nixon Diamond Consider the famous Nixon Diamond Paradox:

— Nixon is a Quaker

— Nixon is Republican

— Republicans are not pacifists.
— Quakers are pacifists.

This knowledge can be encoded in the following LP:

Republican(Nizon).
Quaker(Nixzon).
—Pacifist(z) «— Republican(x), not Pacifist(x)
Pacifist(x) «— Quaker(x), not ~Pacifist(z)

This program has two answer sets:

1. {Republican(Nizon), Quaker(Nizon), ~Pacifist(Nizon)}, and
2. {Republican(Nizon), Quaker(Nizon), Pacifist(Nixon)}.

It seems like one answer set makes more sense the other. This depends on how
do we evaluate the strength of each of the two rules in the program. Suppose
we believe that the rule “Republicans are not pacifists” is more dominant than
the default “quakers are pacifist”. In addition, there is no doubt about the fact
that Nixon was Republican, but we are not sure to what extent he was indeed a
quaker. By assigning to the rules numbers that reflect these believes we can get
the result that the answer set that is more intuitive to us is preferred.

5 Related Work

The research that is the most relevant to the work presented here seems to be
the work on prioritized defaults (e.g. [3]) and the work on probabilistic logic
programs (e.g. [9]). As we have mentioned in the introduction, each of these
frameworks lacks some of the features that QLPs presented here have. Prioritized
defaults enable specifying priorities among defaults so that one answer set is
preferred over the other, but it is not possible to rank literals in one answer set
according to their likelihood. Probabilistic logic programs, on the other hand,
are not rich enough to allow negation by default. Moreover, as far as we can
tell, none of the above paradigms offer an efficient procedure for computing the
answer sets. Computing answer sets of QLPs is relatively easy, as we explain in
the next section.

6 Computational Issues

Given a QLP II, , we can find all its QASs very easily using existing methods
for computing answer sets. First, we will compute all answer sets of II. Then, for
each answer set of II we will apply the Proof-Rank Algorithm described below
to compute the weight of each literal in the answer set.

The data structures that the proof-rank algorithm handles are the following:

70

. For each rule r in IT: proof[r] is the best proof that can be found so far for
the literal in the head of r provided that the last rule in the proof is r, and
weight[r] is the dominance of that proof. body[r] is the number of literals in
the body of r for which the best proof was not found yet.

. For each literal P in the answer set, dominance[P] will hold the dominance
of P once we know it and proof[P] is the best proof for P (that is, the proof
of P with the highest dominance).

. A heap where all the rules r are kept according to the value of the variable
weight[r].

Proof-Rank Algorithm can work as follows:

. For each rule r, let weight[r] = 0, body[r] = number of literals in the body
of 7, proof[r] = 0.
. For each rule r such that body[r] = 0, let weight[r] = the dominance of r,
Proof[r] = {r}.
. Sort all rules in a heap by their weight, such that a heaviest one is on top.
Let top[heap] denote the rule at the top of the heap.
. While the heap is not empty and the weight of » =top[heap] is greater than
0 do
(a) Let P be the literal in the head of r. let dominance[P] = weight]r],
Proof[P] = Proof|r].
(b) For each rule r in the heap such that P is in the head of r, remove r
from the heap.
(¢) For each rule r in the heap such that P is in the body of do the following
i. Decrease body[r| by 1.
ii. If body[r] = 0 do the following, where Q1, ..., @, are all the literals
in the body of r.
A. Proof[r]=Proof[@:] U Proof[Q2] U... U Proof[Q,,] U {r}.
B. Let weight[r] be the product of the dominance of all the rules in
prooflr].
C. Move r to its correct place in the heap.

It is not difficult to see that the complexity of the Proof-Rank Algorithm is
O(nl?) where n be the number of literals in IT and [the number of rules in I7I.
The proof of the correctness of the algorithm is left for the full paper. We next
illustrate how it works.

Example 61 Suppose we are given the following QLP II:

1.=D«—mnot C(0.4)
2.0—-D(0.9)
3.0—(0.8)

4. A—not B(0.5)
5.-D«—A,C(0.8)

71

In order to compute the quantified answer set of II, we first compute the answer

set S of II, which is {C, A,—~D}. We then take red(Il, S) which is:

2.C——D(0.9)
3.0—(0.8)
4.A—(0.5)
5.-D— A, C(0.8)

We now sort the rules in a heap, with the following weight, “body”, and “proof”
values:

3.C«—(0.8) body = 0 proof = {3}
4.A—(0.5) body = 0 proof = {4}
2.C+—=D(0) body = 1 proof =0
5.-D+—A,C(0) body = 2 proof = 0

Rule number 3 is the heaviest, we remove it from the heap and set dominance[C] =
0.8 and proof[C] = {3}. We remove Rule 2 from the heap because it has the head
C, and we decrease the variable body of Rule 5 by 1 because Rule 5 has C in the
body. So the heap now looks like this:

4. A——(0.5) body = 0 proof = {4}
5.-D+«—A,C(0) body = 1 proof =0

Rule number / is now the heaviest, we remove it from the heap, set dominance[A] =
0.5 and proof[A] = {4}. We decrease the variable body of Rule 5 by 1 because
Rule 5 has A in the body. Rule 5 has now body=0 so we set proof[5] to be {3,4,5}
and weight[5] to be 0.8 x 0.5 0.8, which is the product of the dominance of rules
3,4 and 5.

5..D«—A,C(0.32)body = Oproof = {3,4,5}

Rule number 5 is now the heaviest, we remove it from the heap, set dominance[-D] =
0.32 and proof[-D] = {3,4,5}. Now the heap is empty and therefore the algo-
rithm terminates.

7 Conclusions

Stable model semantics is becoming more and more practical with the develop-
ment of advanced tools for computing answers sets of extended logic programs.
In this paper we show that still there are applications for which the standard
ELPs cannot provide a solution, and we present QLPs. QLPs can still benefit
from all the progress done in stable model computation. This is because answer
sets of QLPs are computed by first computing an answer set of a standard ELP
and then applying a polynomial time algorithm.

72

The major disadvantage of QLPs, as we see it, is how to decide what would
be the exact dominance of each rule in the program. As of now, we leave this
decision to the intuition of the knowledge engineer who writes the program.

This work can be generalized to head-cycle free (HDF) disjunctive extended
logic programs in a straightforward way. This is because the definition of a proof
and the lemma that asserts that every literal in an answer set should have a
proof extend very naturally to the disjunctive case (for details see [1].

Acknowledgement

This research was supported by a grant from the Israeli Ministry of Industry,
Trade, and Labor.

References

1. Rachel Ben-Eliyahu and Rina Dechter. Propositional semantics for disjunctive
logic programs. Annals of Mathematics and Artificial Intelligence, 12:53-87, 1994.

2. Craig Boutilier. A semantical approach to stable inheritance reasoning. In IJCAI-
89: Proceedings of the 11th international joint conference on Al pages 1134-1139,
Detroit, Michigan, USA, August 1989.

3. Gerhard Brewka and Thomas Eiter. Prioritizing default logic: Abridged report. In
In Festschrift on the occasion of Prof.Dr. W. Bibel’s 60th birthday. Kluwer, 1999.

4. Andrea Cali, Thomas Lukasiewicz, Livia Predoiu, and Heiner Stuckenschmidt.
Tightly integrated probabilistic description logic programs for representing on-
tology mappings. In FoIKS, pages 178-198, 2008.

5. Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded se-
mantics for general logic programs. Journal of the ACM, 38:620-650, 1991.

6. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In R. A. Kowalski and K. A. Bowen, editors, Logic Programming:
Proceedings of the 5th international conference, pages 1070-1080. MIT Press, 1988.

7. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365-385, 1991.

8. Thomas Lukasiewicz. Probabilistic logic programming. In In Proc. of the 13th
European Conf. on Artificial Intelligence (ECAI-98, pages 388-392. J. Wiley &
Sons, 1998.

9. Raymond Ng and V. S. Subrahmanian. Probabilistic logic programming. Inf.
Comput., 101(2):150-201, 1992.

10. Pascal Nicolas, Laurent Garcia, Igor Stéphan, and Claire Lefévre. Possibilistic
uncertainty handling for answer set programming. Ann. Math. Artif. Intell., 47(1-
2):139-181, 2006.

11. Ted Pedersen and Siddharth Patwardhan. Wordnet::similarity - measuring the
relatedness of concepts. In In Proceedings of the Nineteenth National Conference
on Artificial Intelligence (AAAI-04, pages 1024-1025, 2004.

12. E. Sandwell. nonmonotonic inference rules for multiple inheritance with exceptions.
In Proc. of the IEEE, pages 1345-1353, 1986.

73

13. David S. Touretzky, John F. Horty, and Richmond H. Thomason. A clash of
intuitions: The current state of nonmonotonic multiple inheritance systems. In
1JCAI-87: Proceedings of the 10th international joint conference on Al, pages 476—
482, Milan, Italy, August 1987.

74

On Demand Indexing for the DLV Instantiator

Gelsomina Catalano, Nicola Leone, and Simona Perri

Department of Mathematics, University of Calabria
1-87030 Rende (CS), Italy
{catalano,leone,perri}@mat.unical.it

Abstract. In Answer Set Programming (ASP) systems, the computation
consists of two main phases: (1) the input program is first instantiated and
simplified, generating a ground (i.e., variable free) program, (2) propositional
algorithms are then applied on the ground program to generate the answer
sets. The instantiation process may be computationally expensive and the
instantiator is crucial for the efficiency of the entire ASP system, especially
in real-world applications.

In this paper, we propose to employ main-memory indexing techniques for
enhancing the performance of the instantiation procedure of the ASP system
DLV. In particular, we adapt a classical first argument indexing schema to
our context, and propose an on demand indexing strategy where indexes
are computed during the evaluation (and only if exploitable). Moreover, we
define two heuristics which can be used for determining the most appropriate
argument to be indexed, when more than one possibility exists.

We have implemented such techniques in the DLV instantiator, and we
have carried out an experimentation activity on a collection of benchmark
problems, including also a number of real-world instances. The results of ex-
periments are very positive and confirm the intuition that indexing allows for
notably improving the efficiency of the instantiation process. Moreover, the
on demand indexing strategy always outperforms the classical first argument
schema, especially when the argument to be indexed is chosen according to
a better heuristic.

1 Introduction

Answer set programming (ASP) — a declarative approach to programming proposed
in the area of logic programming and nonmonotonic reasoning — has gained pop-
ularity in the last years also thanks to the availability of a number of effective
implementations. Indeed, there are nowadays a number of systems that support
Answer Set Programming and its variants, including [1-9], that can be utilized as
advanced tools for solving real-world problems in a highly declarative way.

The computation of the answer sets in ASP systems consists of two main phases:
the input program is first instantiated and simplified, generating a ground (i.e., vari-
able free) program, and then propositional algorithms are applied on the ground
program to generate the answer sets. The instantiation phase may be computa-
tionally expensive. Thus having a good instantiator is crucial for the efficiency of
the entire ASP system. Some emerging application areas of ASP, like knowledge
management and information integration, ! where large amount of data are to be
processed, make very evident the need of improving ASP instantiators significantly.

! The application of ASP in these areas has been investigated also in the EU projects
INFOMIX IST-2001-33570, and ICONS IST-2001-32429, and is profitably exploited by
Exeura s.r.l., a spin-off of University of Calabria having precisely this mission.

()

This paper focuses on the instantiator of DLV which is widely recognized to be a
very strong point of the DLV system. Indeed, instantiation in DLV is much more
than a simple variables-elimination; it allows to evaluate relevant programs frag-
ments, and produces a ground program which has precisely the same answer sets
as the theoretical instantiation, but it is sensibly smaller in size. For instance, if the
input program is disjunction-free and stratified, then its evaluation is completely
done by the instantiator which computes the single answer set without producing
any instantiation.

The DLV instantiator already incorporates a number of optimization techniques
[10-12] but, since ASP applications grow in size, there is the need to efficiently
handle larger and larger amount of data.

A critical issue for the efficiency of the instantiator is the retrieval of ground
instances from the extensions of the predicates. Indeed, rule instantiation is essen-
tially performed by evaluating the relational join of the positive body literals 2,
and, as for join computation, in the absence of techniques for speeding-up the re-
trieval, the time spent in identifying candidate instances can dramatically affect the
performances.

In this paper, we face this issue and, in this respect, we propose the use of
indexing techniques, that is techniques for the design and the implementation of
data structures that allow to efficiently access to large datasets.

Indexing methods have been originally introduced in the database field for im-
proving the speed of the operations in a table , and are now profitably used also
in the logic programming area [14,15]. Indeed, effective indexing has become an
integral component of high performance declarative programming systems. Almost
all the Prolog implementations support indexing on the main functor symbol of
the first argument of predicates and some of them, like XSB [16], SWI-Prolog [17],
support more sophisticated indexing schemata. Recently, a smart dynamic indexing
method for Prolog systems has also been proposed [18] which resulted to be very
effective.

The reason for developing several different indexing techniques is that the con-
ditions under which data have to be retrieved differ from context to context. In
addition, if on the one hand indexing allows to significantly speedup the retrieval,
on the other hand it could lead to a considerable memory consumption and hence
a compromise between these two factors has to be made. Thus, there is not an
optimum indexing technique for all the applications, rather each application may
require to develop its own specialized technique.

In this work we investigate the use of indexes for optimizing the rule instantiation
process of DLV. In particular, we adapt a classical first argument indexing schema
to our context and propose a more general strategy for indexing any argument, not
necessarily the first one. Such a strategy allows for a kind of on demand indexing
where indexes are computed during the evaluation and when needed. Moreover,
when more than one argument can be indexed, we choose the most appropriate one
according to a heuristic. We experiment with two heuristics: in the first one, the first
“indexable” argument is chosen while the second one selects the indexable argument
where it is more likely that few candidate instances will be retrieved (thus, reducing
the cost of the join computation).

2 Note that, since rules are safe [13], the join of the positive body literals allows for
instantiating all rule variables.

3 Many indexing structures have been already proposed for database systems, however
they are designed to be stored in mass-memory, whereas the DLV instantiator works in
main-memory, thus indexing has to be designed according to more strict memory limits.

76

We have implemented the above strategies in the instantiation procedure of DLV
and, in order to assess their impact on the performances of the DLV instantiator, we
have carried out an experimentation activity on a collection of benchmark programs.
The results of the experiments are very positive; the new techniques allow to obtain
non-trivial speed-ups w.r.t. the non indexed version, up to orders of magnitude.
Moreover, as expected, on demand indexing allows for better performance on a wider
range of applications; and the comparison between the two heuristics shows that
execution times are strongly influenced by the selection of the indexed arguments,
obtaining better results when a more refined choice is done.

2 The Language of Answer Set Programming

In this section we briefly describe the syntax and semantics of Answer Set Program-
ming.

2.1 Syntax

A variable or a constant is a term. An atom is a(t1,...,t,), where a is a predicate of
arity n and t1, ..., t,, are terms. A literalis either a positive literal p or a negative literal
not p, where p is an atom.* A (disjunctive) rule r has the following form:

a1 V- Van < by, bg,not byy1,- - ,not by,
n>1l, m>k>0

where a1, -+, an,b1,---,bm are atoms. The disjunction a; V- --V ay is the head of r,
while the conjunction by, ..., by, not b1, ..., not by, is the body of r.

We denote by H(r) the set {ai,...,an} of the head atoms, and by B(r) the set
{b1, ..., b, not by1,...,not b, } of the body literals. B*(r) (resp., B~ (r)) denotes the
set of atoms occurring positively (resp., negatively) in B(r). For a literal L, var(L)
denotes the set of variables occurring in L. For a conjunction (or a set) of literals
C, var(C) denotes the set of variables occurring in the literals in C, and, for a rule
r, var(r) = var(H(r)) Uvar(B(r)). A rule r is safe if each variable appearing in r
appears also in some positive body literal of r, i.e., var(r) = var(B*(r)).

An ASP program P is a finite set of safe rules. A not -free (resp., V-free) program
is called positive (resp., normal). A term, an atom, a literal, a rule, or a program is
ground if no variables appear in it.

A predicate occurring only in facts (rules of the form a «), is referred to as
an EDB predicate, all others as IDB predicates. The set of facts in which FDB
predicates occur, is called Fxtensional Database (EDB), the set of all other rules is
the Intensional Database (IDB).

2.2 Semantics

Let P be a program. The Herbrand Universe and the Herbrand Base of P are defined
in the standard way and denoted by Up and Bp, respectively.

Given a rule r, a ground instance of r is a rule obtained from r by replacing
every variable X in r by o(X), where o : var(r) — Up is a substitution mapping the
variables occurring in r to constants in Up. We denote by ground(P) the set of all
the ground instances of the rules occurring in P.

4 Without loss of generality, in this paper we do not consider strong negation, which is
irrelevant for the instantiation process; the symbol ‘not’ denotes default negation here.

(s

An interpretation for P is a set of ground atoms, that is, an interpretation is
a subset I of Bp. A ground positive literal A is true (resp., false) wr.t. I'if A el
(resp., A ¢ I). A ground negative literal not A is true w.r.t. I if A is false w.r.t. T;
otherwise not A is false w.r.t. I.

Let r be a ground rule in ground(P). The head of r is true w.r.t. I if H(r)NI # 0.
The body of r is true w.r.t. I if all body literals of r are true w.r.t. I (i.e., BT (r) C I
and B~ (r)N1I = 0) and is false w.r.t. I otherwise. The rule r is satisfied (or true)
w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I.

A model for P is an interpretation M for P such that every rule r € ground(P) is
true w.r.t. M. A model M for P is minimal if no model N for P exists such that N
is a proper subset of M. The set of all minimal models for P is denoted by MM(P).

Given a ground program P and an interpretation I, the reduct of P w.r.t. I is
the subset P! of P, which is obtained from P by deleting rules in which a body
literal is false w.r.t. I.

Note that the above definition of reduct, proposed in [19], simplifies the original
definition of Gelfond-Lifschitz (GL) transform [20], but is fully equivalent to the GL
transform for the definition of answer sets [19].

Let I be an interpretation for a program P. I is an answer set for P if I €
MM(P?) (i.e., I is a minimal model for the program PT) [20, 21].

3 Instantiation of Answer Set Programs: DLV’s Strategy

In this Section, we provide a short description of the overall instantiation process of
the DLV system, and focus on the “heart” procedure of this process which produces
the ground instances of a given rule.

Using advanced database techniques ([10,11]) and a clever backjumping algo-
rithm [12], the DLV instantiator efficiently generates a ground instantiation of the
input that has the same answer sets as the full program instantiation, but is much
smaller in general. For example, if the input program is normal and stratified, the
instantiator is able to compute the single answer set of the program, namely the set
of the facts and the atoms derived by the instantiation procedure.

An input program P is first analyzed by the parser, which also builds the ex-
tensional database from the facts in the program, and encodes the rules in the
intensional database in a suitable way. Then, a rewriting procedure (see [10]), op-
timizes the rules in order to get an equivalent program P’ that can be instantiated
more efficiently and that can lead to a smaller ground program. At this point, an-
other module of the instantiator computes the dependency graph [22] of P’, its
connected components, and a topological ordering of these components. Finally, P’
is instantiated one component at a time, starting from the lowest components in the
topological ordering, i.e., those components that depend on no other component,
according to the dependency graph.

For the instantiation of each component an improved version of the generalized
semi-naive technique [13,22] is used. Non recursive rules are evaluated by a single
call to the Instantiate procedure described in Section 3.1, while the recursive ones are
processed several times, and at each iteration only the information derived during
the previous iteration is used.

3.1 Rule Instantiation

In this Section, we describe the process of rule instantiation of DLV. For the sake of
clarity, we present a simplified version of this process, based on a classical chronolog-

8

ical backtracking schema; the actual DLV instantiation procedure exploits a more
efficient backjumping technique (see, [12]).

Algorithm Instantiate
Input R: Rule, I, -+, I, : SetOflnstances;
Output S: SetOfTotalSubstitutions;
var L: Literal, B: ListOfAtoms, 0: Substitution;
begin
0 = 0;
(* return the ordered list of the body literals (null, L1, - -,Ln, last) *)
B := BodyToList(R);
L:=1Ly; S:=0
while L # null
if Match(L, Ir, 0) then
if(L # last) then
L := NextLiteral(L);
else (* 0 is a total substitution for the variables of R *)
S = SU{0};
L := PreviousLiteral(L); (* look for another solution *)
0:=0 ‘PreviousVars(L);
else
L := PreviousLiteral(L);
0:=190 |PreviousVars(L);
output S;
end;

Function Match (L:Literal, I'r:SetOfInstances, var 0:Substitution):Boolean
begin
(* take a ground instance G from I, if any *)
while getInstance(Ir,,G)
(* if G is consistent with the current substitution 6, extend 6 and exit *)
if extend(G,0) then
return true;
return false;
end;

Fig. 1. Computing the instantiations of a rule

The algorithm Instantiate, shown in Figure 1, generates the possible instantia-
tions for a rule r of a program P. When this procedure is called, for each predicate
p occurring in the body of r we are given its extension, as a set I, containing all its
ground instances. We say that the mapping 6 : var(r) — Up is a valid substitution
for r if it is valid for every positive literal occurring in its body, i.e., if for every
positive literal L in B(r), 0L € I holds. In other words, we discard a priori any
substitution mapping a positive body literal @ to a ground instance of) which is
not in I,. Instantiate outputs such valid substitutions for r.

Note that, since the rule is safe, each variable occurring either in a negative
literal or in the head of the rule appears also in some positive body literal. For the
sake of presentation, we assume that the body is ordered in a way that any negative
literal always follows the positive atoms containing its variables. Actually, DLV has

5 Meaning the extension of the predicate occurring in L.

79

a specialized module that computes a clever ordering of the body [11] satisfying this
assumption.

Instantiate first stores the body literals Lq,..., L, into an ordered list B =
(null, Ly, -+, Ly, last). Then, it starts the computation of the substitutions for r.
To this end, it maintains a variable 0, initially set to (), representing, at each step,
a partial substitution for var(r).

Now, the computation proceeds as follows: For each literal L;, we denote by
PreviousVars(L;) the set of variables occurring in any literal that precedes L; in
the list B (if ¢ = 1, PreviousVars(L;) = (), and by FreeVars(L;) the set of variables
that occurs for the first time in L, i.e., FreeVars(L;) = var(L;) — PreviousVars(L;).

At each iteration of the while loop, by using function Match, we try to find
a match for a literal L; with respect to 6, in other words, we apply 6 to L; and
look for an instantiation of #L; that matches an atom in I;,. More precisely, we
look in Iy, for a ground instance G which is consistent with the assignments for the
variables in PreviousVars(L;), and then use G in order to extend 6 to the variables
in FreeVars(L;); note that, if FreeVars(L;) = (), this task simply consists in checking
whether 6 is a valid substitution for L;. If there is no such a substitution, then we
backtrack to the previous literal in the list, or else we consider two cases: if there
are further literals to be evaluated, then we continue with the next literal in the list;
otherwise, # encodes a (total) valid substitution and is thus added to the output set
S. Even in this case, we backtrack for finding another solution.

4 Indexing Techniques for Rule Instantiation

A critical issue for the efficiency of the DLV instantiator is the task accomplished
by function Match shown in Figure 1. As said in the previous Section, this function
takes as input a literal L, its extension I, and a partial substitution ¢ and tries to
find a ground instance in Iy, matching 6. This task, in the absence of techniques
for speeding-up the retrieval of candidate instances, may be very expensive. Indeed,
the size of I, can be very large and thus, a simple approach based on linear search
trough I, leads to a drop in performance of the instantiator (also because Match is
invoked very frequently during the instantiation).

In this Section, we describe two indexing strategies which can be exploited in or-
der to facilitate the retrieval of instances thus allowing for a more efficient matching
function.

4.1 First Argument

In the following we describe how the classical first argument indexing schema can
be adapted to our context. Such indexing allows for efficiently performing the match
of literals L whose first argument is indezable; an argument is said to be indexable
if it is either a constant or a variable X such that X € PreviousVars(L) (thus, 6
already contains a substitution for X).

Suitable hash structures are used for boosting the retrieval of ground instances
according to values of their first term.

For each predicate p, its extension I, is implemented by means of a list storing,
according to lexicographical order, the ground instances of p. We associate to each
extension I, a sparse secondary index implemented by means of a hash map. More
in detail, let C C Up be the set of all the distinct constants appearing as first
argument of some instance in I,,. An index is a hash map M, that associates to
each ¢ € C (the key of the map) a pointer pt to an instance in [,,. In particular, pt

80

identifies the first ground instance in I, having c as first argument and thus, due to
the lexicographical order of I,,, facilitates the retrieval of all ground instances in I,
with the same characteristic.

By using these structures, the match of a literal L whose first term is instantiated
with a constant ¢ can be performed as follows: first of all, we access to the index
corresponding to L using ¢ as key. Then, we simply follow the pointer associated to
c in order to directly access the instances of I, having c as first term, and try to
extend 6 by using, one after the other, such instances. Note that, since the index
is implemented by means of a hash map, looking up the pointer pt by its key is
efficient. In particular, the average case complexity of this operation is constant
time.

Such indexing schema takes advantage from the lexicographical order of the
predicate extensions for creating indexes whose size is in general smaller than the
corresponding extensions thus limiting the space required to store the index. How-
ever, as the following example shows, it is not general, and it allows the use of
indexes only in a small range of cases.

Ezample 1. Consider the following program

r1: a(Z)—p(X,1,Y),q(X,Y, Z2).
ro: b(T,V)«—r(U),q(T,U,V).

During the instantiation, the first argument indexing schema is exploited only once.

Indeed, the evaluation of rule r; proceeds by matching first the literal p(X,1,Y)
whose first argument is not indexable, since X ¢ PreviousVars(p(X,1,Y)). Then,
the literal ¢(X,Y, Z) is matched and the first argument index can be used, indeed
X € PreviousVars(q(X,Y, Z)). For the evaluation of 75, it is easy to see that indexes
can never be exploited.

4.2 On Demand Indexing

The first argument indexing schema described above allows for using sparse in-
dexes with the advantage of limiting the memory consumption. However, it has the
disadvantage of being not general and hence exploitable only in few cases.

In the following the on demand indexing strategy is described which allows for
the efficient match of literals where a generic argument (not only the first one) is
indexable. Such a strategy is more general than the first argument indexing but
requires more space for storing indexes, since the lexicographical order of the exten-
sions can not be exploited and, an index must contain a pointer for each instance
in the extension.

Let p be a predicate, I, be the extension of p, a an indexable argument and z,
its position in the parameter list of p. Moreover, let C' C Up be the set of all the
distinct constants appearing in some instance of I, in position z,. An index to I,
for the argument a is a hash multi map MM, , that associates with each ¢ € C' (the
key of the map) a set of pointers to I,,, one for each instance having ¢ in position .

In our on demand indexing strategy, the argument to be indexed is not pre-
determined but is established during the computation. More in detail, during the
evaluation of a rule, when a match of a literal L has to be performed, an argument a
is chosen among all the indexable arguments of L and the index for L corresponding
to a is created (if it does not exist yet).

Thus, indexes are created only if they are really exploitable and, in two different
moments of the evaluation, a predicate can be associated to two different indexes,

81

depending on the argument that is more appropriate to be indexed. For instance,
a predicate can appear in the body of two different rules, and the most convenient
index to use could be different in the two cases.

Example 2. Consider the program of example 1. While the first argument indexing
schema allows for using of indexes only for the match of literal ¢(X,Y, Z) in rule ry,
the on demand indexing schema has a better behavior, since indexes can be exploited
in three cases. More in detail, the matches of p(X,1,Y) in rule r; and of ¢(T,U, V)
of rule ro can be performed by using indexes on the second argument. Moreover,
for the match of literal ¢(X,Y, Z) of rule 71, two indexes could be associated to g,
one for the first argument or one for the second argument. The choice of the more
appropriate index to be used can be made according to an heuristic, as described
below.

In the case of a literal L having more than one indexable argument, an heuristic
is used in order to choose which is the one to be indexed. In this work, we experiment
with two heuristics. The first one (Hy) is very simple and consists in the selection of
the first indexable argument (in a left to right order). The second one (Hy) allows
for a more refined choice and tries to select the indexable argument where it is more
likely that few candidate instances will be retrieved.

More in detail, such a choice is made by taking into account the selectivity of
each indexable argument a of L, that is the number of distinct constants for a in
I1,. The heuristic selects the argument with the greatest selectivity, that is, the one
whose selectivity better approximates the size of 1.

Ezxample 3. In the previous example, we have seen that, for the match of literal
q(X,Y,Z) of rule r1, the on demand indexing technique can choose among two
indexes corresponding to two different arguments of ¢ (first and second one). Sup-
pose now that the size of the extensions of p and ¢ are 100 and 600, respectively.
Moreover, assume that the instances in I, are the following:

,2),...q(a, 100, 100),
2,102), .. . q(b, 100, 200),

¢(f,1,501), 4(/,2,502), .. q(f, 100, 600)

It is easy to see that the selectivities of the first and the second argument of ¢
are 6 and 100, respectively. Given these values, heuristic Hs chooses the second
one as argument to be indexed, thus suggesting a different choice w.r.t Hy (which
selects the first one). Importantly, according to such different choices, the cost of the
matching operation of ¢ varies notably. Indeed, using the index on the first argument
(as Hy suggests), we have that, for each instance of p, 100 candidate instances have
to be considered for the match of ¢; thus, to compute the join among p and ¢,
10000 possible matchings have to be performed. On the contrary, the index on the
second argument (as suggested by Hs) identifies, for each instance of p, 6 possible
candidate instances for the match of ¢, thus the join among p and ¢ is computed by
considering only 600 possible matchings.

Note that, in order to limit the memory usage, besides avoiding the creation
of useless indexes, a structural analysis of the input program is done to identify
possible indexes previously created but not exploitable in the next steps of the
computation.

82

More in detail, since the instantiation of the program is performed according
to the dependencies among components given by the dependency graph, for the
evaluation of each single component, only a subset of the predicates occurring in
the program is involved. Thus, if a predicate p is involved in the instantiation of a
component C' and it is not necessary for the evaluation of the components following
C in the topological ordering, the eventual indexes associated to p can be destroyed
as soon as C has been processed. Hence, only indexes which can be possibly exploited
again during the computation are maintained.

5 Experimental Results

In order to check the impact of the proposed indexing techniques on the DLV
instantiator, we carried out an experimentation activity on a number of benchmark
problems, taken from different domains. For space limitation, we do not include
the code of benchmark programs; however they can be retrieved, together with the
binaries used for the experiments, from our web page: http://www.mat.unical.it/
indexing/indexing.tar.gzip. Moreover, we give below a very short description of
the problems.

5.1 Benchmark Programs

We have considered several problems whose encodings are significantly hard to
instantiate. Some of them are known programs which have been already used in
the evaluation of ASP instantiators ([1,23,12]), some others are programs arising
in practical applications of ASP.

InsuranceWorkflow. The goal is to emulate, by means of an ASP program, the
execution of a workflow, in which each step constitutes a transformation to be
applied to some data (in order to query for and/or extract implicit knowledge). Two
problem instances were provided by the company EXEURA s.r.l. [24], which have
been automatically generated by a software working on several American insurance
data.

Scheduling. A scheduling problem for determining shift rotation of employees, en-
suring appropriate days off for each employee and respecting other given constraints
on the availability of some workers.

Cristal. Cristal (Cooperative Repositories & Information System for Tracking
Assembly Lifecycle) is a deductive databases application that involves complex
knowledge manipulations. The main purpose is to manage the gathering of pro-
duction data during the ongoing construction of the Electromagnetic Calorime-
ter of the Compact Muon Solenoid, at the European Centre for Nuclear Research
(CERN) [25].

Food. The problem here is to generate plans for repairing faulty workflows. That
is, starting from a faulty workflow instance, the goal is to provide a completion
of the workflow such that the output of the workflow is correct. Workflows may
comprise many activities. Repair actions are compensation, (re)do and replacement
of activities.

DocClass. The problem is to assign a document to one or more categories, based
on its contents. In particular, the input data represent words or sequence of words
appearing in the document (ngrams) and the document is classified according to the
presence or the absence of given ngrams. The single problem instance was provided
by EXEURA s.r.l. [24].

83

Datalntegration. A data integration problem. Given some tables containing dis-
cording data, find a repair where some key constraints are satisfied. The single
problem instance used for these tests was originally defined within the EU project
INFOMIX [26].

Hilex. The problem consists in recognizing and extracting meaningful informa-
tion from unstructured web documents. This is done by combining both syntactic
and semantic information, through the use of domain ontologies. A preprocessor
transforms the input documents into ASP facts, extraction rules are translated into
ASP, and information extraction amounts to reasoning on an ASP program, which
is executed by DLV. The single problem instance was provided by the company
EXEURA s.r.l. [24].

Timetabling. The problem was considered of determining a timetable for some
university lectures that have to be given in a week to some groups of students.
The timetable must respect a number of given constraints concerning availability of
rooms, teachers, and other issues related to the overall organization of the lectures.
The five instances we considered were provided by the University of Calabria; they
refer to different numbers of student groups.

3-Colorability. This well-known problem asks for an assignment of three colors to
the nodes of a graph, in such a way that adjacent nodes always have different colors.
We considered five instances representing ladder graphs with increasing number of
nodes.

Reachability. Given a finite directed graph G = (V, A), we want to compute all
pairs of nodes (a,b) € V x V such that b is reachable from a through a nonempty
sequence of arcs in A. The encoding of this problem consists of one exit rule and
a recursive one. We considered five different instances which have been used at the
First Answer Set Programming System Competition [23].

GrammarBasedIE. This problem has been used at the First Answer Set Program-
ming System Competition [23]. It constitutes a part of a more complex application
for recognizing and extracting meaningful information from unstructured Web doc-
uments. In particular, given a context free grammar, which specifies arithmetic
equations, and a string, the problem is to determine whether the input string is
an equation belonging to the language defined by the grammar and whether the
equation holds. For the experiments, we used five different instances taken from the
web page of the competition.

5.2 Compared Methods

We implemented the indexing strategies described in the previous Section in the
DLV instantiator and we compared the resulting prototypes by using the above
benchmark problems. In particular, the following instantiators were compared:

- noIndexes: the DLV instantiator without any indexing technique;

- 1°*Arg: the DLV instantiator enhanced with first argument indexing; 6

- onDemand-H;: the DLV instantiator with on demand indexing where the first
indexable argument is chosen;

- onDemand-H;: the DLV instantiator with on demand indexing where the
indexable argument with greatest selectivity is chosen.

All binaries were produced by using the GNU compiler GCC 4.1.2; and the ex-
periments were performed on a dual processor Intel Xeon HT (single core) 3.60GHz
machine, equipped with 3GB of RAM and running Debian Gnu Linux 2.6.

8 This version of the DLV instantiator coincides with the one of the official release October
11th 2007.

84

Program nolndexes| 1°?ArglonDemand-H;|onDemand-H>|% gain
InsuranceWorkflow1 21.58 12.96 8.15 0.51| 9%
InsuranceWorkflow2 102.47 22.97 10.34 2.61] 97%
Scheduling 114.54| 114.52 25.65 12.52] 89%
Cristal 3.65 0.67 0.45 0.26| 93%
Food 135.04| 115.43 57.47 49.37| 63%
DocClass - 4.48 2.40 2.42| -
Datalntegration 293.68| 293.75 3.71 3.72| 99%
Hilex 16.54 8.23 3.66 3.52| 79%
Table 1. Results for real problems (times in seconds)

Timetabling|noIndexes|15* ArglonDemand-H; |onDemand-H2|% gain

17 groups 187.28|187.75 35.94 14.39] 92%

19 groups 287.18|288.46 37.19 15.11] 95%

21 groups 319.66|318.98 51.51 16.54] 95%

23 groups 334.06|334.02 73.85 18.45| 94%

25 groups 431.99/409.61 97.14 20.15| 95%

Table 2. Results for Timetabling (times in seconds)

5.3 Results and Discussion

Tables 1- 5 shows the results of our experiments. In each table, for each benchmark
program P described in column 1, columns 2 -5 report the times employed to instan-
tiate P by using the above binaries; column 6 reports the percentage gain obtained
by onDemand-Hy w.r.t nolndexes. All running times are expressed in seconds. The
symbol ‘—’ means that the instantiator did not terminate within 10 minutes.

The results confirm the intuition that the indexing techniques can be very useful
for improving the efficiency of the DLV instantiator. Indeed, it is clear from the
tables that, even a simple strategy, like the one exploited by 1*!Arg, allows for
outperforming the instantiator nolndexes in many cases. In particular, the first
argument indexing gives very relevant improvements in some benchmarks, as, for
instance, DocClass and three of the instances of 3-Colorability, where nolndexes
does not terminate within ten minutes, while 15 Arg takes few seconds. However,
there are also some cases in which the speed-up introduced by 1°?Arg is not so
considerable, or it is not present at all. Consider for instance, Scheduling and Data
Integration and the instances of Timetabling where nolndexes and 15¢Arg perform
very similarly, or the two solved instances of Reachability where the gain is about
7%, and Food where the gain is about 15%. The reason of such different behavior of
1%t Arg on these problems is that the speed-up reflects how intensively first argument
indexing can be used for a given benchmark. More precisely, the performance gain
is low when the encodings are such that first argument indexing is exploitable only
for the match of few literals.

The situation changes when looking at the results of the on demand index-
ing technique. Indeed, for all the tested benchmarks, the speed-up introduced by
this technique is really impressive. Moreover, it is clear from the tables that the
instantiator exploiting Ho as heuristic behaves quite better than the one exploit-
ing H;. Indeed, OnDemand-H; allows for notable improvements in many cases with
difference of even 2 orders of magnitude w.r.t. noIndexes (as, for instance, Datalnte-
gration, Reachability). Moreover, it is able to solve all the problem instances within

85

3-Colorability|[noIndexes|1°¢ ArglonDemand-H;|[onDemand-Hz % gain
15000 nodes 79.13| 0.98 0.97 0.97] 98%
20120 nodes 222.84| 0.98 0.98 0.99] 99%
32300 nodes - 3.29 3.24 3.22] -
39900 nodes - 2.13 2.11 2.12| -
40120 nodes - 2.11 2.08 2.08] -

Table 3. Results for 3-Colorability (times in seconds)

Reachability [noIndexes| 1°*ArglonDemand-H;[onDemand-H>|% gain
Reachability_13 71.83 66.39 0.95 0.98 99%
Reachability_14 367.60| 339.63 2.33 231 99%
Reachability_15 - - 5.47 5.49| -
Reachability_16 - - 12.61 12.58| —
Reachability_18 - — 68.05 68.68] —

Table 4. Results for Reachability (times in seconds)

the allowed time limit. However, these considerations hold also for OnDemand-Hs;
indeed, either it exhibits the same behavior of OnDemand-H; or perform better,
as, for instance, in Timetabling, InsuranceWorkflow and other real problems. This
shows that performance improvements strongly depend on the “quality” of the used
index. Intuitively, when an entry in the index corresponds to a high number of can-
didate instances (close to the size of the extension), then indexing may not bring
great benefits.

Summarizing, the tested indexing techniques allow improving the performance
of the instantiator but the on demand strategy is applicable in a wider range of cases
w.r.t the first argument one and gives relevant speed-ups especially when combined
with an accurate choice of the argument to be indexed.

6 Conclusions and Ongoing Work

In this work we investigated the use of indexes for optimizing the rule instantiation
process of DLV. In particular, we experimented with a classical first argument
indexing schema adapted to our context and proposed an on demand indexing
strategy where indexes are computed during the evaluation and the argument to be
indexed is chosen according to a heuristic.

We implemented such strategies in the instantiator of DLV and we carried out
a deep experimental analysis. The results of the experiments are very positive and
confirm that the use of indexes causes the instantiation stage to achieve notice-
able improvements. Moreover, the on demand indexing schema gives better results
w.r.t the classical first argument schema in a wider range of cases and performance
improve notably when a good choice of the argument to be indexed is made.

Currently, we are investigating the relations between the body ordering criterion
exploited in DLV and the use of indexes. Indeed, it is easy to see that, the body
ordering may have a strong impact on the use of indexes; each of the techniques
described above chooses for a literal L the argument to be indexed among a set of
indexable arguments, and such set depends on the position that L has in the body
and, thus, on the ordering algorithm used. Hence, a different ordering criterion may

86

GrammarBased _IE|nolndexes| 1%?ArglonDemand-H; [onDemand-H2|% gain
GrammarBased IE_1 4.49 2.98 0.98 0.98 78%
GrammarBased 1E_2 7.57 3.41 0.95 0.96| 87%
GrammarBased _IE_3 7.89 4.09 1.16 1.15| 85%
GrammarBased_IE_4 8.84 6.22 1.74 1.74| 80%
GrammarBased _IE_5 9.50 7.26 2.15 2.14| 7%

Table 5. Results for GrammarBased_IE (times in seconds)

lead to make different choices and, so, to considerably influence the execution times;
then, the ordering criterion could be modified in order to take into account indexes
availability. However, it is well known that the instantiation time of a rule strongly
depends on the order of evaluation of literals [11,27], thus a naive ordering could
have a negative impact on the instantiator performance, also overshadowing the
gains brought by the indexes usage. Therefore, a clever ordering has to be conceived
which allows a better use of indexes but without ignoring the principles which the
current method is based on and whose effectiveness has already been assessed [11].
The design of the new ordering criterion is the subject of a future work.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7(3) (2006) 499-562

2. Janhunen, T., Niemel4, 1., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and
Disjunctions in Stable Model Semantics. ACM Transactions on Computational Logic
7(1) (2006) 1-37

3. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In Baral, C., Greco,
G., Leone, N., Terracina, G., eds.: Logic Programming and Nonmonotonic Reasoning
— 8th International Conference, LPNMR’05, Diamante, Italy, September 2005, Pro-
ceedings. Volume 3662 of Lecture Notes in Computer Science., Springer Verlag (2005)
447451

4. Simons, P., Niemela, I., Soininen, T.: Extending and Implementing the Stable Model
Semantics. Artificial Intelligence 138 (2002) 181-234

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Twentieth International Joint Conference on Artificial Intelligence (IJCAI-
07), Morgan Kaufmann Publishers (2007) 386-392

6. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157(1-2) (2004) 115-137

7. Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-
tight Programs. In Lifschitz, V., Niemela, 1., eds.: Proceedings of the 7th International
Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR-7). Vol-
ume 2923 of LNAIL, Springer (2004) 346-350

8. Anger, C., Konczak, K., Linke, T.: NoMoRe: A System for Non-Monotonic Reasoning.
In Eiter, T., Faber, W., Truszczyriski, M., eds.: Logic Programming and Nonmonotonic
Reasoning — 6th International Conference, LPNMR’01, Vienna, Austria, September
2001, Proceedings. Volume 2173 of Lecture Notes in AI (LNAI)., Springer Verlag
(2001) 406410

9. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ Approach
to Answer Set Solving. In Sutcliffe, G., Voronkov, A., eds.: Logic for Programming,
Artificial Intelligence, and Reasoning, 12th International Conference, LPAR 2005. Vol-
ume 3835 of Lecture Notes in Computer Science., Springer Verlag (2005) 95-109

87

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.

27.

Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using Database Optimization Tech-
niques for Nonmonotonic Reasoning. In INAP Organizing Committee, ed.: Proceedings
of the 7th International Workshop on Deductive Databases and Logic Programming
(DDLP’99), Prolog Association of Japan (1999) 135-139

Leone, N., Perri, S., Scarcello, F.: Improving ASP Instantiators by Join-Ordering
Methods. In Eiter, T., Faber, W., Truszczynski, M., eds.: Logic Programming and
Nonmonotonic Reasoning — 6th International Conference, LPNMR’01, Vienna, Aus-
tria. Volume 2173 of Lecture Notes in AI (LNAI)., Springer Verlag (2001) 280-294
Perri, S., Scarcello, F., Catalano, G., Leone, N.: Enhancing DLV instantiator by
backjumping techniques. Annals of Mathematics and Artificial Intelligence 51(2-4)
(2007) 195-228

Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer Science
Press (1989)

Demoen, B., Marién, A., Callebaut, A.: Indexing in Prolog. In: Proceedings of the
North American Conference on Logic Programming, MIT Press (1989) 1001-1012
Carlsson, M.: Freeze, Indexing, and other implementation issues in the WAM. In:
Proceedings of the Fourth International Conference on Logic Programming, MIT Press
(1987) 40-58

Rao, P., Sagonas, K.F., Swift, T., Warren, D.S., Freire, J.: XSB: A System for Effi-
ciently Computing Well-Founded Semantics. In Dix, J., Furbach, U., Nerode, A., eds.:
Proceedings of the 4th International Conference on Logic Programming and Non-
Monotonic Reasoning (LPNMR’97). Volume 1265 of Lecture Notes in AI (LNAI).,
Dagstuhl, Germany, Springer Verlag (1997) 2-17

Wielemaker, J.: SWI-Prolog 5.1: Reference Manual, University of Amsterdam (1997-
2003)

Costa, V.S., Sagonas, K.F., Lopes, R.: Demand-driven indexing of prolog clauses. In:
Proceedings of the 23rd International Conference on Logic Programming (ICLP-2007).
Volume 4670 of LNCS. (2007) 395-409

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs:
Semantics and complexity. In Alferes, J.J., Leite, J., eds.: Proceedings of the 9th
European Conference on Artificial Intelligence (JELIA 2004). Volume 3229 of Lecture
Notes in AI (LNAI)., Springer Verlag (2004) 200212

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9 (1991) 365-385

Przymusinski, T.C.: Stable Semantics for Disjunctive Programs. New Generation
Computing 9 (1991) 401-424

Faber, W., Leone, N., Perri, S., Pfeifer, G.: Efficient Instantiation of Disjunctive
Databases. Technical Report DBAI-TR-2001-44, Institut fiir Informationssysteme,
Technische Universitat Wien, Austria (2001) Online at http://www.dbai.tuwien.ac.
at/local/reports/dbai-tr-2001-44.pdf.

Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski, M.:
The first answer set programming system competition. In Baral, C., Brewka, G.,
Schlipf, J., eds.: Logic Programming and Nonmonotonic Reasoning — 9th Interna-
tional Conference, LPNMR’07. Volume 4483 of Lecture Notes in Computer Science.,
Tempe, Arizona, Springer Verlag (2007) 3-17

(Exeura s.r.l., homepage) http://www.exeura.it/.

(CRISTAL project homepage) http://proj-cristal.web.cern.ch/.

Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni,
G., Kalka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis,
W., Terracina, G.: The INFOMIX System for Advanced Integration of Incomplete
and Inconsistent Data. In: Proceedings of the 24th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2005), Baltimore, Maryland, USA,
ACM Press (2005) 915-917

Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation. Pren-
tice Hall (2000)

88

Integrating Grounding in the Search Process
for Answer Set Computing

Claire Lefevre and Pascal Nicolas

LERIA — University of Angers — France
claire.lefevreCQuniv-angers.fr -- pascal.nicolas@univ-angers.fr
2, bd Lavoisier — F-49045 Angers Cedex 01

Abstract. Answer Set Programming (ASP) is a very convenient para-
digm to represent knowledge in Artificial Intelligence and to encode Con-
straint Satisfaction Problems. For that, the natural way to use ASP is
to elaborate a first order logic program with default negation encoding
the problem to solve. In a preliminary step this program is translated
in an equivalent propositional one by a first tool: the grounder. Then,
the propositional program is given to a second tool: the solver. This last
one computes (if they exist) one or many answer sets (models) of the
program, each answer set encoding one solution of the initial problem.
Today, we can say that almost all ASP solvers follow this approach of
two steps computation.

In this work, we begin by putting in evidence that sometimes the prelim-
inary grounding phase is the only bottleneck for the answer set compu-
tation. We show that a lot of useless and counterintuitive work is done
in some situations. But, our major contribution is to introduce a new
approach of answer set computing that escapes the preliminary phase of
rule instantiation by integrating it in the search process. Furthermore,
we describe the main lines of the first implementation of our new ASP
solver ASPeRiX developed following the introduced methodology.

1 Introduction

Answer Set Programming (ASP) is a very convenient paradigm to represent
knowledge in Artificial Intelligence (AI) and to encode Constraint Satisfaction
Problems (CSP). It has its roots in non monotonic reasoning and logic program-
ming and has led to a lot of works since the seminal paper [10]. But, beyond
its ability to formalize various problems from AI or CSP, ASP is also became
a very interesting way to practically solve them since some efficient solvers are
available. In few words, if someone wants to use ASP to solve an issue, and
whatever is the variant of ASP that he uses, he has to write a logic program in a
purely declarative manner in such a way that the stable models (also called
answer sets) of the program represent the solutions of his original problem
(see [3,18] for more details). Usually, the program contains different kind of
rules. The simplest ones are facts as bird(tweety) «— . , edge(4,10) < ., repre-
senting data of the particular problem. Some ones are about background knowl-
edge as path(X,Y) « edge(X, Z), path(Z,Y). expressing a well-know property

89

about path in a graph for instance. Some others can be non monotonic, as
fly(X) « bird(X),not penguin(X)., for reasoning with incomplete knowledge.
In other cases, especially for CSP, default negation is also used to encode al-
ternative potential solutions of a problem as red(X) « v(X), not blue(X). and
blue(X) «— v(X), not red(X)., expressing the two exclusive possibilities to color
a vertex in a graph. Last but not least, special headless rules are used to rep-
resent constraints of the problem to solve as «— edge(X,Y), red(X),red(Y). in
order to not color with red two linked vertices.

Depending which solver is used to compute the answer sets of the program,
one can also use some particular atoms for (in)equalities and simple arithmetic
calculus. Other constructions using aggregates functions, cardinality constraints,
weights, ... are also possible but they are out of the scope of this work in which
we restrict our attention to original stable model semantics [10]. In fact, with
these previous few examples we want to point out that knowledge representation
in ASP is done by means of first order rules using variables. From a theoretical
point of view, the models of such a first order program are those of its ground
instantiation with respect to its Herbrand universe. Let us note that there exist
some more recent works as [6, 14] dealing directly with first order normal logic
programs without instantiating them. In these works, first order semantics are
defined by means of second order logic or circumscription. But, from a practical
point of view, every available ASP solver begins its work by an instantiation
phase in order to obtain a propositional program. After this first phase, called
grounding, the solver starts the real phase of answer set computation by dealing
with a finite, but sometimes huge, propositional program.

The aim of our present work is to propose a new approach of answer set
computation that escapes this preliminary instantiation phase by integrating it
in the search process. In section 2 we examine the grounding process realized
by the up-to-date ASP systems and illustrate some drawbacks of this phase.
In section 3 we present our approach of answer set computation that escapes
the preliminary grounding of rules and that is fully rule-oriented. In section 4
we present the first version of our new system ASPeRiX that implements the
principles introduced in this paper. We conclude in section 5 by citing some
improvements that we plan to incorporate in our system in the future.

2 Grounding in ASP

A normal logic program is a finite set of rules like
C—ai, ..., ap, not by, ..., not by,,. n>0m>0 (1)

where ¢, a1,...,an,b1,...,by are atoms. For a rule r (or by extension for a rule
set), we note head(r) = c its head, body™(r) = {a1,...,a,} its positive body,
body~(r) = {b1,...,bm} its negative body and body(r) = body™ (r) U body ™ (r).
When the negative body of a rule is not empty we say that this rule is non-
monotonic. The Gelfond-Lifschitz reduct of a program P by an atom set X is
the program PX = {head(r) < body™ (r). | body~(r) N X = 0}. Since it has no

90

default negation, such a program is definite and then it has a unique minimal
Herbrand model denoted with Cn(P). By definition, an answer set (originally
called a stable model [10]) of P is an atom set S such that S = Cn(P%). For
instance the program {a < not b., b < not a.} has two answer sets {a} and {b}.
Special headless rules, called constraints, are admitted and considered equivalent
as rules like bug < ..., not bug. where bug is a new symbol appearing nowhere
else. For instance, the program {a < not b., b < not a.,<— a.} has one, and only
one, answer set {b}.

As presented in our introduction, in many cases a problem is encoded in
ASP with a logic program P containing rules with variables that we call first
order rules. More formally, these rules are of type (1) where a;’s and b;’s are
atoms, like p(X, 3,Y), built from an n-ary predicate, constants and variables (no
function symbol occurs in the programs considered in this work). Since answer set
definition is given for propositional programs, P has to be seen as an intensional
version of the propositional program ground(P) defined as follows. Given a rule
r, ground(r) is the set of all fully instantiated rules that can be obtained by
substituting every variable in r by every constant of the Herbrand universe of P
and then, ground(P) = |, ¢ p ground(r).

Ezxample 1. The program P is a shorthand for the program ground(P;).
n(l) «— ., n(2) « .,
n(l) — ., n(2) « ., a(l) < n(1), not b(1).,
Py = a(X) — n(X), not b(X)., p ground(Py) = < b(1) — n(1), not a(1).,
b(X) «— n(X), not a(X). a(2) < n(2), not b(2).,
b(2) «— n(2), not a(2).
ground(Py) has four answer sets {a(1),a(2),n(1),n(2)}, {a(1),b(2),n(1),n(2)},
{a(2),b(1),n(1),n(2)} and {b(1),b(2),n(1),n(2)} that are considered as the an-
swer sets of Pj.

From a practical point of view, all systems available today to compute answer
sets of a program follow the architecture described in figure 1. For the grounder
box we can cite Lparse [21] and Gringo [9], and for the solver box Clasp [7]
and Smodels [20]. A particular family of solvers are Assat [13], Cmodels [11] and
Pbmodels [16], since they transform the answer set computation problem into a
(pseudo) boolean model computation problem and use a (pseudo) SAT solver
as an internal black box. Last, but not least, the system DLV [12], symbolized
in figure 1 by the dash-line rectangle, incorporates the grounder as an internal
function. Furthermore, let us mention that [5] describes an improvement of the
grounding process of DLV by means of parallelism!.

The main goal of each grounding system is to generate all propositional rules
that can be relevant for a solver and only these ones, while preserving answer sets
of the original program. But, whatever the methodology is, the grounding phase
is firstly and fully processed before computing the answer sets. In the sequel, we

! In our study, we have chosen to use ASP systems having obtained the best results
during the 2007 ASP competition [8] and not using an underlying SAT solver.

91

a(X) :- n(X), not b(X)

! a(1) - n(D), not b(1). ﬁ i
i a(2) - n(2), not b(2). |
' ' solver i

Fig. 1. Architecture of answer set computation

stress the difficulties due to this grounding process done independently of the
answer set computation.

For us, the main drawback of the preliminary grounding phase is that it leads
to a lot of useless and counterintuitive work in some situations that we illustrate
in the following examples?.

Example 2. From the program

p(1) — ., p(2) — ..., p(N) — .,

aa < not bb., a(X,Y) «— pa(X), pa(Y), not b(X,Y).,
Py, =< bb «— not aa., b(X,Y) «— pb(X), pb(Y), not c¢(X,Y).,

pa(X) «— aa, p(X)., X,)Y)—a(X,)Y), X<Y,

pb(X) « bb, p(X)., — aa.

DLV, Gringo and Lparse generate roughly 2.5 x N2 rules.

Because of the constraint < aa. (that eliminates from the possible solutions
every atom set containing aa), it is easy to see that all N rules with a positive
body containing aa, like pa(l) < aa,p(1)., ... are useless since they can never
contribute to generate an answer set of P». And then, the N? rules with pa(X)
in their positive body are useless too. In defense of the actual grounders, their
inability to eliminate these particular rules is not surprising since the reason
justifying this elimination is the consequence of a reasoning taking into account
the stable model semantics. If we refer to the figure 1 it is clear that this task
is relevant to the solver box and not to the grounder box. Thus, if we want to
limit as much as possible the number of rules and atoms to deal with, we have
not to separate grounding and answer set computing.

Ezample 3. Let P; be the program encoding a 3-coloring problem (as given
in [18]) on a N vertices graph organized as a bicycle wheel (see below). v stands
for wvertex, e for edge, c for color, col for colored by, ncol for not colored by.

2 Sometimes, it is possible that a program given in example has to be slightly modified
to respect the particular syntax of the targeted ASP solver.

92

v(l) — .., o(N) — ., (1) —., c(2) ., ¢3) —.,
e(1,2) «— .,...,e(1,N) «— .,e(2,3) «— .,...,;e(N,2) — ., | v 25
Py = ¢ col(V,C) —v(V), ¢(C), not ncol(V,C)., @%
ncol(V,C) « col(V, D), ¢(C), C # D.,
—e(V,U), col(V,C), col(U,C).
From P3 DLV, Gringo and Lparse generate about 18N rules. If N is even then
P53 has no answer set and if N is odd then it has 6 answer sets.

Suppose that P; has an answer set in which there is col(1, 1). Obviously, all
the N — 1 constraints like « e(1,U), col(1,1), col(U,1). VU € {2,...,N} are
necessary because they have to be checked. But, all the other constraints like

—e(1,U), col(1,2), col(U,2)., and « e(1,U), col(1,3), col(U,3).

YU € {2,...,N} can be considered as useless since vertex 1 is not colored by 2
or 3. However, all these 2N — 2 constraints have been generated. So, the time
consumed by this task is clearly a lost time and the memory space used by
these data could have been saved. Thus, if we are seeking only one answer set,
a lot of work has been done for nothing since the grounded program contains
in extension informations needed for computing all solutions when only one is
searched.

Beyond these particular examples, what we want to stress is that grounders
generate in extension all the search space (for all potential solutions) that they
give then to the solver. But, this approach is clearly not this of usual search al-
gorithms. A classical coloring algorithm does not firstly enumerate, in extension,
all possible colorations for every vertex in the graph. A CSP solver makes choices
by instantiating some variables, propagates the consequences of these choices,
checks the constraints and by backtracking explores its search space. But, it
does not build, a priori and explicitly, all the possible tuples of variables and
constraints representing the problem to solve. That is why we think that if we
want to use ASP to solve very large problems we have to realize the grounding
process during the search process and not before it.

Of course, a lot of work has been done about propagation and search space
pruning in case of propositional programs. These tasks are well studied and
efficiently implemented in the propositional case, but techniques used can not
always be easily adapted for the non ground case. One reason is that the Her-
brand base is not known in advance. On the other hand, this is precisely this
enumeration of atoms and rules that can be useless, or even impossible, in some
cases. That is the reason why we think it is relevant to explore a new way by
integrating grounding in the search process, even if a lot of work remains to find
tools as powerful as those of current systems.

3 A first order rule-based approach

We first present the characterization of answer sets for normal logic programs
based on an abstract notion of computation that is proposed in [17]. In this work
as in ours, a computation is a sequence of atom sets starting with the empty set.

93

At each step, the heads of some applicable rules® w.r.t. actual state are added.
When no more atom can be added, one must check that the rules that have been
fired are still applicable.

Definition 1. (from [17]) Let P be a normal logic program. A computation for
P is a sequence (X;);, of atom sets that satisfies the following conditions :

- Xo=0

(Revision) Vi > 1, X; C Tp(X;-1)

(Persistence) Vi > 1,X,_1 C X;

— (Convergence) Xoo = Uioo Xi = Tr(X)

— (Persistence of reasons) Vi > 1,Va € X;\X;_1,3r, € P s.t. head(r,) = a,
and Vj > i—1,body™ (rq) C X;,body™ (ro) N X; =0

where Tp(X) = {a € X | Ir € P,head(r) = a,body™(r) C X, body~ (r)NX = 0}

Theorem 1. (from [17]) Let P be a normal logic program and X be an atom
set. Then, X is an answer set of P iff there is a computation (X;);c, for P such
that Xoo = X.

Our approach of answer set computation follows a forward chaining that
instantiates and applies one rule at each step. All along this search we deal with
IN, a set of propositional atoms occurring in the seeking solution, and OUT, a
set of propositional atoms not occurring in this solution. A partial interpretation
for a program P is a pair (IN,OUT) of disjoint atom sets included in the
Herbrand base of P. It defines different status for rules.

Definition 2. Let r be a propositional rule and I = (IN,OUT) a partial inter-
pretation. We say

— r is supported w.r.t. I when body™*(r) C IN,

— 7 is unsupported w.r.t. I when body™(r) NOUT # 0
— 1 is blocked w.r.t. I when body~ (r) NIN # {,

— r is unblocked w.r.t. I when body~(r) C OUT,

Let the reader note that unblocked is different from not blocked, the negation of
blocked.

For this formal presentation every constraint (ie : headless rule) is considered
given with the particular head L. The figure 2 illustrates our search procedure
that starts with IN =) and OUT = {1} and alternates two major steps:

— a propagation step that applies the largest possible number of rules instances,
and adds atoms in IV,

— a choice point that applies a non monotonic rule instance and adds atoms in
IN and OUT, or does not apply it and adds a new constraint in P recording
that this rule has to be blocked.

3 An applicable rule is a supported and not blocked rule, see definition 2 below.

94

(P.0AL))

propiagation

(P,IN,OUT)

build one grounded, supported, not blocked, non monotonic rule rq

(P,IN U{head(ro)},OUT U body~(r9)) (PU{L <« body(ro)},IN,0OUT)

Fig. 2. Overview of the search procedure.

Note that each of these steps works with first order rules and builds ground
instances on the fly by means of the two functions defined below.

Definition 3. Let P be a set of first order rules, (IN,OUT) be a partial inter-
pretation and R be a set of grounded (propositional) rules.

— Ypro 18 @ non deterministic function selecting one unique supported and un-
blocked rule Ypro(P,IN,OUT, R) in ground(P)\ R, or returns false if no
such a rule ezists.

— Ysel 48 a non deterministic function selecting one unique supported and not
blocked rule vse1(P,IN,OUT, R) in ground(P) \ R, or returns false if no
such a rule ezists.

To avoid any confusion, we insist on the fact that the set ground(P), men-
tioned in the above definition, is not explicitly given. It is in accordance with
the principal aim of our work that is to avoid its extensive construction. The
two functions ., and 7, unify first order rules of P with propositional atoms
occurring in IN and OUT in order to return a new (not already occurring in R)
fully grounded, supported and unblocked (or not blocked) rule.

The general principle of our new approach of answer set computing for a pro-
gram P is given in algorithm 1 that must be called by solve(Pgr, Pk, 0, {L}, 0),
knowing that Px = {r € P | head(r) = L} (the constraint set) and Pp = P\ Pk.
Finally, let us note CR (for chosen rules) a set of grounded rules labelled with
@ or ©. Intuitively, a label ® means that the rule instance has been applied and
a label & means that it must be blocked (see figure 2). Our algorithm describes
the computation of one answer set (or no one if the program is inconsistent) and

95

Algorithm 1: Algorithm for a first order rule-based answer set computing.

Function Solve(Pr, Px, IN, OUT, CR);
repeat //Propagation phase
ro < Ypro(Pr U Pk, IN,OUT,CR);
if 7o then
IN — IN U{head(ro)};
L CR «— CRU{rS};

until —7ro;
if INNOUT # (then //Contradiction detected
| return false;
else
ro + Vset(Pr, IN, OUT, CR);
if —rg then
if vse1(Px, IN, OUT, @) then //Constraint non satisfied
| return false;
else//an answer set is found
| return IN;
Ise//choice point
stop « solve(Pr, Px, INU{head(ro)}, OUT Ubody™ (ro), CRU{re});
if —stop then
| stop « solve(Pr, Pk U{L < body™ (ro)}, IN, OUT, CRU {r§});

| return stop ;

o

can be easily extended to the computation of an arbitrary number (or all) of
answer sets of P.

Clearly, our approach can be viewed as a particular class of computations
(definition 1), obtained by restricting the principle of revision that originally
enables to fire any subset of the supported and not blocked rules at each step. In
our algorithm, revision alternates two steps: the propagation step that applies
successively all supported and unblocked rules instances, and the choice point
that selects only one supported and not blocked rule to be fired. Persistence of
reasons is ensured first by adding to OUT ground atoms from the negative body
of the rule choosen to be applied and, second, by stopping computation when
INNOUT # (. Thus, following the general framework introduced in [17] we are
able to characterize our algorithm as an 4SPeRiX computation® that we define as
a sequence of partial interpretations instead of simple atom sets. If I; = (A1, B1)
and Iy = (Ag, By) are partial interpretations, I; C I iff A1 C Ay A By C Bs.

Definition 4. Let P be a first order normal logic program. An ASPeRiX compu-
tation for P is a sequence (X;);o, of partial interpretations X; = (IN;, OUT;)
that satisfies the following conditions :

- Xo=(0,{L1}),

4 ASPeRiX is the name of the solver that we have developed following our algorithm 1
(see section 4).

96

— (Revision) Vi > 1, X; = (IN;_1 U {head(r;)},OUT;_1)
for some rule r; = Ypro(P, IN;_1, OUTi,l,UZ_:ll{rk}) if it ewists
else, X; = (IN;_1 U{head(r;)},OUT;_1 U body~(r;))
for some rule r; = Yse1(P, IN;—1, OUT;_1, U;;ll{rk}) if it exists
6156, Xl = Xifl,
— (Persistence) Vi > 1, X;_1 C X,
— (Convergence) INo = ;oo IN; = Tp(INs),
— (Persistence of reasons) ¥i > 1,Ya € IN\IN;_1,3r, € ground(P) s.t.
head(rq) = a, and ¥j > i — 1,body™ (r,) C IN;,body™ (ro) N IN; = 0.

Theorem 2. Let P be a normal logic program and A be an atom set. Then, A
is an answer set of P iff there is an ASPeRiX computation (X;);o, for P such
that IN,, = A.

Proof. (sketch) By restricting our attention to the sequence (IN;)$2,, it is easy
to see that an ASPeRiX computation is a computation and thus, by theorem 1,
converges to an answer set. For the other direction, every answer set can be
mapped into a computation by theorem 1. On its turn, this computation can
be mapped into an ASPeRiX computation because persistence of reasons allows
us to build a set {r, | @ € X} that can be ordered in such a way that it
corresponds to the successive application of rules in an ASPeRiX computation.

4 A new ASP solver : ASPeRiX

Following our algorithm 1, we have implemented in C++ (under GPL) a new
solver called ASPeRiX that represents a new approach of answer set computation
since, up to our knowledge, all solvers are atom oriented (the choice points are
about incorporating or not an atom in a potential answer set) or use an under-
lying SAT based solver. Apart these two categories we can cite NoMore [2,15]
(written in Prolog) that follows a rule based approach, as we do, and that is
the closest system to ours. But, in fact NoMore solves a coloration problem on
the rule graph of a propositional program. Thus, it needs a preliminary ground-
ing step, when ASPeRiX does not. NoMore++ [1], the NoMore’s successor, is
developed in C++ and deals with atoms and rules conjointly but, again, a pre-
liminary grounding is required. GASP [19] (a very recent work elaborated in
parallel to ours) is an implementation in Prolog and Constraint Logic Program-
ming of the notion of computation (see definition 1) that realizes the grounding
during the search. GASP’s propagation is formally presented as a computation
of well founded consequences. But, since this seems to be time consuming the
implementation of GASP uses a variant of the propagation operator Tp that
seems to be close to ours. A difference with ASPeRiX is about the search tree. In
GASP, this is an n-ary tree of applicable rules, when in ASPeRiX we use a binary
tree to apply, or not apply, one rule at a time. GASP’s strategy implies to add
an ordering process of applicable rules to avoid producing the same answer set
many times. This additional task is not necessary for ASPeRiX since the unique

97

computation of every answer set is inherent to our strategy that records the non
application of a rule by introducing a constraint (see figure 2).

A deep description of our system is out of the scope of this paper. Never-
theless, we mention some of its salient features. We use dependencies between
predicate symbols (predicates for short) in order to help functions v, and s
to build suitable rule instances. If a is an atom, we note pred(a) the predicate
of a, the notation is extended to atom set as usual. The dependency graph of
a program P is a graph whose nodes are predicates occurring in P and whose
arcs are {(p,q) | 3r € P, p = pred(head(r)), q € pred(body(r))}. We say that a
predicate p depends on q if there is a path from p to ¢ in the dependency graph.
Predicates are grouped according to maximal strongly connected components
(scc for short) of the graph. Components are themselves ordered as (C1,...,Cy,)
such that if 7 < j then no predicate in C; depends on some predicate in Cj;. In
the following we speak about rules from a scc C for the rules whose head pred-
icate is in C'. Furthermore, we say that a predicate p is solved if each ground
instance of rules whose head predicate is p is in CR (the set of rules selected by
Ypro and Yser), or is blocked, or is unsupported. Intuitively, this means that all
rules concluding p are exhausted or, in other words, that the extension of the
predicate p (i.e., the set of all atoms whose predicate is p belonging to IN) is en-
tirely known. In this case, for every propositional atom a such that pred(a) = p,
a ¢ IN = a € OUT. But, it is useless to build explicitly all such atoms and add
them in OUT. Rather, we modify the definition of an unblocked rule r by :

Va € body~(r), pred(a) is solved Aa & IN, otherwise a € OUT.

In ASPeRiX, the selection function ~s.; generates a rule instance issued from
a first order rule belonging to the current scc, knowing that the first current scc
is C1. When no more such a rule exists in the current scc, all predicates from it
are solved and the next scc in the order defined above becomes the current one.
Note that if all predicates appearing in the negative body of a rule r are solved,
to be unblocked becomes the same than to be not blocked for instances of r,
and then such a rule is completely processed by 7., and can not lead to choice
point. By this way, only truly non monotonic first order rules are examined by
vser and, thus, can generate choice points. In particular, if P is stratified, the
first propagation phase is enough to find the only answer set if it exists.

The rest of the section gives some measures of performances of the first
version of our system: ASPeRiX 0.1°. In no case it is a deep evaluation, but the
results reported below illustrate that our approach reaches our introductory goals
and that the methodology is promising. Since we want to compare our system to
others by taking into account the two steps of ASP computation (grounding and
solving), we have formed the following couples of systems : Gringo 1.0.0+Clasp
1.0.5, Lparse 1.1.1+Smodels 2.32 and Dlv Oct 11 2007. We did not include
the system GASP [19] in our comparisons because for program Pj,estrat (S€€
example 4) it returns two times each stable model and for P, (see example 6)
the consumed time is prohibited even when the size of the problem is very

5 Available at http://www.info.univ-angers.fr/pub/claire/asperix with all ex-
amples used for tests.

98

small. All the systems have been run with their default options on an Intel Core
Duo T2400, 1.83 Ghz, with 2GB of RAM under Linux Ubuntu 7.10. For every
example, when we report the used memory, it is the sum of maximum amount
of memory used by the grounder and the parser, since these two processes run
simultaneously. For CPU time, it is the same, we cumulate durations spent by
grounder and solver®.

Ezample 4. Program Py;.4s encodes a taxonomy about flying (f) and non flying
(nf) birds (b) such penguins (p), super penguins (sp) and ostriches (o).

p(X) < sp(X)., b(X) — p(X)., bX) < o(X).,
Pyiras = { f(X) < b(X), not p(X), not o(X)., f(X)« sp(X).,
nf(X) — p(X), not sp(X)., nf(X) — o(X).

We add to this program the atoms encoding N birds with 10% of ostriches,
20% of penguins whose half of them are super penguins. The CPU time and the
memory usage needed to compute the unique answer set of Py;-qs are summarized
in the pictures below.

CPU time Memory usage
35 A 400 2
30 A 350
X ’,,A v
25 A 300 AV
2 A 250 A AV
' vV BAsperix 200 S v W Asperix
P @ e °
g 15 'y v v o® oDV = 50 s pe & @ Div
5 Vs Y v pe 4 ¥ Gringo+Clasp 100 § % ° P & an ¥ Gringo+Clasp
— - —— +Smodels
A A Lparse+Smodels pe A Lparse
5&%{%"”’* 5": - -
0 0

mmmmmmmmmmmmmmmmmm

Number of birds Number of birds

To complete these results, we mention that for Py;-qs 70 % of time is spent by
the grounder and 30 % is spent by the solver for the 3 couples of systems (Gringo
1.0.0+Clasp 1.0.5, Lparse 1.1.1+Smodels 2.32 and Dlv Oct 11 2007). We can
remark that in a certain way this 30 % of time is useless since each grounder
provides the solver with a set of rules with empty bodies (ie. facts) because of
the nature of this example. For this kind of example, the well founded semantics
coincides with the stable model semantics. So we have also used the system XSB”
that is able to compute the well-founded semantics of such a program. But, for
100000 birds XSB needs more than 500 seconds to compute the result.

Example 5. For the locally stratified program
p(1) — ..., p(N) — .,
Piocstrat = & a(X) — p(X), not b(X)., aa(X,Y) — a(X), p(Y), not a(Y).,
b(X) «— p(X), not a(X)., b(X,Y) — b(X), p(Y), not b(Y).
the performances of the systems to compute one answer set are reported below.
In this case, the time spent by the grounders is very small (few percents) with
respect to the whole consumed time.

6 Memory usage that exceeds 1GB and CPU time that exceeds 500s are not reported.

7 XSB (http://xsb.sourceforge.net) is a logic programming and deductive
database system.

99

CPU Time Memory usage

*
300 /
v
B Asperix 250 rd B Asperix
@ Div 200 / ¢ Div
V Gringo+Clasp 4 v V Gringo+Clasp
A Lparse+Smodels A Lparse+Smodels

MB

The preceding examples illustrate the ability of ASPeRiX to manage very
efficiently (locally) stratified programs as Pyirgs and Ploestrat- On their side,
for a definite or stratified program, all intelligent grounders do not generate all
grounded instances of rules but compute in fact the answer set of the program
and the solver has nothing to do. On the contrary, for Pcstrq¢ that is only
locally stratified, a solver is necessary to deal with predicates a and b. But, once
the choices are made, a and b are solved and the rest of the program becomes
stratified and can be easily evaluated by ASPeRiX. But, seeing instantiation as
a pretreatment forces the grounders to generate all ground instances of rules for
aa and bb and the used memory quickly becomes prohibitive.

Ezample 6. (Example 2 continued) The computation of one answer set of Py
leads to the following results.

CPU time Memory usage
130 ° 900
120 800 v
110 b
100 Y 700
% /
/ 600
80 2
70 V4 : SISW”X 500 B Asperix
° 6o ;/ v @
g 400 @ Div
p i =
? 50 /4 V Gringo+Clasp 200 'V Gringo+Clasp
bt Q A Lparse+Smodels A Lparse+Smodels
30 A
g 200
20 g
= 100
10 i I/'/././.
T = 0o &—

100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
N N

For such an example, memory usages of all solvers (including ASPeRiX) are
comparable. One reason is that all atoms generated by the grounders must also
be generated by ASPeRiX since all N2 atoms b(_,_) and N2 atoms c(_,_) have
to be included in sets IN and OUT respectively. Nevertheless, ASPeRiX is much
faster than other systems.

Ezample 7. (Example 3 continued) For the program P3 about 3-coloration of a
bicycle wheel with N = 1001 the computations of one and all the 6 solutions
take the following times (in sec).

nb of answer sets|ASPeRiX| Div | Gringo+ Clasp|Lparse+Smodels
1 17]0.38 0.46 1
all (6) >500 | 6 0.52 5.5

As we can see, ASPeRiX is not efficient for this example. But, if we use another
encoding of the same problem with the program

100

v(l) — .. o(N)— ., (1) —., c(2) ., c3) —.,
e(1,2) «— .,...,e(1,N) «— .,e(2,3) «—.,...,e(N,2) — .,
col(V,C) —v(V), ¢(C), not ncol(V,C).,
ncol(V,C) « col(V, D), ¢(C), C # D.,
ncol(V,C) «— col(U,C), e(U, V).,
ncol(V,C) «— col(U,C), e(V,U).,
colored(V') «— col(V,C).,
—v(V), not colored(V).,
col(U, C3) — ncol(U,C1), ncol(U, C2),
Cl1# C2, ¢(C3), C3#C1, C3#C2.

then the performances become the following.

nb of answer sets|ASPeRiX|DIv|Gringo+ Clasp|Lparse+Smodels
1 1.1 58 0.8 1.9
all (6) 6 134 0.9 16.2

Here, ASPeRiX benefits from the added rules, while the performances of others
degrade perhaps because of the amount of new rules to deal with. So, adding
some knowledge about the problem to solve, as rules propagating the choices
made during the search of a solution (like the last rule in P;) seems to be
profitable for ASPeRiX and not always for the other ASP systems.

Example 8. In the two first diagrams below, we show the results of the compu-
tation of one answer set of a program encoding the Hamiltonian cycle problem
in a complete graph.

CPU time Memory usage
325 v 600
300
275 500 v
250
fo 400
s B Asperix ° B Asperix
S 150 Div o 300 @ Div
& 125 v V Gringo+Clasp = V Gringo+Clasp
100 /’ A LparsetSmodels 00- /) A v A Lparse+Smodels
A/ /, /
50/ 100 //
25/ v // v
oh—m—n—un—1=0 o [R S —
%0 100 %0 200 250 50 100 150 200 250
Number of vertices Nimhar of vartirae

In the following table, we show the results for the computation of all answer
sets of the same program. Let us note that in this last case there are (N — 1)!
solutions to compute if the graph has N vertices. Then, we can see that every
system spends a linear time with respect to the number of solutions to compute.

N|(N — 1)!|ASPeRiX| Dlv | Gringo+ Clasp|Lparse+Smodels
6| 120 0.1]0.05 0.02 0.02

T 720 0.7]0.25 0.07 0.23

8| 5040 51 | 1.9 04 1.5

9| 40320 45 174 3.5 13.28

10| 362880 | 445 |182 36 138

Example 8 illustrates a strange phenomenon. Sometimes, solving a trivial
problem, as finding one Hamiltonian cycle in a complete graph, is impossible

101

for ASP systems. This is very counterintuitive since, in whole generality, in
CSP the more the problem has solutions, the easier it is to find one of them.
Again, the bottleneck for traditional ASP systems seems to come from the huge
number of rules and atoms that are generated in first, delaying and making the
resolution more difficult than it should be. On its side, ASPeRiX is particularly
efficient when we seek one solution among very numerous ones. When we seek all
solutions, ASPeRiX looses a part of its efficiency, certainly by doing, and redoing,
same unifications many times. Despite this point, performances of ASPeRiX and
other solvers are of the same order of magnitude with respect to the number of
solutions.

5 Conclusion

In a first part of this work we have shown some difficulties encountered by ASP
systems to deal with programs whose grounding may lead to a huge number
of instantiated rules. We have argued that some of these rules are useless with
respect to ASP semantics and that it is a reason to not separate rule ground-
ing and answer set computing. Then, we have elaborated a new approach that
escapes the preliminary phase of grounding. Our methodology deals with first
order rules following a forward chaining with unification process realized on the
fly. Furthermore, we have implemented a new ASP solver ASPeRiX. We have
reported some evaluations of its performances illustrating that our approach is a
promising alternative for computing answer sets. In particular, we think that it is
well adapted to programs containing rules (with head, not constraints) encoding
choice propagation in case of combinatorial problems as it has been illustrated
in example 7.

Obviously, this is only a first step towards a first order ASP solver efficient
for any kind of programs and we plan to improve our approach in two direc-
tions. First, by taking into account ASP semantics, we may integrate better
propagation strategies, earlier detection of unsatisfiable constraints, intelligent
backtracking, ... in order to prune more efficiently the search space. Second, on
the side of the software development, we may improve our unification techniques,
first order rule management and tuples handling.

References

1. C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The nomore++
system. In Proceedings of the 5th Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’05), pages 422-426, 2005.

2. C. Anger, K. Konczak, and T. Linke. nomore: Non-monotonic reasoning with logic
programs. In Proceedings of the 8th European Conference on Logics in Artificial
Intelligence (JELIA’02), pages 521-524, 2002.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

102

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

C. Baral, G. Brewka, and J. S. Schlipf, editors. Logic Programming and Nonmono-
tonic Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA,
May 15-17, 2007, Proceedings, volume 4483 of LNCS. Springer, 2007.

F. Calimeri, S. Perri, and F. Ricca. Experimenting with parallelism for the instan-
tiation of asp programs. to appear in Journal of Algorithms, 2008.

P. Ferraris, J. Lee, and V. Lifschitz. A new perspective on stable models. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 372-379, 2007.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer
set solving. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 386—-392, 2007.

M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, and M. Truszczyn-
ski. The first answer set programming system competition. In Baral et al. [4],
pages 3—-17.

M. Gebser, T. Schaub, and S. Thiele. Gringo : A new grounder for answer set
programming. In Baral et al. [4], pages 266-271.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. A. Kowalski and K. Bowen, editors, Proceedings of the Fifth International
Conference on Logic Programming, pages 1070-1080, Cambridge, Massachusetts,
1988. The MIT Press.

E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on
propositional satisfiability. Journal of Automated Reasoning, 36(4):345-377, 2006.
N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7(3):499-562, 2006.

F. Lin and Y. Zhao. Assat: computing answer sets of a logic program by sat solvers.
Artificial Intelligence, 157(1-2):115-137, 2004.

F. Lin and Y. Zhou. From answer set logic programming to circumscription via
logic of gk. In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI’07), pages 441-446, 2007.

T. Linke. Graph theoretical characterization and computation of answer sets.
In B. Nebel, editor, Proceedings of the 17th International Joint Conference on
Artificial Intelligence (IJCAI’01), pages 641-648. Morgan Kaufmann, 2001.

L. Liu and M. Truszczynski. Pbmodels - software to compute stable models by
pseudoboolean solvers. In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
LPNMR, volume 3662 of LNCS, pages 410-415. Springer, 2005.

Lengning Liu, Enrico Pontelli, Tran Cao Son, and Miroslaw Truszczynski. Logic
programs with abstract constraint atoms: The role of computations. In Verénica
Dahl and Ilkka Niemela, editors, ICLP, volume 4670 of LNCS, pages 286-301.
Springer, 2007.

I. Niemeld. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241—
273, 1999.

Alessandro Dal Palt, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi.
Gasp: Answer set programming with lazy grounding. Convegno Italiano di Logica
Computazionale, 2008.

P. Simons, I. Niemela, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181-234, 2002.

T. Syrjnen. Implementation of local grounding for logic programs for stable model
semantics. Technical report, Helsinki University of Technology, 1998.

103

FO(ID) as an extension of DL with rules

Joost Vennekens* and Marc Denecker

{joost.vennekens, marc.denecker}@cs.kuleuven.be
Dept. of Computer Science, K.U. Leuven, Belgium

Abstract. One of the important topics under active investigation in the
area of description logic (DL) is that of adding rules to the language. In
this paper, we observe that the logic FO(ID), which was developed as
an integration of ASP and classical logic, provides an interesting source
of inspiration for such extensions, remaining closer to the DL philos-
ophy than e.g. SWRL. In particular, FO(ID) seems well-suited as an
upperbound to a hierarchy of increaslingly expressive extensions of DL
with rules. We demonstrate this by defining two interesting sublogics of
FO(ID), called ALCZ(ID) and guarded ALCZ(ID).

1 Introduction

Over the past decades, description logics have emerged as an important knowl-
edge representation technology. More recently, they have also had a significant
impact on industry, most notably with the adoption of OWL as a W3C standard.
In current research, we find a trend to investigate extensions of OWL with rules,
as done in e.g. [10]. In fact, the hierarchical Semantic Web architecture already
prescribes a Rule layer on top of the Ontology layer formed by OWL.

Traditionally, research on description logics has always recognized the im-
portance of the trade-off between expressivity and computational complexity,
as well as the fact that different applications require this trade-off to be made
differently. This has lead to the development of an entire hierarchy of logics,
ranging from for instance the tractable DL-Lite to OWL DL, or even further
to the undecidable OWL Full. In keeping with this tradition, a reasonable goal
for the research into extensions of OWL with rules might be to come up with
a hierarchy of logics, combining increasingly expressive description logics with
increasingly expressive kinds of rules.

In this paper, we want to call attention to the language FO(ID) [3]' and
argue that it provides an ideal upperbound for such a hierarchy. FO(ID) is a
knowledge representation language that adds inductive definitions to first-order
logic. It represents these definitions in the same way as they typically appear
in mathematical texts, i.e., as an enumeration of a set of cases in which the
defined relation(s) holds; in FO(ID), each of these cases is represented by a rule.
For instance, in a textbook on propositional logic, we might find the inductive

* Joost Vennekens is a postdoctoral researcher of the FWO.
! This paper refers to FO(ID) as FO(NMID).

104

definition shown in Figure 1, which can be represented in FO(ID) by the following
set of definitional rules:

Vi,p Sat(i,p) < p € i.
Viv fla f2 Sat(z, Or(flv fQ)) — Sat(z, fl) \ Sat(z, fQ)
Vi, f Sat(i,not(f)) «— —~Sat(i, f).

This definition defines the predicate Sat/2 in terms of the predicate €/2 and the
term-building functors or/2 and not/1. We refer to this last kind of symbols—
€/2, or/2 and not/1—as the open symbols of the definition, and to the other
ones as the defined predicates.

The definitional rules of FO(ID) cannot simply be reduced to implications
or equivalences, since this would fail to treat even the most basic inductive defi-
nitions (e.g., that of a transitive closure) correctly. Instead, they are interpreted
according to the well-founded model semantics for logic progams (parametrized
on the interpretation of the open predicate). As argued in [4], this ensure that—
also in the presence of negation—their meaning is indeed what one expects from
an inductive definition?.

Definition 1. Let I be an interpretation for a set of propositions X. For a
propositional formula ¢ in alphabet X, we define the relation I satisfies ¢,
denoted I |= ¢, by the following induction over the subformula order:

— Foranatompe X, I Epiffpel;
—ITEei Ve iff I ¢1orl = g

Fig. 1. The inductive definition of satisfaction in propositional logic.

A theory in FO(ID) now consists of, on the one hand, a set of such definitions
and, on the other hand, a set of regular first-order logic formulas. We remark
that, therefore, rules themselves are not FO(ID) formulas, but definitions, i.e.,
sets of rules. The semantics of the first-order formulas is standard. The semantics
of the definitions is presented formally in the next section, but can be intuitively
summarized as follows: each definition expresses a certain relation between its
defined predicates and its open symbols; therefore, such a definition A is satisfied
in a first-order structure S, written S = A, iff S interprets the defined predicates
in the way that its interpretation of the open predicates dictates.

The origins of FO(ID) lie in the area of logic programming. In particular,
FO(ID) is very closely related to the Answer Set Programming (ASP) paradigm.
The precise relation between FO(ID) and ASP is discussed in detail in [13]. One
of the main contributions that FO(ID) provides to this area is to show how a

2 The correspondence between the precise, well-understood but informal concept of

an inductive definion and the formal object that is the well-founded semantics can
of course, by nature, never be proven formally.

105

tight integration of logic programming rules into classical logic can be achieved
in a conceptually clean way. Therefore, FO(ID) offers a way of combining ASP
and DL which is, unlike the hybrid approaches of, e.g., [6] and [5], a true semantic
integration. This is useful because, while hybrid approaches have the advantage
of technical flexibility, they are somewhat unsatisfactory from a philosophical,
knowledge theoretical perspective, since they do not shed much light on the
relation between the meaning of statements expressed in the two languages.
Moreover, hybrid approaches also provide little modeling methodology to guide
users when constructing a joint LP/DL representation of some domain, since
they have a hard time satisfactorily answering the question of which knowledge
to represent in DL and which in LP.

From the DL point-of-view, the main appeal of FO(ID) in this context is it
is not really an extension of description logics with some distinct notion of rules,
but rather a general embodiement of the foundational ideas of description logic
themselves, which happens to include, in a very natural way, a particular form of
rules. Indeed, the origin of description logics lies with Brachman and Levesque’s
observation [2] that two distinct forms of knowledge are of great importance for
knowledge-based systems: terminological knowledge, which defines the meaning
of relations and concepts; and assertional knowledge, which states properties
of the world. We find the same distinction in FO(ID), which offers both defi-
nitions (to express terminological knowledge) and first-order logic formulas (to
express assertional knowledge). Moreover, in both cases, the representation is
arguably as general as one could want, allowing, on the one hand, most kinds of
inductive definitions that are typically found in mathematical texts [4] and, on
the other hand, full first-order logic. Therefore, FO(ID) indeed seems a suitable
upperbound, as we have claimed above.

In particular, we would argue that FO(ID) stays closer to the DL philosophy
than, for instance, the language of SWRL [10], which is currently one of the
most popular extensions of OWL with rules. SWRL extends OWL with Horn
clauses, i.e., implications in which the antecedent is a conjunction of atoms and
the consequent is either an atom or is absent. The meaning of such a rule is that
of a standard FO implication. The example of a SWRL-rule most commonly
found in the literature is the following:

Vz,y,z Brother(x,z) A Parent(z,y) D Uncle(z,y)

One striking thing about this rule is that it does not define the relation Uncle in
terms of the relations Parent and Brother: instead, it only states the sufficient
condition that all brothers of parents are uncles, but does not express that this
condition is also necessary—and as a matter of fact, this is something which
cannot be expressed in SWRL. Here, SWRL clearly departs from the original
DL philosophy. Indeed, to quote the DL handbook [1] about the ‘=’-connective:
“This form of definition is much stronger than the ones used in other kinds of
representations of knowledge, which typically impose only necessary conditions;
the strength of this kind of declaration is usually considered a characteristic
feature of DL knowledge bases.”

106

Because FO(ID) extends first-order logic, it also allows us to write down such
a material implication, which means that it is possible to state only the sufficient
condition if this is our intention. However, it also provides explicit support for
defining concepts. For example, both the necessary and sufficient condition are
correctly expressed by the FO(ID) definition consisting of the single rule:

{Vx,y Uncle(z,y) < 3z Brother(z,z) A Parent(z,y).}

Indeed, this FO(ID) definition can be shown to be equivalent to the first-order
logic formula:

Vx,y Uncle(z,y) < 3z Brother(z, z) A Parent(z,y).

If we also want our concept of an uncle to include uncles-by-marriage, we might
define it instead by the following set of two rules:

Va,y Uncle(z,y) < 3z Brother(z,z) A Parent(z,y).
Va,y Uncle(z,y) < 3z Husband(x, z) A Aunt(z,y).

This is then equivalent to the first-order logic formula:

Va,y Uncle(x,y) <(3z Brother(zx,z) A Parent(z,y))
V (32 Husband(z, z) A Aunt(z,y)).

This illustrates one particular advantage that the rule-based representation has
over the standard equivalence: it is more elaboration tolerant, because if we
discover a new case in which the defined relation holds, we simply need to add
an additional rule to its definition, without touching the old ones.

FO(ID) can also express inductive definitions, which cannot be expressed in
first-order logic (and therefore, a fortiori, also not in SWRL). An example is the
following definition of the Ancestor relation:

Va,y Anc(z,y) <« 3z Anc(z, z) A Anc(z,y).
Vx,y Anc(z,y) « Parent(z,y).

One of the other characteristic features of FO(ID) is that, unlike SWRL, it also
allows the use of negation in rule bodies. For instance, we might define:

{Vz OnlyChild(x) «— -3y Sibling(z,y).}

Moreover, negation can also be combined with recursion, as shown by the third
rule in the above definition of Sat. Unlike SWRL, the rules of FO(ID) can
therefore be used to express non-monotone inductive definitions.

To summarize, this paper looks at FO(ID), a general integration of FO and
logic programming, which has the same philosophical underpinnings as descrip-
tion logic itself. We propose this language as a foundation for the development
of extensions of description logics, such as OWL, with rules. To be more pre-
cise, we argue that FO(ID) would serve well as an upperbound to a hierarchy of

107

logics that add increasingly expressive forms of rules to increasingly expressive
description logics. This also suggest that we can develop less expressive exten-
sions of DL with rules, which might be more useful in practice, by restricting the
general language FO(ID) as needed to regain certain desirable properties. We
believe that, in general, this is better than the opposite approach of gradually
extending a small tractable language into a more expressive one, since it allows
the trade-off between expressivity and complexity to be made more conciously
and informedly, which reduces the risk of creating an ad hoc language, whose
boundaries are decided more by coincidence than design.

This paper will try to back up our claims, by considering the basic description
logic ALCZ and presenting two different extensions of ALCZ with rules, both
of which are sublogics of FO(ID). Our goal here will be to regain two desirable
properties of description logics. The first such property is the intuitive syntac-
tic sugar of description logics, which hides away many of the complexities of
classical logic and enforces adherence to a useful, concept-centric style of knowl-
edge representation. We will define a sublogic of FO(ID), called ALCZ(ID), for
which a similar syntactic sugar exists. The second property is the decidability of
deductive inference. This too is an important property for many applications—
even though it is not always needed, as is witnessed by the fact that OWL Full
and SWRL (unless restricted to strongly safe rules) are both undecidable. We
will show that ALCZ(ID) has a decidable guarded fragment. Finally, we will also
briefly discuss the relation between our FO(ID) based approach and several other
approaches to combining ASP or LLP with DL.

2 Preliminaries: FO(ID)

This section summarizes the definition of FO(ID). Syntactically, a definition in
FO(ID) is a set of definitional rules, which are of the form:

Vo P(x) — ¢(x).

Here, p(x) is an FO formula whose free variables are x, and ‘—’ is a new sym-
bol, the definitional implication, which is to be distinguished from the material
implication of FO, which we denote by ‘C’. We refer to P(x) as the head of the
rule r, denoted head(r), and to the formula ¢ as its body, denoted body(r).

An FO(ID) formula is any expression that can be formed by combining atoms
and definitions, using the standard FO connectives and quantifiers. The mean-
ing of the FO formulas and boolean connectives is standard; we therefore only
need to define the semantics of a definition in order to define that of FO(ID).
Originally, this was formulated in logic programming terminology, defining the
semantics of a definition by (roughly speaking) its well-founded model. More
recently, however, [4] introduced a new, equivalent characterization of this se-
mantics, which is more natural and easier understand. Therefore, we will present
this new characterization.

Let us first introduce some semantical concepts. An interpretation S for a
vocabulary X' consists of a non-empty domain D, a mapping from each function

108

symbol f/n to an n-ary functions on D, and a mapping from each predicate
symbols P/n to a relation R C D™. A three-valued interpretation v is the same
as a two-valued one, except that it maps each predicate symbol P/n to a function
PY from D™ to the set of truth values {t,f, u}. Such a v assigns a truth value to
each logical atom P(c), namely P¥(cY,...,c%). This assignment can be extended
to an assignment v(yp) of a truth value to each formula ¢, using the standard
Kleene truth tables for the logical connectives:

p, Y ||t, tit, f|t, ulu, flu, u|f, £ © ||t|u|f
VY[t |t t|u|u|f —p||flult

and so on.

The three truth values can be partially ordered according to precision: u <, t
and u <, f. This order induces also a precision order <, on interpretations:
v <, V' if for each predicate P/n and tuple d € D™, P*(d) <, P”'(d).

For a predicate P/n and a tuple d € D™ of domain elements, we denote by
v[P(d)/v] the three-valued interpretation v’ that coincides with v on all symbols
apart from P/n, and for which P¥" maps d to v and all other tuples d’ to P*(d/).
We also extend this notation to sets {P;(d1), ..., P.(d,)} of such pairs.

Our goal is to define when a (two-valued) interpretation S is a model of a
definition A. We call the predicates that appears in the head of a rule of A its
defined predicates and we denote the set of all these by Def(A); all other symbols
are called open and the set of open symbols is written Op(A). The purpose of
A is now to define the predicates Def(A) in terms of the symbols Op(4), i.e.,
we should assume the interpretation of Op(A) as given and try to construct a
corresponding interpretation for Def(A). Let O be the restriction S|p,a) of S
to the open symbols. We are now going to construct a sequence of three-valued
interpretations (vQ)o<a<g, for some ordinal 3, each of which extends O; we will
use the limit of such a sequence to interpret Def(A).

— 1§ assigns O(P(d)) € {t,f} to P(d) if P € Op(A) and u if P € Def(A);
— v, is related to v in one of two ways:
e Either vZ, = v?[P(d)/t], such that A contains a rule V& P(x) < ¢(x)
with v (p[d]) = t
e Or v9, = vP[U/f], where U is any unfounded set, meaning that it
consists of pairs of predicates P/n and tuple d € D™ for which pv (d) =
u, and for each rule V& P(x) < ¢(x), we have that vJ (¢[d]) = f.
— For each limit ordinal A, v{ is the least upper bound w.r.t. <, of all v¢ for
which § < A.

We call such a sequence a well-founded induction of A in O. Each such sequence
eventually reaches a limit l/g. It was shown in [4] that all sequences reach the

same limit. It is now this I/ﬁo that tell us how to interpret the defined predicates.
To be more precise, we define that:

S }: A lﬁ S|Def(A) = Vngef(A)v With O :SlOp(A)~

109

Note that if there is some predicate P/n for which some tuple d € D" of domain
elements is still assigned u by vg, the definition has no models extending O.
Intuitively, this means that, for this particular interpretation of its open symbols,
A does not manage to unambiguously define the predicates Def(A), due to some
non well-founded use of negation.

In the rest of this paper, we will only consider relational vocabularies, that
is, there will be no function symbols of arity > 0.

3 ALCI(ID)

In this section, we present a fragment of FO(ID) that extends the description
logic ALCZ with rules, while retaining a DL-like syntactic sugar.

We start from the usual connectives LI, M, -7, =, 3 and V. We will also
allow the use of L, M and — to form, respectively, disjunctions, conjunctions and
negations of roles, instead of applying them only to concepts.

In addtion, we introduce the following new connectives to construct roles:

— The operator ‘.” takes the join of two binary relation, that is, R.S is the
relation consisting of all pairs (z,y) for which there exits a z such that
R(z, z) and S(z,y).

— The operator ‘x’ constructs the binary relation that is the Cartesian product
of two unary relations, that is, C' x D contains all pairs (z,y) for which C(x)
and D(y).

These connectives can mapped to classical logic in a straightforward way; details
are shown in Figure 2.

© ()
R.S |3z (R)(z,2) A {(S)(2,y)
C xD| (C)(z) A(D)(y)

Fig. 2. The mapping (-) of ALCZ(ID) to FO(ID).

In addition to these concept/role-building operators, we also have the usual
‘C’-connective. We introduce the new connective ‘«—’ to represent a definitional
rule. For instance, we can define the concept Uncle by the following set of two
definitional rules:

Uncle < Brother.Parent
Uncle — Husband.Aunt

In general, if R is a role symbol and ¢ some description of a binary relation
(that is, (p) is a formula in two free variables), then the ALCZ(ID) statement
R — ¢ represents the FO(ID) rule Vz,y R(x,y) < (p)(x,y). Similary, if C

110

is a concept symbol and ¢ a description of a unary relation ({¢) has one free
variable), then C' «— ¢ stands for Va C'(z) < (©)(x).

ALCT is typically also defined to have the equivalence symbol ‘=’, which
abbreviates two inclusions. Analogously, we also introduce the new symbol ‘=’
to represent definitions containing only a single rule, i.e., a statement C' = ¢
stands for the definition {C «— ¢}. We can, for instance, rephrase the above
definition of Uncle as

Uncle = Brother.Parent U Husband.Aunt

9

If such a definition using ‘=’ is not inductive (i.e., the role/concept on the
left-hand side does not appear in the right-hand side), it is simply equivalent to
a normal equivalence ‘=’. However, unlike‘=’", this ‘=’ also works for definitions
which are inductive, such as:

Ancestor = Parent U Ancestor. Ancestor

Therefore, ‘=’ eliminates the need for a transitive closure construct such as -+
or the reflexive-transitive closure -* of e.g. [11]; it can also replace non-nested
uses of the explicit least fixpoint constructor u.

A ‘=’-statement abbreviates a definition containing only a single rule. In
general, if a definition contains multiple rules with the same predicate in the
head, these can always be replaced by a single rule whose body is the disjunction
of the bodies of the original rules, as illustrated by the above definition of Uncle.
Therefore, each definition which defines only a single predicate can be stated
either in the rule-based format or using ‘=’. The advantage of ‘=’ is that it offers
a more compact representation. On the other hand, the rule-based format is more
elaboration tolerant, since rules can more easily be added or removed. Therefore,
it is more suited for definitions which are likely to change. For instance, a bank
might define the class of persons eligable for a loan as consisting of people with
a large income, people who own a house and people with a good credit history.
Each time the bank now tightens or relaxes its policy, certain rules would have to
be removed or added to this definition. Therefore, the rule-based representation
seems more appropriate in this case.

The rule-based representation is also more general than ‘=’; since it also
allows definitions by simultaneous induction. For instance, given a two-player
game whose move tree is described by the role Parent, we can define the nodes
in which I move and the nodes in which my opponent moves by the following
simultaneous induction (assuming I start):

MyMove «—(3Parent.HisMove) U (YParent. 1)
HisMove «—3Parent.MyMove

Syntaz. In summary, the syntax of ALCZ(ID) is formally defined as follows. A
role is either a role name or one of the following expressions: R~, =R, R U S,
RS, R.S, Rx S, where R and S are roles. A concept is either T, L, a concept

111

name, or one of the following: C U D, CM D, -C, dR.C, VR.C, where C, D are
concepts and R is a role. A formula of ALCZ(ID) is then either an inclusion
X C Y, an equivalence X = Y, a single-rule definition X = Y, where either
both X and Y are concepts or both are roles, or a multiple-rule definition {X «
Yi;.. .5 X « Y, }, where either all of X,Y7,...,Y,, are concepts or all are roles.

The semantics of the language is formally defined by the mapping to FO(ID)
described above.

4 An example

OJOX X -
000
. JOIOI0

Fig. 3. The result of selecting ball 2.

00~
- JO)

In this section, we will illustrate the language ALCZ(ID) by presenting a
formalization of a simple game, sometimes found on mobile phones and such.
The player is presented a grid of coloured balls. He makes a move by selecting
one of these balls. The effect of this is that the entire colour-group to which the
ball belongs disappears; the remaining balls then fall down, yielding the next
position of the game, as depicted in Figure 3. The goal of the game is to remove
all balls from the grid in such a way as to score as many points as possible.
However, we will not discuss how points are scored, but instead focus only on
how to specify the effect of a move on the state of the board. To be more concrete,
we will define the new state in terms of both the old state and the move made by
the player. It is clear that, in principle, this is the bulk of the domain dependent
information that is needed to be able to plan out a winning strategy—the rest
can be handled by some generic game-playing planner.

To make things more concrete, let us first fix a representation for a state of
the game. We will represent a grid by two binary relations: a relation Up and a
relation Le ft, both with the obvious meaning. The starting grid in Figure 3, for
instance, would correspond to the following interpretations:

Up :{(57 1)7 (9, 5)7 (67 2)a (107 6)7 (7v 3)7
11,7),(8,4),(12,8)};
3

(
Left :{(1> 2)? (2,3), (3’4)’ (57 6)7 (6» 7)7
(7,8),(9,10), (10,11), (11,12)}.

112

We represent the player’s move by a unary predicate Chosen; the move made
in Figure 3 would correspond to Chosen = {2}. Our goal is now to define roles
Up' and Left', representing the next state of the game, in terms of the original
position described by Up, Left and Chosen.

We first define some useful auxilary relations. We begin by defining Above as
the transitive closure of Up:

Above = Up U Above.Above

A ball is next to another ball if it is either to the left, to the right, underneath,
or on top of it:
NextTo = Left U Right U Up U Below

Of course, Right and Below are simply the inverses of, respectively Left and
Up:
Right = Left™ Below = Up~

The balls that disappear after the move are the chosen ball itself and all balls
belonging to the same colour-group:

Disappears = Chosen LI IInColourGroup.Chosen

Being in the same colour group means being connected through a sequence of
balls of the same colour:

InColourGroup = (SameColourM NextTo)U InColourGroup.InColourGroup

This of course requires us to define when two balls have the same colour. This
will be the case if one ball has a colour, that is also the colour of the other ball.

SameColour = HasColour.HasColour™

Having defined which balls disappear, we can now easily define which balls re-
main as the complement thereof:

Remains = ~Disappears

We now define the relation Above’, i.e., the “above”’-relation as it will hold in
the next state. This will hold for any two remaining balls that were originally
above each other.

Above’ = Above M (Remains x Remains)

We can now define the relation Up' as the intransitive relation of which Above’
is the transitive closure:

Up' = Above' M —(Above’. Above')

We define an auxiliary concept OnGround’ as consisting of those balls that will
be on the ground in the new situations:

OnGround = Remains M —3Below.Remains

113

Having already defined Up’, all that remains is to define also Left’. Let us first
define when a ball is in the column to the left of some other ball.

InLeftColumn = Left U Left.(Above Ll Above™)

We now define Left’ as consisting of all pairs of balls for which InLeftColumn
holds and which are both on the same height in the new situation:

Left' = InLeftColumn 1 ((OnGround x OnGround') UUp'~.Left'.Up').

Note that this too is an inductive definition: the relation Left’ is first defined
for those pairs of balls that are both in the first row, then for those in the second
row, and so on.

This now concludes our representation of this game. We remark that this
example makes heavy use of the characteristic features of FO(ID): the ability to
express inductive definitions and to use negation in such definitions.

5 Inference in a fixed and finite domain

For basic description logics such as ALCZ, deductive inference (i.e., answering
the question “is a formula ¢ a logical consequence of a theory T'7”) is decidable,
and even tractable. While the possibility to efficiently perform this inference
task—and related ones such as subsumption or consistency checking—has cer-
tainly contributed to the appeal of DL, the need for fast deductive inference is
not absolute. Indeed, sometimes DL theories are not (primarily) intended to be
used by a computer, but serve instead as a means of communication between
people. For instance, in the context of software development, [18] uses a DL the-
ory to represent an agreement between business experts and software engineers
about a common model of the application domain. Even though in such cases
we might still be interested in, e.g., consistency of the theory, it is here less of a
requirement that this can be verified fully automatically.

Moreover, even when the goal is to perform inference tasks on a theory, this
does not necessarily preclude the use expressive or even undecidable languages.
Indeed, recent trends in computational logic, in particular ASP, have shown
that show that many real-world problems can be solved by considering other,
“cheaper” inference tasks than traditional deduction. The central observation
here is that the solution to many interesting problems can be naturally charac-
terized as (part of) a finite structure/interpretation satisfying a given theory. By
performing reasoning in a fixed, finite domain (for instance, a finite Herbrand
universe), instead of in an open domain, the complexity of reasoning tasks tends
to decreases dramatically. Even deduction for full first-order logic (that is, de-
ciding whether a formula ¢ holds in all models of a theory T" whose domain is
some given, finite set D) is then only co-NP.

Extending ASP’s model generation paradigm, [14] considered the inference
task of model expansion for FO(ID): given an interpretation S for some part
Yo of the alphabet X of a theory T, extend S with an interpretation for the

114

remaining symbols X'\ Yy, in such a way that the resulting interpretation is
a model of T. Since the given interpretation S for Xy already determines the
domain, there is no need to consider the possibility of unknown objects. They
showed that model expansion for FO(ID) captures the complexity class NP.

To illustrate the usefulness of this inference task, let us consider again the
example of the previous section. Here, we defined the next state of a game (Left
and Up') in terms of its old state (Left and Up) and a given move (Chosen). We
can therefore compute a new state of the game by performing model expansion
on the structure S for the alphabet Xy = {Left,Up, Chosen} that represents
the old state and the chosen move; the interpretation of Left’ and Up’ in the
resulting expanded model then gives us the new state. Moreover, because our
representation of the game defines all of its predicates except the ones in X,
this computation can actually be done in polynomial times.

6 Guarded ALCZ(ID)

As discussed in the previous section, there are interesting applications for DL,
and its extensions with rules, which only require reasoning with a fixed domain
and for which the undecidability of FO(ID) is therefore not a problem. However,
in other circumstances, open domain reasoning can still be necessary. Therefore,
in this section we will develop a decidable fragment of FO(ID).

Our fragment will be based on the guarded fragment of FO. We recall that
an FO formula ¢ is guarded if every one of its quantified subformulas is either
of the form Jx G(x,y) A p(z,y) or V& G(x,y) = ¢(z,y), where G(x,y) is an
atom, called the guard of the formula, such that free(p(z,y)) C free(G(z,y)).

We now define a similar guarded fragment of FO(ID). This fragment will
allow only theories consisting of precisely one definition and precisely one first-
order formula.

Definition 2. Let T be an FO(ID) theory, consisting of precisely one definition
A and one FO formula ¢. T is guarded if

— ¢ is a guarded formula;
— for each rule Yo P(x) «— 1, it holds that ¢ is a guarded formula and x C

free(y);
— none of the guards is defined by A.

Exploiting a theorem from [7], we prove the following result in the appendix
to this paper.

Theorem 1. The guarded fragment of FO(ID) is decidable. More precisely, de-
ductive reasoning for FO(ID) is 2EXPTIME-complete.

This of course raises the question of how this guarded fragment relates to the
ALCZ(ID)-fragment defined above. It is easy to see that neither is subsumed by
the other. For instance, the ALCZ(ID) formula P = P.P translates to

{Va,y P(z,y) — 3z P(z,2) A P(2,9)-},

115

which is not in our guarded fragment. Conversely, the guarded fragment is not
subsumed by ALCZ(ID) either, since, for instance, the latter only allows unary
and binary predicates, while the former allows arbitrary arities.

The two fragments do, however, have a significant intersection. Let us con-
sider a theory T in ALCZ(ID) and examine which additional conditions need to
be imposed in order to ensure that its translation will be guarded.

The guarded fragment of FO(ID) only allows theories to contain a single def-
inition, whereas an ALCZ(ID) theory can have multiple definitions. In [19], we
examined when a set of definitions (4;)1<;<, can be merged into a single equiv-
alent definition U; A;. We showed there that the following condition is sufficient.

Condition 1 There exists a partial order < on the predicates of the theory, such
that for all A; and P € Def(A;):

— if Q € Def(A;) then P > Q;
— if Q appears in A; but does not belong to Def(A;), then P > Q (i.e., P > Q
and P £ Q).

By imposing this condition on our theories, we are therefore able to merge
all definitions into a single definition, thus already satisfying that particular
requirement of our guarded fragment. Looking at the translation of ALCZ(ID)
into FO(ID), it is quite clear that the only other cause for falling outside of the
guarded fragment is the fact that defined predicates might be used as guards.
We therefore also need the following restriction:

Condition 2 For every construct AR.C, VR.C or R.S that appears in T, it
must be the case that R is not defined, i.e., T does not contain any formulas of
the form R = ¢ or any definitions in which a rule R < @ appears.

We will say that an ALCZ(ID) theory is guarded if it satisfies both Condition
1 and Condition 2.

Theorem 2. Let T be a guarded ALCI(ID) theory and let T' be the result of
merging all definitions in (T) into a single definition. Then T' is equivalent to
(T) itself and belongs the guarded fragment of FO(ID).

To conclude this section, we recall that for SWRL, it has been shown that
decidability can be regained by a restriction to (strongly) safe rules [16]: a SWRL-
rule is safe if every one of its variables appears in an atom whose predicate is not
used anywhere in the TBox of the OWL theory (i.e., it is only allowed to appear
in other SWRL rules or in the ABox). This restriction has a somewhat similar
flavour to our Condition 2, in that it also requires that variables are “guarded”
by atoms about which there is not “too much” information present in the theory.

7 Related Work

[6] presents an integration of DL and Answer Set Programs. In [5], a combination
of DL and logic programs under the well-founded semantics is investigated. Un-
like FO(ID)’s strong semantic integration of LP and DL, these two approaches

116

foster a strong separation between the two components: essentially, they allow
a logic program to pose queries to a description logic theory, with the latter
acting more-or-less as a black box towards the former. In contrast, FO(ID) can
offer a full semantic integration in which both logic programs and description
logic axioms are first-class citizens. As mentioned in the introduction, we feel
that such a strong intregration is more satisfactory from a knowledge theoretic
point-of-view.

Description logic programs [8] and DL+log [17] are two strong integrations,
which both consider only a quite restricted language: Grosof et al. focuses on
the intersection, rather than the union, of DL and LP, and Rosati only consids
Datalog. By contrast, FO(ID) allows full first-order logic in the body of rules.

[15,12,9] both provide strong semantic integrations for a more general kind
of rules. Even though we do not yet know the precise formal relation between
these languages and FO(ID), they seem to be about equally expressive. The main
difference with our approach is of a philosophical nature: FO(ID) makes a clear
distinction between its definitions, which are meant to express terminological
knowledge, and its first-order formulas, which are meant to express assertional
knowledge; the other two languages do not address the question of which kind
of knowledge should be expressed by which constructs in their language.

8 Conclusions and future work

FO(ID) is a knowledge representation language which integrates ASP-style logic
programming and classical logic. It shares the epistemological and philosophi-
cal foundations of description logic, by acknowledging the distinction between
terminological and assertional knowledge, and the need to represent both in a
knowledge based system. To represent terminological knowledge, it offers a def-
inition construct which is more general than that of description logics, allowing
a natural, rule-based representation of most of the common forms of (induc-
tive) definitions found in e.g. mathematical texts. So, FO(ID) actually contains
two rule-like constructs, namely material implications and definitional rules, and
makes a clear distinction between the meaning of these two, both at the formal
and informal level. This makes FO(ID) a suitable setting for a semantic study
of extensions of description logics with rules. In particular, we have argued that
it makes a good upperbound to an expressivity hierachy of such extensions, or,
to put it the other way around, that we could construct such a hierarchy by
restricting FO(ID) in various appropriate ways. We have tried to demonstrate
the appeal of this approach, by defining the language ALCZ(ID) as syntactic
sugar for a certain fragment of FO(ID). Like FO(ID) itself, this language is not
decidable. However, this does not preclude it from having important computa-
tional applications, such as solving various types of fixed finite domain problems.
Because other applications of course do require general deductive reasoning, we
have also defined guarded ALCIZ(ID) as a decidable fragment.

There are two obvious ways in which this work could be extended. First of all,
this paper has considered just two languages in between ALCZ and full FO(ID).

117

This is obviously still far from a thorough analysis of all the possibilities. Second,
we have only looked at the basic description logic ALCZ. More expressive logics,
such as SHOZN (D) which underlies OWL-DL, could of course be extended with
rules by the same method by which we have extended ALCZ in this paper. How
the expressivity of the underlying description logic affects the complexity of the
resulting extension with rules is another interesting question for future research.

References

1.

®© N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook. Theory, Implementation
and Applications. Cambridge University Press, 2002.

Ronald J. Brachman and Hector J. Levesque. Competence in Knowledge Repre-
sentation. In Proc. of AAAI pages 189-192, 1982.

Marc Denecker and Eugenia Ternovska. A logic of non-monotone inductive defini-
tions. Transactions On Computational Logic (TOCL), 2008.

Marc Denecker and Joost Vennekens. Well-founded semantics and the algebraic
theory of non-monotone inductive definitions. In Proc. LPNMR, 2007.

W. Drabent, J. Henriksson, and J. Maluszynski. HD-rules: a hybrid system inter-
facing Prolog with DL-reasoners. In 2nd I'nal Workshop on Applications of Logic
Programming to the Web, Semantic Web and Semantic Web Services, 2007.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the semantic web. In Proc. KR, 2004.

E. Gradel and 1. Walukiewicz. Guarded fixed point logic. In Proc. LICS, 1999.
B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: com-
bining logic programs with description logic. In Proc. WWW, 2003.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming
with guarded programs. ACM TOCL, 4, 2008.

I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantics web rule language combining OWL and RuleML, 2004. W3C
Submission, http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.
Maurizio Lenzerini. Thox and abox reasoning in expressive description logics. In
In Proc. of KR, pages 316-327. Morgan Kaufmann, 1996.

Thomas Lukasiewicz. A novel combination of answer set programming with de-
scription logics for the semantic web. In Proc. of European Semantic Web Confer-
ence (ESWC), 2007.

Maarten Marién, David Gilis, and Marc Denecker. On the relation between ID-
Logic and Answer Set Programming. In Proc. of JELIA, 2004.

David Mitchell and Eugenia Ternovska. A framework for representing and solving
np search problems. In Proc. of AAAI 2005.

B. Motik and R. Rosati. A faithful integration of description logics with logic
programming. In Proc. of IJCAI, 2007.

B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. In
Proc. of the 3rd International Semantic Web Conference (ISWC), 2004.

Riccardo Rosati. DL+log: Tight integration of description logics and disjunctive
datalog. In Proc. KR, pages 68-78, 2006.

M. Vanden Bossche, P. Ross, I. MacLarty, B. Van Nuffelen, and N. Pelov. Ontology
driven software engineering for real life applications. In Proc. SWESE), 2007.
Joost Vennekens and Marc Denecker. An algebraic account of modularity in ID-
logic. In Proc. LPNMR, 2005.

118

Classical Logic Event Calculus
as Answer Set Programming

Joohyung Lee and Ravi Palla

School of Computing and Informatics
Arizona State University, Tempe, AZ, USA
{joolee, Ravi.Palla}@asu.edu

Abstract. Recently, Ferraris, Lee and Lifschitz presented a generalized
definition of a stable model that applies to the syntax of arbitrary first-
order sentences, under which a logic program is viewed as a special class
of first-order sentences. The new definition of a stable model is similar to
the definition of circumscription, and can even be characterized in terms
of circumscription. In this paper, we show the opposite direction, that
is, how to embed circumscription into the new stable model semantics,
and based on this, how to turn some versions of the classical logic event
calculus into the general language of stable models. By turning the latter
to answer set programs under certain conditions, we show that answer
set solvers can be used for classical logic event calculus reasoning, allow-
ing more expressive query answering than what can be handled by the
current SAT-based implementations of the event calculus. We prove the
correctness of our translation method and compare our work with the
related work by Mueller.

1 Introduction

Recently, Ferraris, Lee and Lifschitz [1] presented a generalized definition of a
stable model that applies to the syntax of arbitrary first-order sentences. Un-
der this framework, a logic program is viewed as a special class of first-order
sentences, in which negation as failure (not) is identified with classical negation
(=) under the stable model semantics. The new definition of a stable model is
given by a translation into second-order logic, and does not refer to ground-
ing to define the meaning of variables. This allowed to lift the notion of sta-
ble models to a special class of first-order models, not restricted to Herbrand
models. The new definition is similar to the definition of circumscription [2;
3], and was even characterized in terms of circumscription [1], extending the
work by Lin [4]. The same characterization was also independently given in [5].

The opposite direction, turning (parallel) circumscription into the stable
model semantics, was shown in [6], limited to the propositional case. In this
paper, we start with generalizing this result: turning first-order circumscription
into the generalized language of stable models. This leads to the following natu-
ral question: how are the formalisms for reasoning about actions and change that
are based on circumscription, related to the stable model semantics? Recall that
as nonmonotonic formalisms, circumscription and the stable model semantics

119

have served to provide (different) solutions to the frame problem. A group of ac-
tion formalisms, such as the classical logic event calculus [7] and temporal action
logic [8], take (monotonic) first-order logic as the basis, augmented with circum-
scription to handle the frame problem. On the other hand, action language A
and many of its descendants [9] refer to logic programs under the stable model
semantics (a.k.a. answer set programs) as the underlying formalism. Although
there have been some papers that relate classical logic based action formalisms
to each other (e.g., [10; 11]), not much work was done in relating them to action
languages and to answer set programs.

As an initial step, we show how to turn the classical logic event calculus into
the general language of stable models. Note that the event calculus is a family
of languages with some variance. Here we consider versions of the event calculus
that are based on classical logic, one defined by Miller and Shanahan [12], and
the other by Mueller [13], which is a simplified version of the former. The fact
that circumscription can be reduced to completion [14] under certain syntactic
conditions ([15, Proposition 2]) allowed efficient satisfiability solvers (SAT) to be
used for event calculus reasoning [16; 13], similar to the idea of SAT-based answer
set programming. Interestingly, early versions of the event calculus [17] were
based on logic programs but this was the time before the invention of the stable
model semantics, while more extensive later developments of the event calculus
were carried out under the classical logic setting. Our work here can be viewed
as turning back to the logic program tradition, in the modern form of answer
set programming. This is not only interesting from a theoretical perspective, but
also interesting from a computational perspective, as it allows answer set solvers
to be used for event calculus reasoning. In contrast to the SAT-based approaches
from [16; 13] which rely on completion and hence cannot allow certain recursive
axioms in the event calculus, we show that the answer set programming approach
handles all the axioms correctly, modulo grounding. Our work shows that the
new language of stable models is a suitable nonmonotonic formalism as general
as circumscription to be applied in commonsense reasoning, with the unique
advantage of having efficient ASP solvers as computational tools.

Our work is motivated by Erik Mueller’s work that is available on the web-
page http://decreasoner.sourceforge.net/csr/ecas/, where a few exam-
ple answer set programs were used to illustrate that event calculus like reasoning
can be done in answer set programming. However, this was a kind of “proof of
concept” ! and no formal justification was provided.

The paper is organized as follows. In the following two sections, we review
the syntax of the event calculus and the generalized language of stable models.
In Section 4, we present the language RASPLM (“Many-sorted extension of
Reductive Answer Set Programming Language”), for which syntactically similar
codes are accepted by LPARSE,? the front-end of SMODELS and several other
answer set solvers. We show how to turn circumscription into the first-order
language of stable models in Section 5, and how to turn a description in the
event calculus into a RASPLM program in Section 6. We compare our method
with Mueller’s work in Section 7.

! Personal communication with Erik Mueller.
2 http://www.tcs.hut.fi/Software/smodels

120

2 Review of the Event Calculus

Since the notion of equivalence under classical logic is weaker than the notion of
equivalence under the stable model semantics, classically equivalent formulas do
not necessarily have the same stable models. Thus any translation from classical
logic based formalisms into the stable model semantics will need to fix the syntax
of the former. Here we follow the syntax of the classical logic event calculus as
described in [18, Chapter 2].

We assume a many-sorted first-order language, which contains an event sort,
a fluent sort, and a timepoint sort. A fluent term is a term whose sort is a fluent,
an event term is a term whose sort is an event and a timepoint term is a term
whose sort is a time point. A condition in the event calculus is defined recursively
as follows:

— A comparison (11 < 72, 71 < To, T1 > T, T1 > T2, T1 = T2, T1 # T2) for terms
T1, Ty is a condition;

— If f is a fluent term and ¢ is a timepoint term, then HoldsAt(f,t) and

—HoldsAt(f,t) are conditions;

If 41 and -5 are conditions, then v; A 72 and 1 V 2 are conditions;

If v is a variable and +y is a condition, then Jv7y is a condition.

In all the subsequent sections, we will use e and e; to denote event terms,
f and f; to denote fluent terms, ¢ and ¢; to denote timepoint terms, and -y
and ~; to denote conditions. We understand formula F' < G as shorthand for
(F — G) NG — F); formula T as shorthand for 1 — 1; formula —F as
shorthand for FF — L.

An event calculus domain description is defined as

CIRCI[Y ; Initiates, Terminates, Releases] AN CIRC[A; A Ay ; Happens]
ACIRCI[O ; Aby,...,Ab) NQANOANITANTAE

where
— X is a conjunction of axioms of the form

~v — Initiates(e, f,t)

~v — Terminates(e, f,t)

~v — Releases(e, f,t)

vy ATi(e, f1,t) — ma(e, fa,t) (“effect constraint”)

v A [-|Happens(e,t) A --- A [m|Happens(en, t) — Initiates(e, f,t)

v A [F|Happens(e,t) A -+ A [-|Happens(en,t) — Terminates(e, f,t)

where each m; and 7 is either Initiates or Terminates;

— A is a conjunction of axioms of the form Happens(e,t) and temporal order-
ing formulas which are comparisons between timepoint terms;

— A5 is a conjunction of axioms of the form

~ — Happens(e, t)

ole,t) Ami(er,t) A+ Amp(en,t) — Happens(e,t)
Happens(e,t) — Happens(e1,t)V -+ V Happens(ey,t) (“disjunctive event axiom”)

121

where o is Started or Stopped and each m; (1 < j < n) is either Initiated
or Terminated. Predicates Started, Stopped, Initiated and Terminated are
defined as follows:

Started(f,t) ©f (HoldsAt(f,t) vV Je(Happens(e, t) A Initiates(e, f,t)))

(CCh)
Stopped(f,t) ¥ (—HoldsAt(f,t) v Je(Happens(e,t) A Terminates(e, f,t)))
(CCh)
Initiated(f,t) ¥ (Started(f,t) V —=3e(Happens(e,t) A Terminates(e, f,t)))
(CCs)
Terminated(f,t) ¥ (Stopped(f,t) V ~Je(Happens(e,t) A Initiates(e, f,t)))
(CCy)

— O is a conjunction of axioms of the form v — Ab;(...,t);
— {2 is a conjunction of unique name axioms ;
— ¥ is a conjunction of axioms of the form 3

Yo T2, Y12
Happens(e,t) —
Happens(ey,t) Ay A [-|Happens(ea, t) — L ;

II is a conjunction of trajectory axioms and anti-trajectory axioms of the
form
~v — (Anti) Trajectory(fi,t1, fa, t2) ;

— [is a conjunction of observations of the form HoldsAt(f,t) and ReleasedAt(f,t);
— E is a conjunction of the event calculus axioms DEC or EC. 4

As shown, a classical logic event calculus description may contain existential
quantifiers; some parts of the description are circumscribed on a partial list of
predicates, while some others are not circumscribed. These features look different
from logic programs. Nonetheless we show that the classical logic event calculus
can be embedded into logic programs.

3 Review of the New Stable Model Semantics and the
New Splitting Theorem

Under the new definition of stable models presented in [19] that is applicable to
arbitrary first-order sentences, a logic program is identified as a universal for-
mula, called the FOL-representation. First, we identify the logical connectives—
the comma, the semicolon, and not with their counterparts in classical logic A,

3 The last formula is a minor rewriting of the formula from [18] which is
Happens(e1,t) N v — [-]|Happens(ez,t). This rewriting simplifies the later
presentation.

4 Due to lack of space, we refer the reader to [18, Chapter 2] for these axioms.

122

V and —. The FOL-representation of a rule Head < Body is the universal clo-
sure of the implication Body — Head. The FOL-representation of a program is
the conjunction of the FOL-representations of its rules. For example, the FOL-
representation of the program

p(a)
q(b)
r(x) — p(x), not q(x)
is
pa) A q(b) AVz((p(x) A —q(x)) — r(x)) (1)
We review the new definition of stable models from [19]. Let p be a list of
distinct predicate constants pi,...,p,, and let u be a list of distinct predicate
variables u1, ..., u, of the same length as p. By u = p we denote the conjunction

of the formulas Vx(u;(x) < p;(x)), where x is a list of distinct object variables
of the same arity as the length of p;, for all i = 1,...n. By u < p we denote
the conjunction of the formulas Vx(u;(x) — p;(x)) foralli =1,...n,and u < p
stands for (u < p) A =(u = p).
For any first-order sentence F(p), expression SM[F'; p] stands for the second-
order sentence
F A=3u((u<p)AF*(u)),

where p is the list py, ..., p, of predicate constants that are called intensional, u
is a list uq,...,u, of distinct predicate variables corresponding to p, and F*(u)
is defined recursively:

pi(ty, ...

t)* = wi(ty,...,tm) if p; belongs to p,
T A pilte, ... tm) otherwise;

— (ti=t2)* = (t1=t2);

- 1*=1;

- (FANG)* = F* ANG*;

— (FVG)* =F*V G

—(F = G) = (F* — G*) A (F — G);
— (Vo F)* = VaF*;

— (FzF)* = JxF~.

As before, we understand formula F' < G as shorthand for (F — G) A (G —
F); formula T as shorthand for L — 1; formula —~F as shorthand for F — L.

SM[F] defined in [1] is identical to SM[F;p] where intensional predicate
constants p range over all predicate constants that occur in F. According to
[1], the models of SM[F] whose signature o consists of the object, function and
predicate constants occurring in F' are called the stable models of F. Among
those stable models we call the Herbrand models of signature o, the answer
sets of F. The definition of stable models is closely related to the definition
of quantified equilibrium model [20; 1]. The answer sets of a logic program IT
are defined as the answer sets of the FOL-representation of II. Proposition 1
from [1] shows that, for normal logic programs, this definition is equivalent to
the definition of answer sets from [21].

123

As shown in [19], the extended notion of SM by a partial list of intensional
predicates is not essential in the sense that it can be rewritten so that intensional
predicates become exactly those that occur in the formula. By Choice(p) we
denote the conjunction of “choice formulas” Vx(p(x) V —p(x)) for all predicate
constants p in p where x is a list of distinct variables whose length is the same as
the arity of p; by False(p) we denote the conjunction of Vx—p(x) for all predicate
constants p in p; by pr(F') we denote the list of all predicate constants occurring
in F.

Proposition 1 ([19])
SMIF; p] <> SM[F A Choice(pr(F) \ p)] A False(p \ pr(F))
18 logically valid.

However, it is convenient to describe our main results and the following splitting
theorem using the generalized notion of SM.

Recall that the occurrence of one formula in another is called positive if the
number of implications containing that occurrence in the antecedent is even, and
negative otherwise. We say that an occurrence of a subformula or a predicate
constant in a formula F' is strictly positive if the number of implications in F
containing that occurrence in the antecedent is 0. For example, in (1), both
occurrences of ¢ are positive, but only the first is strictly positive. By the head
predicates of F', denoted by h(F'), we mean the set of predicate constants that
have at least one strictly positive occurrence in F. We call a formula negative
if it has no strictly positive occurrences of predicate constants. We say that a
predicate constant p depends on a predicate constant ¢ in an implication G — H
if

— p has a strictly positive occurrence in H, and
— q has a positive occurrence in G that does not belong to any occurrence of
a negative formula in G.

The predicate dependency graph of a formula F' is the directed graph such that

— its vertices are the predicate constants occurring in F', and
— it has an edge from a vertex p to a vertex ¢ if p depends on ¢ in an implication
that has a strictly positive occurrence in F'.

A nonempty finite subset 1 of V is called a loop of F if the subgraph of the
predicate dependency graph of F' induced by 1 is strongly connected.
We say that F' and G interact on p if F' A G has a loop 1 such that

— 1is contained in p,
— 1 contains an element of h(F'), and
— 1 contains an element of h(G).

The following theorem shows how formula SM[F A G;p| can be split :

Theorem 1 ([22]) If F and G don'’t interact on p, then SM[F A G;p] is equiv-
alent to

124

(a) SMIF; p\ B(G)] A SM(G; p\ h(F)], and to
(b) SM[F;p \ h(G)] ASM[G;p N h(G)], and to
(c) SM[F;p N h(F)] ASM[G;p N h(G)] A False(p \ h(F) \ h(G)).

The theorem will be used to justify our translation method.

4 RASPLM Programs

The definition of SM above can be easily extended to many-sorted first-order
languages, similar to the extension of circumscription to many-sorted first-order
languages (Section 2.4 of [15]). We define RASPLM programs as a special class of
sentences under this extension, which are essentially a many-sorted extension of
RASPL-1 programs from [23]. We assume that the underlying signature contains
an integer sort and contains several built-in symbols, such as integer constants,
built-in arithmetic functions 4, —, and comparison operators <, <, > >. Since
we do not need counting aggregates in this paper, for simplicity, we will assume
that every “aggregate expression” is an atom or a negated atom. That is, a rule
is an expression of the form

Ay oo A — Ay, Ay not Apsa, ..., not Ay,
not not Apy1,...,not not A

(0 <k <m <n<p), where each A; is an atom, possibly equality or compar-
isons. A program is a finite list of rules.

The “choice rule” of the form {A} « Body where A is an atom, stands for
A «— Body, not not A.

The semantics of a RASPLM program is understood by turning it into its
corresponding many-sorted FOL-representation, as in RASPL-1. The integer
constants and built-in symbols will be evaluated in the standard way, and we will
consider only those “standard” interpretations. The answer sets of a RASPLM
program are the Herbrand interpretations of the signature consisting of object,
function and predicate constants occurring in the program, that satisfies SM[F],
where F' is the FOL-representation of the program.

Though RASPLM programs have no implementation, syntactically similar
codes are accepted by LPARSE, whose language is essentially many-sorted.

5 Turning Circumscription to SM

Definition 1. For any list p of predicate constants, and any formulas G and
H in each of which every occurrence of predicate constants from p is strictly
positive, we call implication G — H canonical w.r.t. p.

Proposition 2 Let F' be the universal closure of a conjunction of canonical
implications w.r.t. p. Then

SM[F; p] < CIRC|[F; p]

18 logically valid.

125

Note that in the syntax of the event calculus described in Section 2, all axioms
in X are already canonical implications w.r.t. Initiates, Terminates,Releases; all
axioms in A; A A, are canonical implications w.r.t. Happens; all axioms in ©
are canonical implications w.r.t. Ab;.°

The proof of Proposition 2 is immediate from the following lemma, which
can be proved by induction.

Lemma 1. For any formula F in which every occurrence of predicate constants
from p is strictly positive,

(u<p) = (F'(u) < F(u))

18 logically valid, where u is a list of distinct predicate variables of the same
length as p.

6 Turning Event Calculus Descriptions to SM

Theorem 2 Given an event calculus description, let F' be the conjunction of
Q.U I, T and E, and let p be the set of all predicates (other than equality and
comparisons) occurring in the event calculus description. The following theories
are equivalent:

CIRC[X; Initiates, Terminates, Releases] A CIRC[A; Happens]
(%) ACIRC[O; Abr,. .., Abu] A F ;
() SMI[X; Initiates, Terminates, Releases] A SM[A; Happens|
ASM[O; Aby, ..., Aby| N F
(¢) SM[X A AN O A F; Initiates, Terminates, Releases, Happens, Aby, ..., Aby] ;
(d) SM[EANANONFAChoice(p\{Initiates, Terminates, Releases, Happens, Aby, .

Proof. Between (a) and (b): Follows immediately from Proposition 2.

Between (b) and (c): Note first that F' is equivalent to SM[F; f)]. Since X, A, O,
F do not interact on {Initiates, Terminates, Releases, Happens, Aby, ..., Ab,},
from Theorem 1 (b) (applying it multiple times), it follows that (b) and (c) are
equivalent.

Between (c) and (d): Follows immediately from Proposition 1. [}

6.1 Turning Event Calculus Descriptions to RASPLM Programs

The formulas in Theorem 2 may still contain existential quantifiers, which are not
allowed in RASPLM programs. The following procedure turns an event calculus
description into a RASPLM program by eliminating existential quantifiers using
new atoms.

Definition 2 (Translation EC2ASP).

5 We understand an axiom such as Happens(e,t) as an abbreviation for implication
T — Happens(e,t).

126

oAbV

1. Simplify all the definitional azioms of the form

vx(p(x) < IyG(x,y)) (2)

except for CCy — CCy, where y is a list of all free variables in G that are
not in x, as Vxy(G(x,y) — p(x)).
2. For each axiom that contains existential quantifiers, repeat the following until

there are no existential quantifiers:

(a) Replace mazimal negative occurrences of IyG(y) in the aziom by G(z)
where z is a new variable.

(b) Replace mazimal positive occurrences of JyG(x,y) in the axiom, where
x is the list of all free variables of JyG(x,y), by the formula =—pa(x)
where pg 1is a new predicate constant, and add the axiom

Vxy(G(x,y) — pc(x)). (3)

3. Add choice formulas Vx(p(x)V —p(x)) for all the predicate constants p except
for {Initiates, Terminates, Releases, Happens, Aby, ..., Ab,,p1, P2} where
— Pp1 s a list of all predicate constants p considered in Step 1.
— P2 is a list of all new predicate constants pg introduced in Step 2.
4. Apply the conversion from [24] that turns programs with nested expressions
into disjunctive logic programs.

For example, consider DECS axiom:

Vft((HoldsAt(f,t) A —ReleasedAt(f,t+1)A 4)
—Je(Happens(e,t) A Terminates(e, f,t))) — HoldsAt(f,t+1)). (

In order to eliminate the positive occurrence of Ie(Happens(e, t)A Terminates(e, f,t))
in the formula, we apply Step 2(b), introducing the formula

Veft(Happens(e,t) A Terminates(e, f,t) — q(f,1t)),
and replacing (4) with
Vft((HoldsAt(f,t) A —ReleasedAt(f,t + 1) A =—=—q(f,t)) — HoldsAt(f,t + 1)),

from which ———q(f,t) is simplified as —q(f,t) by Step 4.

We will present the proof in the next section. Here we attempt to give the
idea of the translation. Step 1 can be dropped without affecting the correct-
ness, but it yields a more succinct transformation. The simplification does not
apply for CC; — CCjy since these axioms, together with other axioms in the
description, may yield loops (A more detailed explanation follows in the next
section). Step 2 (a) is one of the steps in prenex normal form conversion. In-
stead of Skolemization, which will introduce an infinite Herbrand universe, Step
2 (b) eliminates existential quantifiers using new atoms. The transformation
yields a set of implications where each antecedent and consequent are formed

5 In general we put —— in front of pg(y) in order to prevent from introducing unnec-
essary loops. A more precise explanation is given in the proof of Theorem 3.

127

from atoms by allowing —, A, and V nested arbitrarily, similar to the syntax of
a program with nested expressions from [24]. The transformation that turns a
program with nested expressions into a disjunctive logic program from [24] can
be straightforwardly extended to turn these set of implications into a RASPLM
program.

Turning the resulting RASPLM program further into the input language of
LPARSE requires minor rewriting, such as moving equality or negated atoms to
the body (e.g., =p(t) «— ... into < ..., p(t)), and adding domain predicates in
the body for all variables occurring in the rule.

6.2 Proof of the Correctness of the Translation
The following theorem states the correctness of the translation.

Theorem 3 Let T be an event calculus domain description, and let II be a
RASPLM program obtained by applying the translation EC2ASP to T. The stable
models of Il restricted to the signature of T are precisely the models of T'.

We will use the following fact for the proof.

Lemma 2. Let F be a first-order formula, let p be a predicate constant not
occurring in F, let G(x) be a subformula of F where x is the list of all free
variables of G(x), and let F' be a formula obtained from F by replacing an
occurrence of G(x) with =—p(x). The models of F' AVx(G(x) < p(x)) restricted
to the signature of F' are exactly the models of F.

We will also use the proposition below that relates SM to completion, ex-
tending the results of Propositions 6,8 from [1].
Let II be a finite set of rules that have the form

A—F (5)

where A is an atom and F is a first-order formula (that may contain quantifiers).
We say that I is in normal form w.r.t. a set p of predicate constants if, for each
predicate constant p in p, there is exactly one rule

p(x) <= F (6)

where x is the list of object variables whose length is the same as the arity of p
and F' is a formula. It is clear that every program whose rules have the form (5)
can be turned into a normal form w.r.t p. Given a program IT in normal form
w.r.t. p, the completion of II w.r.t p is the conjunction of the universal closure
of formulas obtained from IT by replacing (6) with

p(x) < Iy F

where y is the list of free variables occurring in F' that are not in x.
We say that a first-order formula F' is tight on p if the subgraph of the
dependency graph of F' induced by p is acyclic.

" If we are only interested in answer sets, rather than stable models (note the distinc-
tion made in Section 3), UNA axioms can be disregarded.

128

Proposition 3 Let IT be a program in normal form w.r.t. p and let F be the
FOL-representation of II. If F is tight on p, then SM[F; p] is equivalent to the
completion of IT w.r.t. p.

Proof of Theorem 3 Assume that T is

CIRC[X; Initiates, Terminates, Releases] A CIRC[A; Happens]
A CIRC[O; Aby, ..., Aby] AN F,

which is equivalent to

SM[X; Initiates, Terminates, Releases] A SM[A; Happens]
A SM[O; Aby, ..., Aby| AN F

by Theorem 2.
Let Dq be the set of all definitions of the form (2) except for CCy — CCy.
Let Step 1’ be the transformation that turns each formula (2) in D; into

SM[Vxy (G(x,y) — p(x)); p), (7)
and let Step 2’ be a modification of Step 2 in EC2ASP by introducing
Vxy(G(x,y) < pa(x)) (8)

instead of (3) in Step 2 (b).

Let X', A’, ©', F’ be the formulas obtained from X, A, ©, F by applying
Steps 1’ and 2'. By Proposition 3, Step 1’ is an equivalent transformation. By
Lemma 2, the models of

SM[X’; Initiates, Terminates, Releases| AN SM[A’; Happens) ()
A SM[O'; Aby, ..., Ab,| AN F’

restricted to the signature of T are precisely the models of T. Let Dy be the
set of all definitions (8) that are introduced in Step 2'. Note that these formulas
are introduced only for some formulas in F' (other than D;), and not for X,
A and ©; formulas X', A’ and @’ are obtained by applying Step 2 (a) only
since, according to the syntax of the event calculus (Section 2), every occurrence
of existential quantification is negative in each of X, A and ©. Let F" be the
axioms in F’ excluding Dy and all formulas (7) for D;.
By Proposition 3 again, each formula (8) in Dj is equivalent to

SMVxy(G(x,y) — pa(X)); pal-
Consequently (9) is equivalent to

SM[X’; Initiates, Terminates, Releases] AN SM[A’; Happens)

A SM[O'; Aby, ..., Ab,] ASM[F"; (]

A Nzyen, SMI¥xy (G(x.y) = p(x)); 1] (10)
A Nsyep, SM[Vxy(G(x,y) — pa(x)); pal-

129

Since X" and A’ do not interact on { Initiates, Terminates, Releases, Happens},
by Theorem 1 (b), formula (10) is equivalent to

SM[X' A A Initiates, Terminates, Releases, Happens]

A SMIE'; Aby, ..., Aby] A SM[E"; 0]

A A@yen, SMI¥xy(G(x,y) = p(x)); 7] (11)
A N)ep, SM[Vxy(G(x,y) — pc(x)); pcl-

Similarly, by applying Theorem 1 multiple times, it is clear that formula (11) is
equivalent to

SM[X' AN A" ANO' A F"; Initiates, Terminates, Releases, Happens, Aby, ..., Aby]
A SM[A\2)ep, Vx¥(G(x,y) = p(x)); P
A SM[/\(s)eD2 Vxy(G(x,y) — pc(x)); pel
12
where p; is a list of all predicate constants p defined in Dq, and p2 is a lis(t o)f
all new predicate constants pg defined in Ds.
According to the syntax of the event calculus (Section 2), X' A A" ANO' A F”

and
N\ Vxy(G(x,y) = p(x))
(2)eD:

do not interact on
{Initiates, Terminates, Releases, Happens, Aby, ..., Ab,,p1},
so that, by Theorem 1 (b), (12) is equivalent to

SM[Z"AA"NO ANF" NN\ 2)ep, VXY (G(x,y) = p(x));
Initiates, Terminates, Releases, Happens, Aby, ..., Aby,, p1] (13)
A SM[/\(s)gpz Vxy(G(x,y) — pc(x)); P2)-

From the fact that every occurrence of a predicate constant from pg in F” is
preceded with ——, we conclude that the formula in the first SM and the formula
in the second SM in (13) do not interact on

{Initiates, Terminates, Releases, Happens, Aby, ..., Ab,,p1, P2}
so that, by Theorem 1 (b), (13) is equivalent to

SM[X AN A NO' AF" A Ngyep, ¥xy(G(x,y) = p(x))

A Ng)yen, VXY(G(%,y) = pa(X)); (14)
Initiates, Terminates, Releases, Happens, Aby, ..., Ab,,P1, P2]

Formula (14) is exactly the formula obtained from Steps 1 and 2. The rest
of the proof follows immediately from Proposition 1, and a straightforward ex-
tension of Proposition 7 from [24]. 1

If we were to treat C'Cy — CC4 same as the other definitional axioms, then
Theorem 1 (b) won’t justify that (12) is equivalent to (13), since there may be a

130

loop, such as {Started, Happens,Initiated }, on which A" and CC; —CCj interact.
Indeed, (12) and (13) are not equivalent in general if CCy — CCy were regarded
to belong to D;.

7 Comparison with Mueller’s Work

7.1 Comparison with Mueller’s ASP Approach
The answer set programming approach on the webpage
http://decreasoner.sourceforge.net/csr/ecas/

illustrates the idea using some examples only, and misses formal justification.
Still we observe a few differences.®

First, these examples use classical negation, while our method does not. We
do not need both negations—negation as failure (not) and classical negation
(—)—to embed the two-valued event calculus into answer set programming. Sec-
ond, no choice rules were used, which resulted in limiting attention to temporal
projection problems—to determine the states that result from performing a se-
quence of actions. On the other hand, our approach can handle not only tempo-
ral projection problems, but also planning and postdiction problems. To solve
a planning problem Happens should not be minimized. Adding choice rules for
Happens is a way to exempt it from minimization in logic programs. The follow-
ing example is a logic program counterpart of the planning problem example on
page 244 of [18].

agent (james) .

fluent (awake(A)) :- agent(A).

event (wakeUp(A)) :- agent(A).
initiates(wakeUp(A), awake(A), T) :- agent(A).
:— holdsAt(awake(james), 0).

holdsAt (awake(james), 1).

:— releasedAt (F, 0).

0 {happens(E, T)} 1 :- T<1.

When the above program along with the DEC axioms is provided as input,
SMODELS returns an answer set that contains happens(wakeup(james),0).
More examples can be found from http://reasoning.eas.asu.edu/ecasp.

7.2 Comparison with the DEC Reasoner

The DEC reasoner? is an implementation of the event calculus written by Erik
Mueller. The system reduces event calculus reasoning into satisfiability and calls
SAT solvers [25]. Since circumscription is not always reducible to completion,
some event calculus axioms like effect constraints and disjunctive event axioms

8 Our version of EC/DEC axioms is available at
http://reasoning.eas.asu.edu/ecasp.
% http://decreasoner.sourceforge.net/.

131

(Section 2) cannot be handled by the DEC reasoner. For example, consider the
following event calculus axioms that describe the indirect effects of the agent
walking from one room to another on the objects that he is holding:

HoldsAt(Holding(a,0),t) A Initiates(e, InRoom(a,r),t)
— Initiates(e, InRoom(o,r),t)
HoldsAt(Holding(a,0),t) A Terminates(e, InRoom(a,),t)
— Terminates(e, InRoom(o,7),t)

(15)

Since these axioms involve non-trivial loops, they cannot be reduced to comple-
tion. On the other hand, the logic program corresponding to (15) can be directly
handled by answer set solvers.

8 Conclusion

Our contributions are as follows.

— We showed how to embed circumscription into the new language of stable
models.

— Based on it we showed how to turn the classical logic event calculus into
answer set programs, and proved the correctness of the translation. This
approach can handle the full version of the event calculus, modulo grounding.

We plan to implement this transformation method, and compare it with the
DEC reasoner. Another future work is to extend the embedding method to other
action formalisms, such as temporal action logics and situation calculus.

Acknowledgements

We are grateful to Vladimir Lifschitz, Erik Mueller and anonymous referees
for useful comments on the ideas of this paper and several pointers to earlier
work. We are also grateful to Tae-Won Kim for useful discussions. The authors
were partially supported by the National Science Foundation under Grant IIS-
0839821.

References

1. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI). (2007)
372-379

2. McCarthy, J.: Circumscription—a form of non-monotonic reasoning. Artificial
Intelligence 13 (1980) 27-39,171-172

3. McCarthy, J.: Applications of circumscription to formalizing common sense knowl-
edge. Artificial Intelligence 26 (1986) 89-116

4. Lin, F.: A Study of Nonmonotonic Reasoning. PhD thesis, Stanford University
(1991)

132

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

. Lin, F., Zhou, Y.: From answer set logic programming to circumscription via logic

of GK. In: Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI). (2007)

Lee, J., Lin, F.: Loop formulas for circumscription. Artificial Intelligence 170
(2006) 160-185

Shanahan, M.: A circumscriptive calculus of events. Artif. Intell. 77 (1995) 249-284
Doherty, P., Gustafsson, J., Karlsson, L., Kvarnstrom, J.: TAL: Temporal action
logics language specification and tutorial.!® Linkdping Electronic Articles in Com-
puter and Information Science ISSN 1401-9841 3 (1998)

Gelfond, M., Lifschitz, V.: Action languages.'! Electronic Transactions on Artificial
Intelligence 3 (1998) 195-210

Mueller, E.T.: Event calculus and temporal action logics compared. Artif. Intell.
170 (2006) 1017-1029

Belleghem, K.V., Denecker, M., Schreye, D.D.: On the relation between situation
calculus and event calculus. J. Log. Program. 31 (1997) 3-37

Miller, R., Shanahan, M.: The event calculus in classical logic - alternative ax-
iomatisations. Electron. Trans. Artif. Intell. 3 (1999) 77-105

Mueller, E.T.: Event calculus reasoning through satisfiability. J. Log. Comput. 14
(2004) 703-730

Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data
Bases. Plenum Press, New York (1978) 293-322

Lifschitz, V.: Circumscription. In Gabbay, D., Hogger, C., Robinson, J., eds.:
Handbook of Logic in AI and Logic Programming. Volume 3. Oxford University
Press (1994) 298-352

Shanahan, M., Witkowski, M.: Event calculus planning through satisfiability. J.
Log. Comput. 14 (2004) 731-745

Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4 (1986) 67-95

Mueller, E.: Commonsense reasoning. Elsevier (2006)

Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence (2008) To appear.

Pearce, D., Valverde, A.: A first order nonmonotonic extension of constructive
logic. Studia Logica 80 (2005) 323-348

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R., Bowen, K., eds.: Proceedings of International Logic Programming
Conference and Symposium, MIT Press (1988) 1070-1080

Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Two types of splitting in the theory
of stable models. Unpublished Draft (2008)

Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in
answer set programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). (2008) 472-479

Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25 (1999) 369-389

Mueller, E.T.: A tool for satisfiability-based commonsense reasoning in the event
calculus. In Barr, V., Markov, Z., eds.: FLAIRS Conference, AAATI Press (2004)

10 http://www.ep.liu.se/ea/cis/1998/015/ .
" nttp://www.ep.liu.se/ea/cis/1998/016/ .

133

	Preface
	Answer-Set Programming Encodings for Argumentation Frameworks by Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran
	Efficient Parallel ASP Instantiation via Dynamic Rewriting by Simona Perri, Francesco Ricca, and Saverio Vescio
	Modeling preferences on resource consumption and production in ASP by Stefania Costantini and Andrea Formisano
	Towards Logic Programs with Ordered and Unordered Disjunction by Philipp Kärger, Nuno Lopes, Daniel Olmedilla, and Axel Polleres
	Quantified Logic Programs, Revisited by Rachel Ben-Eliyahu - Zohary
	On Demand Indexing for the DLV Instantiator by Gelsomina Catalano, Nicola Leone, and Simona Perri
	Integrating Grounding in the Search Process for Answer Set Computing by Claire Lefèvre and Pascal Nicolas
	FO(ID) as an extension of DL with rules by Joost Vennekens and Marc Denecker
	Classical Logic Event Calculus as Answer Set Programming by Joohyung Lee and Ravi Palla

