Size: 2424
Comment:
|
Size: 2426
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 46: | Line 46: |
Knight Tour
Contents
Predicates
Input: size/1 givenmove/4
Output: move/4
Problem Description
Find a tour for the knight piece that starts at any square, travels all squares, and comes back to the origin, following the rules of chess.
Input format
The input file contains one atom size(N), which states that the chess board size is N*N and a number of atoms givenmove(X1,Y1,X2,Y2). The rows of the board are numbered 1, 2, and so on up to N from top to bottom, and the columns are numbered 1, 2, and so on up to N from left to right. In this way, each square can be represented by a unique pair of coordinates.
Output format
The output is a tour defined as a predicate
move(X1,Y1,X2,Y2). move(X2,Y2,X3,Y3). ... move(Xn,Yn,X1,Y1).
where each atom represents a valid move of the knight, all the squares are connected, and the last move brings the knight back to the origin. Moreover, the path contains all moves specifices by the givenmove predicate.
Example
Input:
size(8). givenmove(7,5,8,7). givenmove(1,7,3,6).
Output:
move(1,1,2,3). move(2,3,4,2). move(4,2,2,1). move(2,1,1,3). move(1,3,2,5). move(2,5,3,7). move(3,7,1,8). move(1,8,2,6). move(2,6,1,4). move(1,4,2,2). move(2,2,3,4). move(3,4,1,5). move(1,5,2,7). move(2,7,4,6). move(4,6,5,8). move(5,8,6,6). move(6,6,5,4). move(5,4,7,5). move(7,5,8,7). move(8,7,6,8). move(6,8,4,7). move(4,7,2,8). move(2,8,1,6). move(1,6,3,5). move(3,5,4,3). move(4,3,5,5). move(5,5,7,4). move(7,4,8,2). move(8,2,6,1). move(6,1,7,3). move(7,3,8,1). move(8,1,6,2). move(6,2,4,1). move(4,1,3,3). move(3,3,4,5). move(4,5,5,3). move(5,3,7,2). move(7,2,5,1). move(5,1,6,3). move(6,3,7,1). move(7,1,8,3). move(8,3,6,4). move(6,4,8,5). move(8,5,7,7). move(7,7,6,5). move(6,5,8,4). move(8,4,7,6). move(7,6,8,8). move(8,8,6,7). move(6,7,8,6). move(8,6,7,8). move(7,8,5,7). move(5,7,3,8). move(3,8,1,7). move(1,7,3,6). move(3,6,4,8). move(4,8,5,6). move(5,6,4,4). move(4,4,5,2). move(5,2,3,1). move(3,1,1,2). move(1,2,2,4). move(2,4,3,2). move(3,2,1,1).
Notes
Appeared at 2nd ASP competition - 2009
Original Author: Neng-Fa Zhou, Affiliation: CUNY Brooklyn College
Author(s)
- Author: Francesco Calimeri
- Affiliation: University of Calabria, Italy
- Author: Maria Carmela Santoro
- Affiliation: University of Calabria, Italy