
Under consideration for publication in Theory and Practice of Logic Programming 1

The Design of the Fifth Answer Set Programming
Competition

Francesco Calimeri and Francesco Ricca
Dipartimento di Matematica e Informatica, Università della Calabria, Italy

Martin Gebser∗
Helsinki Institute for Information Technology HIIT

Department of Information and Computer Science, School of Science, Aalto University, Finland

Marco Maratea
Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, Università di Genova, Italy

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Answer Set Programming (ASP) is a well-established paradigm of declarative programming that has been
developed in the field of logic programming and nonmonotonic reasoning. Advances in ASP solving tech-
nology are customarily assessed in competition events, as it happens for other closely-related problem-
solving technologies such as SAT/SMT, QBF, Planning and Scheduling, etc. ASP Competitions are (usu-
ally) biennial events; however, the Fifth ASP Competition departs from tradition, in order join in the FLoC
Olympic Games at the Vienna Summer of Logic 2014, which is expected to be the largest event in the his-
tory of logic. This edition of the ASP Competition series is jointly organized by the University of Calabria
(Italy), the Aalto University (Finland), and the University of Genova (Italy), and is affiliated with the 30th
International Conference on Logic Programming (ICLP 2014). It features a completely re-designed setup,
with novelties involving the design of tracks, the scoring schema, and the adherence to a fixed modeling
language in order to push the adoption of the ASP-Core-2 standard. Benchmark domains are taken from
past editions, and best system packages submitted in 2013 are compared with new versions and solvers.

1 Introduction

Answer Set Programming (Baral 2003; Eiter et al. 2000; Eiter et al. 1997; Eiter et al. 2009;
Gelfond and Leone 2002; Gelfond and Lifschitz 1991; Lifschitz 1999; Marek and Truszczyński
1999) is a well-established declarative programming approach to knowledge representation and
reasoning, proposed in the area of nonmonotonic reasoning and logic programming, with close
relationship to other formalisms such as SAT, SAT Modulo Theories, Constraint Handling Rules,
PDDL, and many others. The Answer Set Programming (ASP) Competition is a (usually) bien-
nial event whose goal is to access the state of the art in ASP solving (see, e.g., (Alviano et al.
2013b; Dal Palù et al. 2009; Gebser et al. 2013; Gebser et al. 2012a; Giunchiglia et al. 2006;
Janhunen et al. 2006; Leone et al. 2006; Lin and Zhao 2004; Liu et al. 2012; Mariën et al. 2008;
Simons et al. 2002) on challenging benchmarks. This year we depart from the usual timeline,
and the event takes place one year after the Fourth ASP Competition1; basically, the two main

∗ Also affiliated with the University of Potsdam, Germany.
1 https://www.mat.unical.it/aspcomp2013/



2 Francesco Calimeri, Martin Gebser, Marco Maratea, Francesco Ricca

reasons are: (i) to be part of the Vienna Summer of Logic (VSL)2, which is expected to be the
largest event in the history of logic, and (ii) to “push” the adoption of the new language standard
ASP-Core-23: in 2013 it was not fully supported by most participants, and/or the submitters did
not have enough time to integrate new language features in a completely satisfactory way.

In this paper we report about the design of the Fifth ASP Competition4, jointly organized by
the University of Calabria (Italy), the Aalto University (Finland), and the University of Genova
(Italy). The event is part of the FLoC Olympic Games5 at VSL 2014, and is affiliated with the
30th International Conference on Logic Programming (ICLP 2014)6. The basis is a re-run of
the System Track of the 2013 edition, i.e., same ASP solvers, and essentially same domains.
Additionally, (i) we have given the participants the opportunity to submit updated versions of
the solvers, yet the call was open to new participants; (ii) we have also reconsidered problem
encodings, providing new versions for almost all problems; (iii) the domains have not been
classified simply by taking into account the “complexity” of the encoded problems (as in past
events), but also considering the language features involved in the encoding (e.g., choice rules,
aggregates, presence of queries). This was intended not only to widen participation, but also
in order to be able to measure both the progress of each solver, and of the state of the art in
ASP solving, and draw a more complete picture about the approaches that can efficiently solve
problems with different features, while still contributing to push the new standard.

The present report is structured as follows. Section 2 illustrates the setting of the competition,
while Section 3 and Section 4 present the problem domains and ASP solvers taking part in the
competition, respectively. The report ends by drawing some final remarks in Section 5.

2 Format of the Fifth ASP Competition

In this section, we illustrate the settings of the competition, focusing on the differences intro-
duced with respect to the previous editions. The competition builds on the basis of the last com-
petition, with each participant in the last edition having the chance (but not the obligation) to
submit an updated version, and the focus is on the System Track. As already discussed in Sec-
tion 1, this can be seen, in a sense, as a special edition of the competition series, and the format
changes accordingly, especially when looking at track structure and scoring system.

We decided first to simplify the scoring system w.r.t. the last edition (see (Alviano et al.
2013a)), and to improve it in the case of optimization problems.

As far as the language is concerned, in order to encourage new teams and research groups
to join the event, we completely redesigned the tracks, which are now conceived on language
features, other than on a complexity basis. It now makes sense, for a brand new system, or even
a preliminary/experimental new version of an old one, to take part only in some tracks, i.e., the
ones featuring the subset of the language it correctly supports. In addition, this choice should
pave the way to more interesting analyses, such as measuring the progress of a solver, as well of
the state of the art, while still contributing to push the standardization process forward, one of
the main goal of the competition series. Furthermore, the tracks are supposed to draw a clearer
and more complete picture about what (combinations of) techniques work for a particular set of

2 http://vsl2014.at/
3 https://www.mat.unical.it/aspcomp2013/ASPStandardization/
4 https://www.mat.unical.it/aspcomp2014/
5 http://vsl2014.at/olympics/
6 http://users.ugent.be/˜tschrijv/ICLP2014/



The Design of the Fifth Answer Set Programming Competition 3

features, which, in our opinion, is more interesting, from a scientific point of view, than merely
reporting the winners.

In the following, we briefly recall the previous competition format, before discussing the new
one: we will illustrate categories and tracks, and present the scoring system in detail, along with
a proper overview of general rules; eventually, we will provide the reader with some information
about the competition infrastructure.

Previous Competition format. The Fourth ASP Competition (Alviano et al. 2013a) consisted of
two different tracks, adopting the distinction between Model&Solve and System Track. Both
tracks featured a selected suite of domains, chosen by means of an open Call for Problems stage.
The System Track was conceived with the aim of fostering the language standardization, and let
the competitors compare each other on fixed encodings under predefined conditions, excluding,
e.g., domain-tailored evaluation heuristics and custom problem encodings. The Model&Solve
Track was instead left open to any system loosely based on a declarative specification language,
with no constraints on the declarative language. Indeed, the spirit of this track was to encourage
the development of new declarative constructs and/or new modeling paradigms and to foster the
exchange of ideas between communities in close relationships with ASP, besides the stimulation
of the development of new ad-hoc solving methods, refined problem specifications and solving
heuristics, on a per domain basis.

New Competition format. First of all, given what has already been discussed above, along with
the fact that we aim to focus on language features, there is no Model&Solve Track in this edition.
The competition will take place, then, in the spirit of the former System Track: it was open to
any general-purpose solving system, provided it was able to parse the ASP-Core-2 input format.
Encodings for each problem selected for the competition, along with instance data, have been
chosen by the Organizing Committee (see Section 3); participant systems will be run in a uniform
setting, on each problem and instance thereof (out-of-the-shelf setting). Furthermore, sub-tracks
are not based on “complexity” of problems (as in past events), but rather take into consideration
language features, as already discussed above.

Competition Categories. The competition consists of two categories, depending on the compu-
tational resources allocated to each running system:

• SP: One processor allowed;
• MP: Multiple processors allowed.

While the SP category aims at sequential solving systems, parallelism can be exploited in the
MP category.

Competition Tracks. As stated by the Call for Participation, according to the availability of
benchmarks, to submitted systems, and to participants feedback, both categories of the com-
petition are structured into four tracks, which are described next.

• Track #1: Basic Decision. Encodings: normal logic programs, simple arithmetic and com-
parison operators.

• Track #2: Advanced Decision. Encodings: full language, with queries, excepting optimiza-
tion statements and non-HCF disjunction.

• Track #3: Optimization. Encodings: full language with optimization statements, excepting
non-HCF disjunction.



4 Francesco Calimeri, Martin Gebser, Marco Maratea, Francesco Ricca

• Track #4: Unrestricted. Encodings: full language.

Scoring system. The scoring system adopted simplifies the ones from the Third and Fourth ASP
Competitions. In particular, it balances the following factors:

• Problems are always weighted equally.
• If a system outputs an incorrect answer to some instance of a problem, this should invali-

date its score for the problem, even if all other instances are correctly solved.
• In case of Optimization problems, scoring is mainly be based on solution quality.

In general, 100 points can be earned for each benchmark problem. The final score of a solving
system will hence consist of the sum of scores over all problems.

Scoring Details. For Decision and Query problems, the score of a solver S on a problem P

featuring N instances is computed as

S(P ) =
NS ∗ 100

N

where NS is the number of instances solved within the allotted time and memory limits.
For Optimization problems, solvers are ranked by solution quality. Let M be the number of

participant systems; then, the score of a solver S for an instance I of a problem P featuring N

instances is computed as

S(P, I) =
MS(I) ∗ 100

M ∗N
where MS(I) is

• 0, if S did neither provide a solution, nor report unsatisfiability, or
• the number of participant solvers that did not provide any strictly better solution than S,

where a confirmed optimum solution is considered strictly better than an unconfirmed one,
otherwise.

The score S(P ) of a solver S for problem P consists of the sum of scores S(P, I) over all N
instances I featured by P . Note that, as with Decision and Query problems, S(P ) can range from
0 to 100.

Global Ranking. The global ranking for each track, and the overall ranking, is obtained by
awarding each participant system the sum of its scores over all problems; systems are ranked
by their sums, in decreasing order. In case of a draw over sums of scores, the sum of run-times is
taken into account as a tie-breaker, in favor, of course, of the system whose run-time is smaller.

Verification of Answers. Each benchmark domain P is equipped with a checker program CP

that takes as input both an instance I and a corresponding witness solution A, and it is such that
CP (A, I) = true in case A is a valid witness for I w.r.t. P .

Let us suppose that a system S is faulty for an instance I of a problem P ; then, there are two
possible ways to detect incorrect behavior, and subsequently disqualify system S for P :

• S produces an answer A, but A is not a correct solution for I . This case is detected by
checking the outcome of CP (A, I).



The Design of the Fifth Answer Set Programming Competition 5

• S recognizes instance I as unsatisfiable, but I actually has some witness solution. In this
case, it is checked whether another system S′ produced a solution A′ for which CP (A

′, I)

is true.

A case of general failure (e.g., “out of memory” errors or some other abrupt system failures)
does not imply disqualification on a given benchmark.

When dealing with Optimization problems, checkers produce also the cost of the (last) witness.
This latter value is considered when computing scores and assessing answers of systems. Given
an instance I for an Optimization problem P , in general, the cost of best witnesses found over all
participants is taken as the imperfect optimum. When a system S marks its witness A as optimal
for I:

• if no other system finds a better witness for I , A is pragmatically assumed to be optimal;
• if the cost of A turns out to be different from the imperfect optimum for I , S is disqualified

on P .

Software and Hardware settings. The competition is run on a Debian Linux server (64bit ker-
nel), featuring Intel Xeon X5365 Processors with 8MB of cache and 16GB of RAM. Time and
memory for each run are limited to 10 minutes and 6GB, respectively. Participants can exploit up
to 8 cores in the MP category, whereas the execution is constrained to 1 core in the SP category.
The execution environment is composed of a number of scripts, and performance is measured
using the pyrunlim tool7.

3 Benchmark Suite

The benchmark domains in this edition of the ASP Competition largely coincide with the ones
from 2013. Although ASP-Core-2 encodings had already been made available one year ago, most
participants then lacked preparation time and could not submit appropriate systems. In fact, half
of the systems in 2013 were run on “equivalent” encoding reformulations in legacy formats. In the
meantime, however, the ASP-Core-2 compliant grounder GRINGO-4 became available, furnishing
an off-the-shelf front-end for solvers operating at the propositional level.

As described in Section 2, the benchmarks in the Fifth ASP Competition are categorized
into tracks based on the language features utilized by encodings. Table 1 provides a respec-
tive overview, grouping benchmark domains in terms of language features in the ASP-Core-2

encodings from 2013. That is, the 2013 encodings for Labyrinth and Stable Marriage belong to
the Basic Decision track, and the “D” entries in the second column indicate that both domains
deal with Decision problems. The Advanced Decision track includes the sixteen 2013 encod-
ings for the domains in rows from Bottle Filling to Weighted-Sequence Problem. Among them,
the Reachability domain aims at Query answering, as indicated by “Q” in the second column.
The following four rows marked with “O” provide the domains in the Optimization track. Fi-
nally, the last four rows give the encodings in the Unrestricted track, where Abstract Dialectical
Frameworks is an Optimization problem and Strategic Companies deals with Query answering.

The third column of Table 1 indicates particular language features of the encodings from the
Fourth ASP Competition. While merely normal rules and comparison operators, considered as

7 https://github.com/alviano/python/



6 Francesco Calimeri, Martin Gebser, Marco Maratea, Francesco Ricca

Table 1. Benchmark Suite of the Fifth ASP Competition
Domain P 2013 Encoding 2014 Encoding
Labyrinth D basic, non-tight basic, non-tight
Stable Marriage D basic basic

Bottle Filling D aggr aggr, choice
Graceful Graphs D choice# choice#

Graph Colouring∗ D disj basic

Hanoi Tower∗ D disj basic

Incremental Scheduling D aggr, choice# aggr, choice#

Knight Tour with Holes∗ D disj, non-tight basic, non-tight
Nomystery D aggr, choice# choice#

Partner Units D aggr, disj, non-tight aggr, choice
Permutation Pattern Matching D choice# choice

Qualitative Spatial Reasoning D choice#, disj disj

Reachability Q non-tight n/a
Ricochet Robots D choice# aggr, choice#

Sokoban D aggr, choice# choice#

Solitaire D choice# aggr, choice#

Visit-all∗ D aggr, choice# basic

Weighted-Sequence Problem D choice# aggr, choice
Connected Still Life O aggr, choice#, non-tight aggr, choice, non-tight
Crossing Minimization O disj aggr, choice
Maximal Clique O disj basic

Valves Location O aggr, choice#, non-tight aggr, choice#, non-tight
Abstract Dialectical Frameworks O aggr, disj, level, non-tight aggr, disj, level, non-tight
Complex Optimization D choice, disj, non-tight choice, disj, non-tight
Minimal Diagnosis D disj, non-tight disj, non-tight
Strategic Companies Q disj, non-tight n/a

“basic” features, are used for Stable Marriage, the Basic Decision encoding for Labyrinth in-
duces “non-tight” ground instances with positive recursion among atoms (Fages 1994; Erdem
and Lifschitz 2003). The use of aggregates like #count, #sum, #max, and #min (Faber et al.
2008; Calimeri et al. 2013), e.g., in the Advanced Decision encoding for Bottle Filling, is indi-
cated by an “aggr” entry. Moreover, “disj” denotes proper disjunctions in rule heads (Gelfond
and Lifschitz 1991; Eiter and Gottlob 1995), as utilized in the 2013 encoding for Graph Colour-
ing. Choice rules (Simons et al. 2002; Calimeri et al. 2013) are indicated by a “choice” entry,
where the superscript “#” stands for non-trivial lower and/or upper bounds on the number of
chosen atoms, e.g., used in the Advanced Decision encoding for Graceful Graphs. Unlike that,
the choice rules for Complex Optimization in the Unrestricted track are unbounded, and thus “#”
is omitted in its row. Finally, Abstract Dialectical Frameworks is the only Optimization problem
in the Fifth ASP Competition for which more than one “level” (Simons et al. 2002; Leone et al.
2006) is used in the encoding.

Compared to the Fourth ASP Competition, we decided to drop the Chemical Classification
domain, whose large encoding imposed primarily a grounding bottleneck. On the other hand,
we reintroduced the application-oriented Partner Units domain, reusing encodings and instances
submitted to the Third ASP Competition. In order to furnish a novel benchmark collection for
this year, we also devised new encoding variants utilizing the language features indicated in the
fourth column of Table 1. The 2014 encodings for the domains marked with “∗” omit advanced



The Design of the Fifth Answer Set Programming Competition 7

language features of their 2013 counterparts, so that the Basic Decision track on new encodings
comprises six benchmark domains. By evaluating the participant systems on previous as well
as new encodings, we hope to gain insights regarding the impact of encodings on system per-
formance. In fact, for all domains but Reachability and Strategic Companies aiming at Query
answering, we could make substantial modifications to previously available encodings.

The instances to run in the Fifth ASP Competition have been randomly selected from the
suites submitted in 2013 (or 2011 for Partner Units), using the concatenation of winning numbers
from the EuroMillions lottery of Tuesday, 22nd April 2014, as random seed. In this way, twenty
instances were picked per domain in order to assess the participant systems both on the encodings
from 2013 as well as their new variants.

4 Participants

In this section, we briefly present all participants; we refer the reader to the official competition
website (Calimeri et al. 2014) for further details.

The competition featured 16 systems coming from three teams:
• The Aalto team from the Aalto University submitted nine solvers, working by means

of translations (Bomanson and Janhunen 2013; Gebser et al. 2014; Liu et al. 2012;
Nguyen et al. 2011). Three systems, LP2SAT3+GLUCOSE, LP2SAT3+LINGELING, and
LP2SAT3+PLINGELING-MT, rely on translation to SAT, which includes the normalization
of aggregates as well as the encoding of level mappings for non-tight problem instances.
The latter part is expressed in terms of bit-vector logic or acyclicity checking, respectively,
supported by the back-end SMT solvers of the LP2BV2+BOOLECTOR and LP2GRAPH sys-
tems. While the aforementioned systems do not support optimization and participate in
the Basic and Advanced Decision tracks (#1 and #2) only, LP2MAXSAT+CLASP, LP2MIP2,
and LP2MIP2-MT, running CLASP as a Max-SAT solver or the Mixed Integer Programming
solver CPLEX as back-ends, respectively, compete in the Optimization track (#3) as well.
Finally, LP2NORMAL2+CLASP normalizes aggregates (of up to certain size) and uses CLASP

as back-end ASP solver; LP2NORMAL2+CLASP participates in all four tracks and thus also
in the Unrestricted track (#4). All systems by the Aalto team utilize GRINGO-4 for ground-
ing, and neither of them supports Query problems (Reachability and Strategic Companies).
The systems LP2SAT3+PLINGELING-MT and LP2MIP2-MT exploit multi-threading and run in
the MP category, while the other, sequential systems participate in the SP category.

• The Potassco team from the University of Potsdam submitted the sequential system CLASP

(Gebser et al. 2012a) in the SP category and the multi-threaded CLASP-MT system (Gebser
et al. 2012b) in the MP category. Both systems utilize GRINGO-4 for grounding and CLASP,
a native ASP solver for (extended) disjunctive logic programs based on conflict-driven
learning, as back-end. The systems participate in all tracks, except for the Query problems.

• The Wasp team from the University of Calabria submitted five incarnations of WASP (Al-
viano et al. 2013b; Alviano et al. 2014), a native ASP solver built upon techniques origi-
nally introduced in SAT, yet extended and combined with techniques specifically designed
for solving disjunctive logic programs, in the SP category. Unlike WASP-1, utilizing a proto-
type version of DLV (to cope with the ASP-Core-2 language) for grounding, WASP-2 relies
on GRINGO-4 and further differs from WASP-1 in the implementation of support inferences
and program simplifications. Moreover, WASP-1.5 is a hybrid system combining WASP-1
and WASP-2, basically switching between them depending on whether a logic program is



8 Francesco Calimeri, Martin Gebser, Marco Maratea, Francesco Ricca

HCF or subject to a Query. While WASP-1 and WASP-1.5 compete in all domains and tracks,
WASP-2 does not participate in the Unrestricted track (#4). Finally, the WASP-WMSU1-ONLY-
WEAK and WASP-WPM1-ONLY-WEAK systems are specifically designed for solving optimiza-
tion problems and thus participate in the Optimization track (#3) only.

In summary, similarly to past competitions, we can identify two main ASP solving approaches:
• “native” systems, which exploit techniques purposely conceived/adapted for dealing with

logic programs under the stable models semantics, and
• “translation-based” systems, which (roughly) at some stage of the evaluation process pro-

duce an intermediate specification in some different formalism, which is then fed to a
corresponding solver.

The solvers submitted by the Potassco and Wasp teams as well as the LP2NORMAL2+CLASP system
by the Aalto team rely on the first approach, while the remaining systems by the Aalto team are
of the second kind.

It is worth mentioning that, in order to assess the improvements in system implementation, we
also ran a selection of systems that were submitted in the Fourth ASP Competition. In particular,
we considered one system per team selected according to the following criteria: (i) it features an
updated version in this year’s edition, (ii) it is compliant with ASP-Core-2, and (iii) it performed
best in the Fourth ASP Competition among the systems submitted by the same team.

5 Conclusions

The Fifth ASP Competition is jointly organized by the University of Calabria (Italy), the Aalto
University (Finland), and the University of Genova (Italy), and is affiliated with the 30th In-
ternational Conference on Logic Programming (ICLP 2014). The main goals of the Fifth ASP
Competition are to measure the advances of the state of the art in ASP solving and to push the
adoption of the ASP-Core-2 standard format. In this paper, the design of the fifth edition of the
ASP Competition was presented, along with an overview of the participants.

The results will be announced in Vienna at ICLP 2014, which is part of the Federated Logic
Conference. Participants will be awarded in a ceremony organized by the FLoC Olympic Games
at the Vienna Summer of Logic, taking place on Monday, 21th July 2014.

References

ALVIANO, M., CALIMERI, F., CHARWAT, G., DAO-TRAN, M., DODARO, C., IANNI, G., KRENNWALL-
NER, T., KRONEGGER, M., OETSCH, J., PFANDLER, A., PÜHRER, J., REDL, C., RICCA, F., SCHNEI-
DER, P., SCHWENGERER, M., SPENDIER, L., WALLNER, J., AND XIAO, G. 2013a. The fourth answer
set programming competition: Preliminary report. In Proceedings of the 12th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’13). Springer-Verlag, 42–53.

ALVIANO, M., DODARO, C., FABER, W., LEONE, N., AND RICCA, F. 2013b. Wasp: A native ASP solver
based on constraint learning. In Proceedings of the 12th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’13). Springer-Verlag, 54–66.

ALVIANO, M., DODARO, C., AND RICCA, F. 2014. Preliminary report on WASP 2.0. In Proceedings of
the 15th International Workshop on Non-Monotonic Reasoning (NMR’14).

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press.

BOMANSON, J. AND JANHUNEN, T. 2013. Normalizing cardinality rules using merging and sorting con-
structions. In Proceedings of the 12th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’13). Springer-Verlag, 187–199.



The Design of the Fifth Answer Set Programming Competition 9

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T., LEONE, N.,
RICCA, F., AND SCHAUB, T. 2013. ASP-Core-2: 4th ASP competition official input language format.
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf.

CALIMERI, F., GEBSER, M., MARATEA, M., AND RICCA, F. 2014. The fifth answer set programming
competition homepage. https://www.mat.unical.it/aspcomp2014/.

DAL PALÙ, A., DOVIER, A., PONTELLI, E., AND ROSSI, G. 2009. GASP: Answer set programming with
lazy grounding. Fundamenta Informaticae 96, 3, 297–322.

EITER, T., FABER, W., LEONE, N., AND PFEIFER, G. 2000. Declarative problem-solving using the DLV
system. In Logic-Based Artificial Intelligence. Kluwer Academic Publishers, 79–103.

EITER, T. AND GOTTLOB, G. 1995. On the computational cost of disjunctive logic programming: Propo-
sitional case. Annals of Mathematics and Artificial Intelligence 15, 3-4, 289–323.

EITER, T., GOTTLOB, G., AND MANNILA, H. 1997. Disjunctive Datalog. ACM Transactions on Database
Systems 22, 3, 364–418.

EITER, T., IANNI, G., AND KRENNWALLNER, T. 2009. Answer set programming: A primer. In Tutorial
Lectures of the 5th International Summer School on Semantic Technologies for Information Systems
(Reasoning Web). Springer-Verlag, 40–110.

ERDEM, E. AND LIFSCHITZ, V. 2003. Tight logic programs. Theory and Practice of Logic Program-
ming 3, 4-5, 499–518.

FABER, W., PFEIFER, G., LEONE, N., DELL’ARMI, T., AND IELPA, G. 2008. Design and implementation
of aggregate functions in the DLV system. Theory and Practice of Logic Programming 8, 5-6, 545–580.

FAGES, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of Methods of
Logic in Computer Science 1, 1, 51–60.

GEBSER, M., JANHUNEN, T., AND RINTANEN, J. 2014. Answer set programming as SAT modulo acyclic-
ity. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI’14).

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012a. Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence 187-188, 52–89.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012b. Multi-threaded ASP solving with clasp. Theory
and Practice of Logic Programming 12, 4-5, 525–545.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2013. Advanced conflict-driven disjunctive answer set
solving. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13).
IJCAI/AAAI Press, 912–918.

GELFOND, M. AND LEONE, N. 2002. Logic programming and knowledge representation – the A-Prolog
perspective. Artificial Intelligence 138, 1-2, 3–38.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2006. Answer set programming based on proposi-
tional satisfiability. Journal of Automated Reasoning 36, 4, 345–377.

JANHUNEN, T., NIEMELÄ, I., SEIPEL, D., SIMONS, P., AND YOU, J. 2006. Unfolding partiality and
disjunctions in stable model semantics. ACM Transactions on Computational Logic 7, 1, 1–37.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.
The DLV system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7, 3, 499–562.

LIFSCHITZ, V. 1999. Answer set planning. In Proceedings of the 16th International Conference on Logic
Programming (ICLP’99). MIT Press, 23–37.

LIN, F. AND ZHAO, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial
Intelligence 157, 1-2, 115–137.

LIU, G., JANHUNEN, T., AND NIEMELÄ, I. 2012. Answer set programming via mixed integer program-
ming. In Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning (KR’12). AAAI Press, 32–42.



10 Francesco Calimeri, Martin Gebser, Marco Maratea, Francesco Ricca

MAREK, V. AND TRUSZCZYŃSKI, M. 1999. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm – A 25-Year Perspective. Springer-Verlag, 375–398.

MARIËN, M., WITTOCX, J., DENECKER, M., AND BRUYNOOGHE, M. 2008. SAT(ID): Satisfiability
of propositional logic extended with inductive definitions. In Proceedings of the 11th International
Conference on Theory and Applications of Satisfiability Testing (SAT’08). Springer-Verlag, 211–224.

NGUYEN, M., JANHUNEN, T., AND NIEMELÄ, I. 2011. Translating answer-set programs into bit-vector
logic. In Proceedings of the 19th International Conference on Applications of Declarative Program-
ming and Knowledge Management (INAP’11) and the 25th Workshop on Logic Programming (WLP’11).
Springer-Verlag, 95–113.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model se-
mantics. Artificial Intelligence 138, 1-2, 181–234.


