
ASP-Core-2
Input language format

ASP Standardization Working Group
Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski,

Thomas Krennwallner, Nicola Leone, Francesco Ricca, Torsten Schaub

ASP-Core-2
Input language format

Change Log . 3
1 Language Syntax . 4

1.1 Terms. 4
1.2 Naf-Literals. 4
1.3 Aggregate Literals. 4
1.4 Rules. 4
1.5 Weak Constraints. 5
1.6 Queries. 5
1.7 Programs. 5

2 Semantics . 5
2.1 Herbrand Interpretation. 5
2.2 Ground Instantiation. 5
2.3 Term ordering and satisfaction of Naf-Literals. 6
2.4 Satisfaction of Aggregate Literals. 6
2.5 Answer Sets . 7
2.6 Optimal Answer Sets. 7
2.7 Ground Queries. 7
2.8 Non-Ground Queries . 8

3 Syntactic Shortcuts . 8
3.1 Anonymous Variables. 8
3.2 Choice Rules. 8
3.3 Aggregate Relations. 9

4 EBNF Grammar . 10
5 Lexical matching table . 12
6 Using ASP-Core-2 in Practice – Restrictions . 13

6.1 Safety. 13
6.2 Programs with Function symbols and integers. 13
6.3 Aggregate literals. 13
6.4 Non-recursiveness of aggregates and conditional literals. 13
6.5 Restrictions on Disjunction. 14
6.6 Invariance under Undefined Arithmetics. 14
6.7 Predicate arities. 14

Change Log

– V.2.0
• Nov 16th, 2012. First public release of the document (this version).

1 Language Syntax

For the sake of readability, the language specification is herein given in the traditional mathemat-
ical notation. A lexical matching table from the following notation to the actual raw input format
is provided in Section 5.

1.1 Terms.

Terms are either constants, variables, arithmetic terms or functional terms. Constants can be
either symbolic constants (strings starting with some lowercase letter), string constants (quoted
strings) or integers. Variables are denoted by strings starting with some uppercase letter. An
arithmetic term has form −(t) or (t�u) for terms t and u with � ∈ {“+”, “−”, “∗”, “/”}; parentheses
can optionally be omitted in which case standard operator precedences apply. Given a functor f
(the function name) and terms t1, . . . , tn, the expression f (t1, . . . , tn) is a functional term if n > 0,
whereas f () is a synonym for the symbolic constant f .

1.2 Atoms and Naf-Literals.

A predicate atom has form p(t1, . . . , tn), where p is a predicate name, t1, . . . , tn are terms and
n ≥ 0 is the arity of the predicate atom; a predicate atom p() of arity 0 is likewise represented
by its predicate name p without parentheses. Given a predicate atom q, q and ¬q are classical
atoms. A built-in atom has form t ≺ u for terms t and u with ≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”}.
Built-in atoms a as well as the expressions a and not a for a classical atom a are naf-literals.

1.3 Aggregate Literals.

An aggregate element has form
t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are terms and l1, . . . , ln are naf-literals for m ≥ 0 and n ≥ 0.
An aggregate atom has form

#aggr{e1; . . . ; en} ≺ u

where e1, . . . , en are aggregate elements for n ≥ 0, #aggr ∈ {“#count”, “#sum”, “#max”, “#min”}
is an aggregate function name, ≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”} is an aggregate relation and u
is a term. Given an aggregate atom a, the expressions a and not a are aggregate literals.

In the following, we write atom (resp., literal) without further qualification to refer to some
classical, built-in or aggregate atom (resp., naf- or aggregate literal).

1.4 Rules.

A rule has form
h1 | . . . | hm ← b1, . . . , bn.

where h1, . . . , hm are classical atoms and b1, . . . , bn are literals for m ≥ 0 and n ≥ 0.

1.5 Weak Constraints.

A weak constraint has form
� b1, . . . , bn. [w@l, t1, . . . , tm]

where t1, . . . , tm are terms and b1, . . . , bn are literals for m ≥ 0 and n ≥ 0; w and l are terms
standing for a weight and a level. Writing the part “@l” can optionally be omitted if l = 0; that
is, a weak constraint has level 0 unless specified otherwise.

1.6 Queries.

A query Q is of the form q?, where q is a classical atom.

1.7 Programs.

An ASP-Core-2 program is a set of rules and weak constraints, possibly accompanied by a
(single) query. Note that unions of conjunctive queries (and more) can be easily expressed by
means of the inclusion of appropriate rules in the program. A program (a rule, a literal, an atom,
a term, a query) is ground if it contains no variables.

2 Semantics

We herein give the full model-theoretic semantics of ASP-Core-2. As for non-ground programs,
the semantics extends the traditional notion of Herbrand interpretation, taking care of the fact
that all integers are part of the Herbrand universe. The semantics of propositional programs is
based on [10], extended to aggregates according to [6, 7]. Choice atoms [17] are treated in terms
of the reduction given in Section 3.2.

We restrict the given semantics to programs containing non-recursive aggregates (see Sec-
tion 6 for this and further restrictions to the family of allowed programs), for which the general
semantics presented herein is in substantial agreement with a variety of proposals for adding
aggregates to ASP [4, 5, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18].

2.1 Herbrand Interpretation.

Given a program P, the Herbrand universe of P, denoted by UP, consists of all integers and
(ground) terms constructible from constants and functors appearing in P. The Herbrand base
of P, denoted by BP, is the set of all (ground) classical atoms that can be built by combining
predicate names appearing in P with terms of UP as arguments.A (Herbrand) interpretation I
for P is a consistent subset of BP; that is, {q,¬q} * I must hold for each predicate atom q ∈ BP.

2.2 Ground Instantiation.

A substitution σ is a mapping from a set V of variables to the Herbrand universe UP of a given
program P. For some object O (aggregate element, literal, rule, weak constraint, etc.), we denote
by Oσ the object obtained by replacing each variable v ∈ V by σ(v) in O.

A variable is global in a rule or weak constraint r if it appears outside of aggregate elements
in r. A substitution from the set of global variables in r is a global substitution for r; a substitution
from the set of variables in an aggregate element e is a (local) substitution for e. A global sub-
stitution σ for r (or substitution σ for e) is well-formed if the arithmetic evaluation, performed

in the standard way, of any arithmetic subterm (−(t) or (t � u) with � ∈ {“+”, “−”, “∗”, “/”})
appearing outside of aggregate elements in rσ (or appearing in eσ) is well-defined.

Given a collection {e1; . . . ; en} of aggregate elements, the instantiation of {e1; . . . ; en} is the
following set of aggregate elements:

inst({e1; . . . ; en}) =
⋃

1≤i≤n{eiσ | σ is a well-formed substitution for ei}

A ground instance of a rule or weak constraint r is obtained in two steps: (1) a well-formed global
substitution σ for r is applied to r; (2) for every aggregate atom #aggr{e1; . . . ; en} ≺ u appearing
in rσ, {e1; . . . ; en} is replaced by inst({e1; . . . ; en}) (where aggregate elements are syntactically
separated by “;”).

The arithmetic evaluation of a ground instance r of some rule or weak constraint is obtained
by replacing any maximal arithmetic subterm appearing in r by its integer value, which is calcu-
lated in the standard way.1 The ground instantiation of a program P, denoted by grnd(P), is the
set of arithmetically evaluated ground instances of rules and weak constraints in P.

2.3 Term ordering and satisfaction of Naf-Literals.

A classical atom a ∈ BP is true w.r.t. a (consistent) interpretation I ⊆ BP if a ∈ I. To determine
whether a built-in atom t ≺ u (with ≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”}) holds, we rely on a total
order � on terms in UP defined as follows:

– t � u for integers t and u if t ≤ u;
– t � u for any integer t and any symbolic constant u;
– t � u for symbolic constants t and u if t is lexicographically smaller than or equal to u;
– t � u for any symbolic constant t and any string constant u;
– t � u for string constants t and u if t is lexicographically smaller than or equal to u;
– t � u for any string constant t and any functional term u;
– t � u for functional terms t = f (t1, . . . , tm) and u = g(u1, . . . , un) if
• m < n (the arity of t is smaller than the arity of u),
• m ≤ n and g � f (the functor of t is smaller than the one of u, while arities coincide) or
• m ≤ n, f � g and, for any j = 1, . . . ,m such that t j � u j, there is some i = 1, . . . , j−1

such that ui � ti (the tuple of arguments of t is smaller than or equal to arguments of u).

Then, t ≺ u is true w.r.t. I if t � u for ≺ = “≤”; u � t for ≺ = “≥”; t � u and u � t for ≺ = “<”;
u � t and t � u for ≺ = “>”; t � u and u � t for ≺ = “=”; t � u or u � t for ≺ = “,”. A positive
naf-literal a is true w.r.t. I if a is a classical or built-in atom that is true w.r.t. I; otherwise, a is
false w.r.t. I. A negative naf-literal not a is true (or false) w.r.t. I if a is false (or true) w.r.t. I.

2.4 Satisfaction of Aggregate Literals.

An aggregate function is a mapping from sets of tuples of terms to terms. The aggregate functions
associated with aggregate function names introduced in Section 1.3 map a set T of tuples of terms
to a term as follows:

– #count(T) = |T |;
– #sum(T) =

∑
(t1, . . . , tm) ∈ T , t1 is an integer t1;

– #max(T) = max{t1 | (t1, . . . , tm) ∈ T };
– #min(T) = min{t1 | (t1, . . . , tm) ∈ T }.

1 Note that the outcomes of arithmetic evaluation are well-defined relative to well-formed substitutions.

The terms selected by #max(T) and #min(T) are determined relative to the total order � on terms
in UP (see Section 2.3); in the special case of an empty set, i.e. T = ∅, we adopt the convention
that #max(∅) � u and u � #min(∅) for every term u ∈ UP. An expression #aggr(T) ≺ u
is true (or false) for #aggr ∈ {“#count”, “#sum”, “#max”, “#min”}, an aggregate relation ≺ ∈
{“<”, “≤”, “=”, “,”, “>”, “≥”} and a term u if #aggr(T) ≺ u is true (or false) according to the
corresponding definition for built-in atoms given in Section 2.3.

An interpretation I ⊆ BP maps a collection E of aggregate elements to the following set of
tuples of terms:

eval(E, I) = {(t1, . . . , tm) | t1, . . . , tm : l1, . . . , ln occurs in E and l1, . . . , ln are true w.r.t. I}

A positive aggregate literal a = #aggr{e1; . . . ; en} ≺ u is true (or false) w.r.t. I if #aggr(eval({e1;
. . . ; en}, I)) ≺ u is true (or false) w.r.t. I; not a is true (or false) w.r.t. I if a is false (or true)
w.r.t. I.2

2.5 Answer Sets

Given a program P and a (consistent) interpretation I ⊆ BP, a rule h1 | . . . | hm ← b1, . . . , bn.
in grnd(P) is satisfied w.r.t. I if some h ∈ {h1, . . . , hm} is true w.r.t. I when b1, . . . , bn are true
w.r.t. I; I is a model of P if every rule in grnd(P) is satisfied w.r.t. I. The reduct of P w.r.t. I,
denoted by PI , consists of the rules h1 | . . . | hm ← b1, . . . , bn. in grnd(P) such that b1, . . . , bn are
true w.r.t. I; I is an answer set of P if I is a ⊆-minimal model of PI . In other words, an answer
set I of P is a model of P such that no proper subset of I is a model of PI .

The semantics of P is given by the set of all answer sets for it, denoted by AS (P).

2.6 Optimal Answer Sets.

To select optimal answer sets in AS (P), we map an interpretation I for P to the following set of
tuples:

weak(P, I) = {(w@l, t1, . . . , tm) |
� b1, . . . , bn. [w@l, t1, . . . , tm] occurs in grnd(P) and b1, . . . , bn are true w.r.t. I}

For any integer l, let
PI

l =
∑

(w@l, t1, . . . , tm) ∈ weak(P, I), w is an integerw

denote the sum of integers w over tuples with w@l in weak(P, I). Then, an answer set I of P is
dominated by an answer set I′ of P if there is some integer l such that PI′

l < PI
l and PI′

l′ = PI
l′ for

all integers l′ > l. An answer set I of P is optimal if there is no answer set I′ of P such that I
is dominated by I′. Note that a program P that has answer sets might have one or more optimal
answer sets.

2.7 Ground Queries.

Given a ground query Q = q? of a program P, Q is true if ∀I ∈ AS (P) q is true w.r.t. I. Otherwise,
Q is false. Note that, if AS (P) = ∅, all queries are true. Note that query answering, according to
this definition, corresponds to cautious (skeptical) reasoning as defined in [1].

2 In view of the aforementioned extension of � to #max(∅) and #min(∅), the truth values of #min(∅) ≺ u
and #max(∅) ≺ u are well-defined (solely relying on ≺ ∈ {“<”, “≤”, “=”, “,”, “>”, “≥”}). For instance,
#min(eval({0 : p,not p}, I)) > 0 evaluates to true for any interpretation I; this still applies when arbitrary
other terms are used in place of 0. On the other hand, #max(eval({0 : p,not p}, I)) > 0 as well as
#max(eval({0 : p,not p}, I)) = 0 are false w.r.t. any interpretation I.

2.8 Non-Ground Queries

Given the non-ground query Q = q(t1, . . . , tn)? of a program P, let Ans(Q, P) be the set of all
substitutions σ for Q such that Qσ is true. The set Ans(Q, P) constitutes the set of answers to Q.
Note that, if AS (P) = ∅, Ans(Q, P) contains all possible substitutions for Q.

3 Syntactic Shortcuts

This section specifies additional constructs by reduction to the language introduced in Section 1.

3.1 Anonymous Variables.

An anonymous variable in a rule or weak constraint is denoted by “ ” (character underscore).
An occurrence of “ ” stands for a fresh variable in the context of the rule or weak constraint at
hand (i.e., different occurrences of anonymous variables represent distinct variables).

3.2 Choice Rules.

A choice element has form
a : l1, . . . , lk

where a is a classical atom and l1, . . . , lk are naf-literals for k ≥ 0.
A choice atom has form

{e1; . . . ; em} ≺ u

where e1, . . . , em are choice elements for m ≥ 0, ≺ is an aggregate relation (see Section 1.3) and
u is a term. The part “≺ u” can optionally be omitted if ≺ stands for “≥” and u = 0.

A choice rule has form
{e1; . . . ; em} ≺ u← b1, . . . , bn.

where {e1; . . . ; em} ≺ u is a choice atom and b1, . . . , bn are literals for n ≥ 0.
Intuitively, a choice rule means that, if the body of the rule is true, an arbitrary subset of

{e1, . . . , em} can be chosen as true in order to comply with the provided aggregate relation to u.
In the following, this intuition is captured by means of a proper mapping of choice rules to rules
without choice atoms (in the head).

For any predicate atom q = p(t1, . . . , tn), let q̂ = p̂(1, t1, . . . , tn) and ¬̂q = p̂(0, t1, . . . , tn),
where p̂ , p is an (arbitrary) predicate and function name that is uniquely associated with p, and
the first argument (that can be 1 or 0) indicates the “polarity” q or ¬q, respectively.3

Then, a choice rule stands for the rules

ai | âi ← b1, . . . , bn, l1i , . . . , lki .

for each i, (1 ≤ i ≤ m), and for the single constraint

← b1, . . . , bn,not #count{̂a1 : a1, l11 , . . . , lk1 ; . . . ; âm : am, l1m , . . . , lkm } ≺ u.

The first group of rules expresses that the classical atom ai in a choice element ai : l1i , . . . , lki for
1 ≤ i ≤ m can be chosen as true (or false) if b1, . . . , bn and l1i , . . . , lki are true. This “generates” all
subsets of the atoms in choice elements. On the other hand, the second rule, which is an integrity
constraint, requires the condition {e1; . . . ; em} ≺ u to hold if b1, . . . , bn are true.4

3 It is assumed that fresh predicate/function names are outside of possible program signatures and cannot
be used within user input.

4 In disjunctive heads of rules of the first form, an occurrence of âi denotes an (auxiliary) atom that is
linked to the original atom ai. Given the relationship between ai and âi, the latter is reused as a term in

3.3 Aggregate Relations.

An aggregate or choice atom

#aggr{e1; . . . ; em} ≺ u or {e1; . . . ; em} ≺ u

may be written as
u ≺−1 #aggr{e1; . . . ; em} or u ≺−1 {e1; . . . ; em}

where: “<”−1 = “>”; “≤”−1 = “≥”; “=”−1 = “=”; “,”−1 = “,”; “>”−1 = “<”; “≥”−1 = “≤”.
The left and right notation of aggregate relations may be combined in expressions as follows:

u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2 or u1 ≺1 {e1; . . . ; em} ≺2 u2

Such expressions are mapped to available constructs according to the following transformations:

� u1 ≺1 {e1; . . . ; em} ≺2 u2 ← b1, . . . , bn. stands for

u1 ≺1 {e1; . . . ; em} ← b1, . . . , bn.

{e1; . . . ; em} ≺2 u2 ← b1, . . . , bn.

� h1; . . . ; hk ← b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. stands for

h1; . . . ; hk ← b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em}, #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn.

� h1; . . . ; hk ← b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. stands for

h1; . . . ; hk ← b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em}, bi+1, . . . , bn.

h1; . . . ; hk ← b1, . . . , bi−1,not #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn.

� � b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk] stands for

� b1, . . . , bi−1, u1 ≺1 #aggr{e1; . . . ; em}, #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk]

� � b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk] stands for

� b1, . . . , bi−1,not u1 ≺1 #aggr{e1; . . . ; em}, bi+1, . . . , bn. [w@l, t1, . . . , tk]
� b1, . . . , bi−1,not #aggr{e1; . . . ; em} ≺2 u2, bi+1, . . . , bn. [w@l, t1, . . . , tk]

the body of a rule of the second form. That is, we overload the notation âi by letting it stand both for an
atom (in disjunctive heads) and a term (in #count aggregates).

4 EBNF Grammar

<program> ::= <rules> [<query>]

<rules> ::= [<rule> <rules>]

<query> ::= <classic literal> QUERY_MARK

<rule> ::= CONS <body> DOT |

<head> [[CONS] <body>] DOT |

WCONS <body> DOT [<weights_at_levels>]

<head> ::= <disjunction> |

<choice_atom>

<body> ::= <conjunction>

<weights_at_levels> ::= SQUARE_OPEN TERM [AT TERM]

[TERM_SEPARATOR <terms>] SQUARE_CLOSE

<disjunction> ::= [<disjunction> HEAD_SEPARATOR]

<classic_literal>

<conjunction> ::= [<conjunction> BODY_SEPARATOR]

(<naf_literal> | [NAF] <aggregate>)

<choice_atom> ::= [<term> <binop>] CURLY_OPEN <choice_elements>

CURLY_CLOSE [<binop> <term>]

<choice_elements> ::= [<choice_elements> SEMICOLON] <choice_element>

<choice_element> ::= <atom> COLON <naf_literals>

<binop> ::= EQUAL |

UNEQUAL |

LESS |

GREATER |

LESS_OR_EQ |

GREATER_OR_EQ

<arithop> ::= PLUS |

MINUS |

TIMES |

DIV

<aggregate_atom> ::= [<term> <binop>] <aggregate function>

CURLY_OPEN <aggregate_elements>

CURLY_CLOSE <binop> <term> |

<term> <binop> <aggregate function>

CURLY_OPEN <aggregate_elements>

CURLY_CLOSE [<binop> <term>]

<aggregate_elements> ::= [<aggregate_elements> SEMICOLON]

<aggregate_element>

<aggregate_element> ::= <basic_terms> COLON <naf_literals>

<aggregate_function> ::= AGGR_COUNT |

AGGR_MAX |

AGGR_MIN |

AGGR_SUM

<atom> ::= <predicate_name>

[PARAM_OPEN [<terms>] PARAM_CLOSE]

<builtin_atom> ::= <term> <binop> <term>

<classic_literal> ::= [NEG] <atom>

<naf_literals> ::= [<naf_literals> BODY_SEPARATOR] <naf_literal>

<naf_literal> ::= [NAF] <classic_literal> |

<builtin_atom>

<terms> ::= [<terms> TERM_SEPARATOR] <term>

<basic_terms> ::= [<basic_terms> TERM_SEPARATOR] <basic_term>

<term> ::= <basic_term> |

<expression_term> |

<function_term>

<basic_term> ::= <ground_term> |

<variable_term>

<ground_term> ::= SYMBOLIC_CONSTANT |

STRING

<variable_term> ::= VARIABLE |

ANON_VAR

<function_term> ::= <predicate_name> PARAM_OPEN <terms>

PARAM_CLOSE

<expression_term> ::= <expression_term> <arithop>

<expression_term> |

(PARAM_OPEN <expression_term>

PARAM_CLOSE) |

(<ground_term> | VARIABLE)

<predicate_name> ::= ID |

STRING

5 Lexical matching table

Token Name Mathematical Notation Lexical Format
used within this document (exemplified) (Flex Notation)

ID p, P, q1, . . . [A-Za-z][A-Za-z 0-9]*

SYMBOLIC CONSTANT a, b, anna, . . . [a-z][A-Za-z 0-9]*

VARIABLE X,Y,Name, . . . [A-Z][A-Za-z 0-9]*

STRING “http : //bit.ly/cw6lDS”, “Peter”, . . . \"([ˆ\"]|\\\")*\"

ANON VAR " "

NUMBER 1, 0, 100000, . . . [0-9]+

DOT . "."

BODY SEPARATOR , ","

TERM SEPARATOR , ","

QUERY MARK ? "?"

COLON : ":"

SEMICOLON ; ";"

HEAD SEPARATOR | "|"

NEG ¬ "-"

NAF not "not"

CONS ← :-

PLUS + "+"

MINUS − "-"

TIMES ∗ "*"

DIV / "/"

PARAM OPEN ("("

PARAM CLOSE) ")"

SQUARE OPEN ["["

SQUARE CLOSE] "]"

CURLY OPEN { "{"

CURLY CLOSE } "}"

EQUAL = "="

UNEQUAL , "<>" | "!="

LESS < "<"

GREATER > ">"

LESS OR EQ ≤ "<="

GREATER OR EQ ≥ ">="

AGGR COUNT #count "#count"

AGGR MAX #max "#max"

AGGR MIN #min "#min"

AGGR SUM #sum "#sum"

COMMENT \%.*$

MULTI LINE COMMENT \%*.**\%

BLANK [\t\n]+

Lexical values are given in Flex5 syntax. The COMMENT and BLANK tokens can be freely
interspersed amidst other tokens and have no syntactical and semantic meaning.

5 http://flex.sourceforge.net/.

6 Using ASP-Core-2 in Practice – Restrictions

A number of restrictions and specific assumptions must be taken into account while writing ASP-
Core-2 programs (in particular, all the following specifications are assumed within the System
Track of 4th Answer Set Programming Competition).

6.1 Safety.

Programs are assumed to be safe. A program P is safe if all its rules are safe; a rule r is safe if
any variable X appearing in r is safe in the following sense:

1. if X is global, it is safe if either:
– X appears in a positive predicate atom in the body of r, or
– X appears in a builtin atom X = Y � Z in the body of r, having X as its left-hand side,

and Y and Z are safe, or
– X appears in a positive aggregate atom in the form X = # f {Con j} and all other variables

in the atom are safe.
2. if X is local to an aggregate element {V : Conj} appearing as a term in V , then it appears in

an atom of Conj as well.

6.2 Programs with Function symbols and integers.

Programs with function symbols and integers are in principle subject to no restriction. However,
for the sake of Competition, and in order to facilitate implementors, it is prescribed that

– each selected problem encoding P must provably have finitely many finite answer sets for
any of its benchmark instance Bi, that is AS (P ∪ Bi) must be a finite set of finite elements.
“Proofs” of finiteness can be given in terms of membership to a known decidable class of
programs with functions and/or integers, or any other formal mean.

– a bound kP on the maximum nesting level of terms, and a bound mP on the maximum integer
value appearing in answer sets originated from P must be known. That is, for any instance
Bi and for any term t appearing in AS (P∪ Bi), the nesting level of t must not be greater than
kP and, if t is an integer it must not exceed mP.

The values mP and kP will be provided in input to participant systems, when invoked on P.

6.3 Aggregate literals.

For aggregate elements in the form

t1, . . . , tm : l1, . . . , ln

t1, . . . , tm are assumed to be either constants or variables.

6.4 Non-recursiveness of aggregates and conditional literals.

Recursive aggregates shall not appear within an encoding selected for the Competition. Formally,
given a ASP-Core-2 program P, we define the (labeled) dependency graph DG(P) between pred-
icates of P, for which

– a node is present for each predicate p appearing P;

– an arc p← q appears in DG(P) if there is a rule r ∈ P in which p appears in the head and q
appears in a predicate atom in the body;

– an arc p ←a q appears in DG(P) if there is a rule r ∈ P in which p appears in the head and
q appears in an aggregate body atom;

– two arcs p← q and q← p appear in DG(P) if p and q both appear in the head of some rule
r ∈ P.

We say that P has no recursive aggregates (or that P is stratified with respect to aggregation) if
there is no cycle in DG(P) containing an edge of the form p←a q.

6.5 Restrictions on Disjunction.

Arbitrary usage of disjunction in programs might cause a shift in complexity towards F −ΣP
2 [3].

In order to encourage the participation of Systems not implementing full disjunction, encodings
for problems belonging to the P and NP category shall be provided in terms of head-cycle free
programs [2].

6.6 Invariance under Undefined Arithmetics.

While substitutions that lead to undefined arithmetic subterms (and are thus not well-formed)
are “automatically” excluded by ground instantiation as specified in Section 2.2, rooting the
semantics of a program on such clearance would make grounding cumbersome in practice. For
instance, the (single) answer set of the one-rule program p← not q(0/0).must be empty, and any
a priori simplification relying on the absence of a definition for predicate q is probably mistaken.

In order to avoid grounding complications, however, a program P shall be invariant under
undefined arithmetics; that is, grnd(P) shall be equivalent to any ground program P′ obtainable
from P by freely replacing arithmetic subterms with undefined outcomes by arbitrary terms from
UP instead of dropping an underlying (non-well-formed) substitution. As a matter of fact, the
one-rule program considered above does not satisfy this condition (e.g., it is not equivalent to
p ← not q(0).), while the semantics of the alternative program p ← r,not q(0/0). is invariant
under undefined arithmetics.

6.7 Predicate arities.

The arity of predicate names is not assumed to be fixed. Implementors are suggested to issue
proper warning messages, should an input encoding present predicate atoms with different arities
and same predicate name.

Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] Rachel Ben-Eliyahu and Rina Dechter. Propositional Semantics for Disjunctive Logic Pro-
grams. Annals of Mathematics and Artificial Intelligence, 12:53–87, 1994.

[3] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity and
Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–425, 2001.

[4] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald Pfeifer. Ag-
gregate Functions in DLV. In Marina de Vos and Alessandro Provetti, editors, Proceedings
ASP03 - Answer Set Programming: Advances in Theory and Implementation, pages 274–
288, Messina, Italy, September 2003. Online at http://CEUR-WS.org/Vol-78/.

[5] Marc Denecker, Nikolay Pelov, and Maurice Bruynooghe. Ultimate Well-Founded and
Stable Model Semantics for Logic Programs with Aggregates. In Philippe Codognet, editor,
Proceedings of the 17th International Conference on Logic Programming, pages 212–226.
Springer Verlag, 2001.

[6] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recursive aggregates in disjunctive
logic programs: Semantics and complexity. In José Júlio Alferes and João Leite, editors,
Proceedings of the 9th European Conference on Artificial Intelligence (JELIA 2004), vol-
ume 3229 of Lecture Notes in AI (LNAI), pages 200–212. Springer Verlag, September 2004.

[7] Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Semantics and complexity of recur-
sive aggregates in answer set programming. Artificial Intelligence, 175(1):278–298, 2011.
Special Issue: John McCarthy’s Legacy.

[8] Paolo Ferraris. Answer Sets for Propositional Theories. Available via the author’s home-
page at http://www.cs.utexas.edu/users/otto/papers/proptheories.ps, 2004.

[9] Michael Gelfond. Representing Knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors, Computational Logic. Logic Programming and Beyond, volume 2408 of
LNCS, pages 413–451. Springer, 2002.

[10] Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9:365–385, 1991.

[11] David B. Kemp and Peter J. Stuckey. Semantics of Logic Programs with Aggregates. In
Vijay A. Saraswat and Kazunori Ueda, editors, Proceedings of the International Symposium
on Logic Programming (ISLP’91), pages 387–401. MIT Press, 1991.

[12] Mauricio Osorio and Bharat Jayaraman. Aggregation and Negation-As-Failure. New Gen-
eration Computing, 17(3):255–284, 1999.

[13] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Partial stable models for logic
programs with aggregates. In Proceedings of the 7th International Conference on Logic
Programming and Non-Monotonic Reasoning (LPNMR-7), volume 2923 of Lecture Notes
in AI (LNAI), pages 207–219. Springer, 2004.

[14] Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe. Well-founded and Stable Se-
mantics of Logic Programs with Aggregates. Theory and Practice of Logic Programming,
7(3):301–353, 2007.

[15] Nikolay Pelov and Mirosław Truszczyński. Semantics of disjunctive programs with mono-
tone aggregates - an operator-based approach. In Proceedings of the 10th International
Workshop on Non-monotonic Reasoning (NMR 2004), Whistler, BC, Canada, pages 327–
334, 2004.

[16] Kenneth A. Ross and Yehoshua Sagiv. Monotonic Aggregation in Deductive Databases.
Journal of Computer and System Sciences, 54(1):79–97, February 1997.

http://CEUR-WS.org/Vol-78/
http://www.cs.utexas.edu/users/otto/papers/proptheories.ps

[17] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and Implementing the Stable
Model Semantics. Artificial Intelligence, 138:181–234, June 2002.

[18] Allen Van Gelder. The Well-Founded Semantics of Aggregation. In Proceedings of the
Eleventh Symposium on Principles of Database Systems (PODS’92), pages 127–138. ACM
Press, 1992.

	Change Log
	Language Syntax
	Terms.
	Naf-Literals.
	Aggregate Literals.
	Rules.
	Weak Constraints.
	Queries.
	Programs.

	Semantics
	Herbrand Interpretation.
	Ground Instantiation.
	Term ordering and satisfaction of Naf-Literals.
	Satisfaction of Aggregate Literals.
	Answer Sets
	Optimal Answer Sets.
	Ground Queries.
	Non-Ground Queries

	Syntactic Shortcuts
	Anonymous Variables.
	Choice Rules.
	Aggregate Relations.

	EBNF Grammar
	Lexical matching table
	Using ASP-Core-2 in Practice – Restrictions
	 Safety.
	 Programs with Function symbols and integers.
	 Aggregate literals.
	 Non-recursiveness of aggregates and conditional literals.
	 Restrictions on Disjunction.
	 Invariance under Undefined Arithmetics.
	 Predicate arities.

