Fourth ASP Competition
Detailed scoring regulations

The Competition Organizing Committee

Universita della Calabria, Technical University of Vienna

Change Log

— V.2.2, Feb 24th 2013

e Added details to the instance selection procedure
— V.2.1, Feb 14th 2013

e Added instance selection procedure

e Added policy concerning multiple runs
— V.2.00, Nov 16th 2012

e First public version (this document)

1 Scoring System

The final score obtained by a system S in a track 7 consists of the sum over
the scores obtained by S in all benchmarks selected for 7. In particular, a
system could get a maximum of 100 points for each given benchmark problem
P considered for 7. The overall score of a system on a problem P counting N
instances, hereafter denoted by S(P), is computed according to the following
formulas that depend on whether P is a search, query or optimization problem.
For each problem domain we set the maximum execution time t,,; = 600 seconds
and the value a = 50;

Wrong Answers. Should a system S produce an output detected as incorrect! for
at least one instance of P, then S is disqualified from P and S(P) is accordingly
set to zero (i.e., S(P) = 0 in case of incorrect output); otherwise, the following
formulas are applied for computing S(P).

Search and Query Problems. In case of both search and query problems the score
S(P) is computed by the sum

S(P) = Ssol'ue(P) + Stime(P)

where Sgoipe(P) and Siime(P) take into account the number of instances solved
by & in P and the corresponding running times, respectively; in particular

Ssolve(P) = O‘% (1)
~ 100 — « al log(max(1,t;) +)
sune?) = B2 3 (1- (055)))

i=1

where: Ng is the number of instances solved by P within the time limit; ¢, is
the maximum allowed time; ¢; the time spent by S while solving instance i (¢;
is assumed to be lesser or equal to t,ut); s is a shifting factor which controls
how much the logarithmic effect of St is mildened; v is a normalization factor
which is set in order to have Siime = 0 for t; = tour, and Sime = (100 — @) N
when 0 < ¢; < 1; and, « is a percentage factor balancing the impact of Ssoppe(P)
and Syime(P) on the overall score. Both Sspipe(P) and Siime(P) are rounded to
the nearest integer.

As in the 3d ASP Competition, Stime(P) is specified in order to take into
account the “perceived” performance of a system according to a logarithmic
scoring. We set, for this edition of the competition s = 10 and accordingly,

_ log(1+s)
log(tout + 9)

The term max(¢;, 1) has been introduced in order to avoid significant changes
in scores when ¢; < 1. This choice prevents that measurement errors can have

! Tncorrect answers are determined as specified in 1.1

impact on the value of S;me, especially when ¢; is within the order of magnitude
of measurement errors themselves.

The 2011’s definition for Si.ne can be substantially seen as similar to the
above, where 2011’s Sy;me can be seen as having s and v both set to 1, and
without correction for t; < 1. The new value for s avoids the distribution of
too much points for small differences in ¢; in the lower range of St;me, while the
correction max(1,t;) prevents any difference at all when ¢; is below 1 second.

Optimization Problems. As in the previous edition, the score of a system S
in the case of optimization problems depends on whether S was able to find
a solution or not, and in the former case, the score depends on the quality of
the produced solution. In addition, as in the case of decision problems, time
performance is taken into account. We assume the cost function associated with
optimization problems must be minimized (the lower, the better). Optimum
values for objective functions are normalized to 100.

The overall score of a system for an optimization problem P is given by the
sum

S(P) = SOPt(P) + Stime(P)

where Syime (P) is defined as for search problems, and S, (P) takes into account
the quality of the solution found. In particular, for each problem P, system S is
rewarded of a number of points defined as

N
Sopt(P) = a- Z Sti)pt

=1

where, as before, a is a percentage factor balancing the impact of Sy, (P) and
Stime(P) on the overall score, and S;, is computed by properly summing, for
each instance i of P, one or more of these rewards:

1. + points, if the system correctly recognizes an unsatisfiable instance;

2. 7y points, if the system produces a correct witness;

3. 7x points, if the system correctly recognizes an optimum solution and out-
puts it (can be awarded together with point 2 above);

4. ﬁ - eM=Q points, where @ denotes the quality of the solution produced
by the system and M denotes the quality of the best answer produced by
any system for the current instance, for M conventionally set to 100, and @

normalized accordingly.

Taking into account that an incorrect answer causes the whole benchmark to
pay no points, three scenarios may come out: timeout, unsatisfiable instance, or
solution produced. Note thus that the score of point 1 cannot be rewarded for
the same instance together with the other quotas.

Note that a system producing a solution with a quality gap of 1% with respect
to the best solution gets only 35 points (over a range of 100) and the quality
score quota rapidly decreases (it is basically 0 for quality gap > 4%), so that
small incremental gains in the quality of a solution determine a strong difference
in scoring. Recall that Si;me is awarded only if the optimal solution is found.

1.1 Detection of Incorrect Answers.

Each benchmark domain P is equipped with a checker program Cp taking as
input values a witness A and an instance I, and such that Cp(A,I) = “true”
in case A is a valid witness for I w.r.t problem P. The collection of checkers
underwent a proper review process and is pragmatically assumed to be correct.

Suppose that a system S is faulty for instance I of problem P; then, there are
two possible scenarios in which incorrect answers need detection and subsequent
disqualification for a given system:

— & produces an answer A, and A is not a correct solution (either because I
is actually unsatisfiable or A is wrong at all). This scenario is detected by
checking the output of Cp(A,T);

— &S answers that the instance is not satisfiable, but actually I has some witness.
In this case, we check whether a second system S’ produced a solution A’
for which Cp(A’,T) is true.

Concerning optimization problems, checkers produce also the cost C of the
given witness. This latter value is considered when computing scores and for
assessing answers of systems. Note that cases of general failure (e.g. out of mem-
ory, other abrupt system failures) are not subject of disqualification on a given
benchmark.

If a solver marks an answer as optimal for the instance of an optimization
problem, and no solver finds a better witness, this is pragmatically assumed
to be the optimal solution. In general, we take the best witness found as the
“imperfect optimal solution”.

As alast remark, note that in the setting of the System Track, where problem
encodings are fixed, a single stability checker for answer sets could replace our
collection of checkers. We prefer to exploit already available checker modules,
which will be also used for assessing the correctness of fixed official encodings
set for the System Track.

2 Score averaging policy in case of multiple runs

The Competition is run multiple times across all domains and selected instances.
The following averaging policies apply depending on whether we consider Ssope,
Sopt OF Stime. Let n be the chosen number of runs:

— Ssotve and Sope. As for these score quotas we aim at measuring which is
the minimum performance guaranteed by a solver over a given instance.
For instance, if over the n runs a given participant times out at least once
for a given instance I, this is indicative of the fact that the solver does
not guarantee termination within time-out for I, thus we should attribute
Ssolve =0.

To this end, for each instance, the minimum value measured for S, and
Sopt over the n runs is awarded.

— Stime- This quota, which is the most affected by computation glitches, is av-
eraged over all runs. Note that we average St;m. values, instead of computing
Stime over the average of time values.

Other settings. The organizing committee keeps a neutral position and do not
discloses any material submitted by participants until the end of the competi-
tion: however, participants are allowed to share their own work willingly at any
moment. All participants agree implicitly that any kind of submitted material
(system binaries, scripts, problems encodings, etc.) will be made public after the
competition, so to guarantee transparency and reproducibility.

3 Instance Selection

3.1 Selection Requirements

— The selection system depends on a unique, not controllable by the organizer,
random seed value;

— Instances are roughly ordered by some difficulty criterion provided by domain
maintainers;

— Hash values of instance files, and the fixed ordering of instances is known
before the Competition run;

— The selection criterion must be unique and applied rigidly to each benchmark
domain. I.e. it must be impossible in practice, for organizers, to possibly forge
the selection of instances in one domain without altering, out of control, the
selection of instances in the other domains.

3.2 Instance Selection procedure

In the following, let S be the Competition seed, R be the number of instances per
benchmark to be selected. Let norm = 255. Let D a benchmark domain, Lp its
ordered set of available instances with |Lp| = Np. We denote as Lp[i] the i-th
instance. We adopt a variant of systematic sampling in order to roughly ensure a
fair selection over the whole family Lp, as follows: Let Start, Perturby, ..., Perturbgr
be values systematically generated from S where Start ranges from 0 to Norm
and each Perturb; ranges from —1.5 to 1.5. Then, we have:

Step = N—}f, Startp = Stepii‘;;’i. Then we select, for all i (1 < i < R), all
the instances

Lp [round(max(0, min(Np, Startp + i = Step + Perturb)))]

Here round(n) is n rounded to the nearest integer. In the cases in which Step <
Perturb;+1 — Perturb; for some i (a case possible when Step < 3), we set
Perturbi + 1 = Perturb; + 1.

Technical notes. Given the random seed S (a positive integer value), Start and
Perturb values are given by generating a RC4 byte stream with key S, and taking
values from its 1001-th byte. Let R[i] be the i-th byte of the obtained stream.
We set Start = R[1001] and for any ¢, Perturb; = R[1000 + ¢]/Norm % 3 — 1.5.

