Size: 2622
Comment:
|
← Revision 9 as of 2011-01-26 14:19:45 ⇥
Size: 2617
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 7: | Line 7: |
Find a tour for the knight piece that starts at any square, travels all squares, and comes back to the origin, following the rules of chess. | Find a tour for the knight piece that starts at any square, travels all squares, and comes back to the origin, following the rules of chess. |
Line 11: | Line 11: |
* '''Input''': {{{size/1 givenmove/4}}} | * '''Input''': {{{size/1, givenmove/4}}} |
Line 16: | Line 16: |
Knight Tour
Contents
Problem Description
Find a tour for the knight piece that starts at any square, travels all squares, and comes back to the origin, following the rules of chess.
Predicates
Input: size/1, givenmove/4
Output: move/4
Input format
The input file contains one atom size(N), which states that the chess board size is N*N and a number of atoms givenmove(X1,Y1,X2,Y2). The rows of the board are numbered 1, 2, and so on up to N from top to bottom, and the columns are numbered 1, 2, and so on up to N from left to right. In this way, each square can be represented by a unique pair of coordinates.
Output format
The output is a tour defined as a predicate
move(X1,Y1,X2,Y2). move(X2,Y2,X3,Y3). ... move(Xn,Yn,X1,Y1).
where each atom represents a valid move of the knight, all the squares are connected, and the last move brings the knight back to the origin. Moreover, the path contains all moves specifices by the givenmove predicate.
Example(s)
Input:
size(8). givenmove(7,5,8,7). givenmove(1,7,3,6).
Output:
move(1,1,2,3). move(2,3,4,2). move(4,2,2,1). move(2,1,1,3). move(1,3,2,5). move(2,5,3,7). move(3,7,1,8). move(1,8,2,6). move(2,6,1,4). move(1,4,2,2). move(2,2,3,4). move(3,4,1,5). move(1,5,2,7). move(2,7,4,6). move(4,6,5,8). move(5,8,6,6). move(6,6,5,4). move(5,4,7,5). move(7,5,8,7). move(8,7,6,8). move(6,8,4,7). move(4,7,2,8). move(2,8,1,6). move(1,6,3,5). move(3,5,4,3). move(4,3,5,5). move(5,5,7,4). move(7,4,8,2). move(8,2,6,1). move(6,1,7,3). move(7,3,8,1). move(8,1,6,2). move(6,2,4,1). move(4,1,3,3). move(3,3,4,5). move(4,5,5,3). move(5,3,7,2). move(7,2,5,1). move(5,1,6,3). move(6,3,7,1). move(7,1,8,3). move(8,3,6,4). move(6,4,8,5). move(8,5,7,7). move(7,7,6,5). move(6,5,8,4). move(8,4,7,6). move(7,6,8,8). move(8,8,6,7). move(6,7,8,6). move(8,6,7,8). move(7,8,5,7). move(5,7,3,8). move(3,8,1,7). move(1,7,3,6). move(3,6,4,8). move(4,8,5,6). move(5,6,4,4). move(4,4,5,2). move(5,2,3,1). move(3,1,1,2). move(1,2,2,4). move(2,4,3,2). move(3,2,1,1).
Notes and Updates
- Training Instances: updated on date 26/01/2011;
- Encoding: updated on date 26/01/2011;
- Specification: updated on date 26/01/2011;
Appeared at 2nd ASP competition - 2009
Original Author: Neng-Fa Zhou, Affiliation: CUNY Brooklyn College
Author(s)
- Author: Francesco Calimeri
- Affiliation: University of Calabria, Italy
- Author: Maria Carmela Santoro
- Affiliation: University of Calabria, Italy