
Intro
ASP

Disjunction
ASP Solvers

Answer Set Programming for the Semantic Web

Tutorial

Thomas Eiter, Roman Schindlauer (TU Wien)
Giovambattista Ianni (TU Wien, Univ. della Calabria)

Axel Polleres (Univ. Rey Juan Carlos, Madrid)

Supported by IST REWERSE, FWF Project P17212-N04, CICyT project TIC-2003-9001-C02.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Unit 1 � ASP Basics

T. Eiter

KBS Group, Institute of Information Systems, TU Vienna

European Semantic Web Conference 2006

presented by A.Polleres, G. Ianni

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Unit Outline

1 Introduction

2 Answer Set Programming

3 Disjunctive ASP

4 Answer Set Solvers

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Sudoku

Task

Fill in the grid so that every row, every column, and every 3x3 box
contains the digits 1 through 9

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Social Dinner Example

• Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

• In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

• The organizers realize that only one kind of wine would not
achieve the goal of ful�lling all the attendees' preferences.

• Thus, they aim at automatically �nding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Social Dinner Example

• Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

• In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

• The organizers realize that only one kind of wine would not
achieve the goal of ful�lling all the attendees' preferences.

• Thus, they aim at automatically �nding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Social Dinner Example

• Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

• In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

• The organizers realize that only one kind of wine would not
achieve the goal of ful�lling all the attendees' preferences.

• Thus, they aim at automatically �nding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Social Dinner Example

• Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

• In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

• The organizers realize that only one kind of wine would not
achieve the goal of ful�lling all the attendees' preferences.

• Thus, they aim at automatically �nding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Social Dinner Example

• Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

• In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

• The organizers realize that only one kind of wine would not
achieve the goal of ful�lling all the attendees' preferences.

• Thus, they aim at automatically �nding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Social Dinner Example

• Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

• In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

• The organizers realize that only one kind of wine would not
achieve the goal of ful�lling all the attendees' preferences.

• Thus, they aim at automatically �nding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Wanted!

A general-purpose approach for modeling and solving these and
many other problems

Issues:

• Diverse domains

• Spatial and temporal reasoning

• Constraints

• Incomplete information

• Preferences and priority

Proposal:

Answer Set Programming (ASP) paradigm!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Wanted!

A general-purpose approach for modeling and solving these and
many other problems

Issues:

• Diverse domains

• Spatial and temporal reasoning

• Constraints

• Incomplete information

• Preferences and priority

Proposal:

Answer Set Programming (ASP) paradigm!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Roots of ASP � Knowledge Representation (KR)

How to model

• An agent's belief sets

• Commonsense reasoning

• Defeasible inferences

• Preferences and priority

Approach

• use a logic-based formalism

• Inherent feature: nonmonotonicity

Many logical formalisms for knowledge representation have been
developed.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Logic Programming � Prolog revisited

Logic as a Programming Language (?)

Kowalski (1979):

ALGORITHM = LOGIC + CONTROL

• Knowledge for problem solving (LOGIC)

• �Processing� of the knowledge (CONTROL)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Prolog

Prolog = �Programming in Logic�

• Basic data structures: terms

• Programs: rules and facts

• Computing: Queries (goals)
• Proofs provide answers
• SLD-resolution
• uni�cation - basic mechanism to manipulate data structures

• Extensive use of recursion

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Simple Social Dinner Example

From simple.dlv:

• Wine bottles (brands) "a", . . . , "e"

• plain ontology natively represented within the logic program.

• preference by facts

% A suite of wine bottles and their kinds

wineBottle("a"). isA("a","whiteWine"). isA("a","sweetWine").

wineBottle("b"). isA("b","whiteWine"). isA("b","dryWine").

wineBottle("c"). isA("c","whiteWine"). isA("c","dryWine").

wineBottle("d"). isA("d","redWine"). isA("d","dryWine").

wineBottle("e"). isA("e","redWine"). isA("e","sweetWine").

% Persons and their preferences

person("axel"). preferredWine("axel","whiteWine").

person("gibbi"). preferredWine("gibbi","redWine").

person("roman"). preferredWine("roman","dryWine").

% Available bottles a person likes

compliantBottle(X,Z) :- preferredWine(X,Y), isA(Z,Y).

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Example: Recursion

append([],X,X) .

append([X|Y],Z,[X|T]) :- append(Y,Z,T) .

reverse([],[]).

reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .

• both relations de�ned recursively

• terms represent complex objects: lists, sets, ...

Problem:

Reverse the list [a,b,c]

Ask query: ?- reverse([a,b,c],X).

• A proof of the query yields a substitution: X=[c,b,a]

• The substitution constitutes an answer

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Prolog /2

The key: Techniques to search for proofs

• Understanding of the resolution mechanism is important

• It may make a di�erence which logically equivalent form is
used (e.g., termination).

reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .

vs
reverse([X|Y],Z) :- reverse(Y,U), append(U,[X],Z) .

Query: ?- reverse([a|X],[b,c,d,b])

Is this truly declarative programming?

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Negation in Logic Programs

Why negation?

• Natural linguistic concept

• Facilitates declarative descriptions (de�nitions)

• Needed for programmers convenience

Clauses of the form:

p(~X):-q1(~X1), . . . , qk(~Xk), not r1(~Y1), . . . , not rl (~Yl)

Things get more complex!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Negation in Prolog

• �not (·)� means �Negation as Failure (to prove)�

• Di�erent from negation in classical logic!

Example

compliantBottle("axel","a"),

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

bottleSkipped(X) :- fail. % dummy declaration

Query:

?- bottleChosen(X).

X = "a"

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Programs with Negation /2

Modi�ed rule:

compliantBottle("axel","a").

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

Result ????

Problem: not a single minimal model!

Two alternatives:

• M1= { compliantBottle("axel","a"), bottleChosen("a") },

• M2 = { compliantBottle("axel","a"), bottleSkipped("a") }.

Which one to choose?

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Semantics of Logic Programs with Negation

Great Logic Programming Schism

Single Intended Model Approach:

• Select a single model of all classical models

• Agreement for so-called �strati�ed programs�:
� Perfect model�

Multiple Preferred Model Approach:

• Select a subset of all classical models

• Di�erent selection principles for non-strati�ed programs

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Strati�ed Negation

Intuition: For evaluating the body of a rule containing not r(~t),
the value of the �negative� predicates r(~t) should be known.

1 Evaluate �rst r(~t)

2 if r(~t) is false, then not r(~t) is true,

3 if r(~t) is true, then not r(~t) is false and rule is not applicable.

Example:

compliantBottle("axel","a"),

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

Computed model
M = { compliantBottle("axel","a"), bottleChosen("a") }.

Note: this introduces procedurality (violates declarativity)!
T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Program Layers

• Evaluate predicates bottom up in layers

• Methods works if there is no cyclic negation (layered negation)

Example:

L0: compliantBottle("axel","a"). wineBottle("a"). expensive("a").

L1: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

L0: bottleSkipped(X) :- expensive(X), wineBottle(X).

Unique model resulting by layered evaluation (�perfect model�):

M = { compliantBottle("axel","a"), wineBottle("a"),

expensive("a"), bottleSkipped("a")}

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Multiple preferred models

Unstrati�ed Negation makes layering ambiguous:

L0: compliantBottle("axel","a").

L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

L?: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

• Assign to a program (theory) not one but several intended models!
For instance: Answer sets!

• How to interpret these semantics? Answer set programming caters
for the following views:

1 skeptical reasoning: Only take entailed answers, i.e. true in all
models

2 brave reasoning: each model represents a di�erent solution to
the problem

3 additionally: one can de�ne to consider only a subset of
preferred models

• (Alternative: well-founded inference takes a more �agnostic� view: One
model, leaving ambiguous literals unknown.)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Multiple preferred models

Unstrati�ed Negation makes layering ambiguous:

L0: compliantBottle("axel","a").

L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

L?: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

• Assign to a program (theory) not one but several intended models!
For instance: Answer sets!

• How to interpret these semantics? Answer set programming caters
for the following views:

1 skeptical reasoning: Only take entailed answers, i.e. true in all
models

2 brave reasoning: each model represents a di�erent solution to
the problem

3 additionally: one can de�ne to consider only a subset of
preferred models

• (Alternative: well-founded inference takes a more �agnostic� view: One
model, leaving ambiguous literals unknown.)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Multiple preferred models

Unstrati�ed Negation makes layering ambiguous:

L0: compliantBottle("axel","a").

L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

L?: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

• Assign to a program (theory) not one but several intended models!
For instance: Answer sets!

• How to interpret these semantics? Answer set programming caters
for the following views:

1 skeptical reasoning: Only take entailed answers, i.e. true in all
models

2 brave reasoning: each model represents a di�erent solution to
the problem

3 additionally: one can de�ne to consider only a subset of
preferred models

• (Alternative: well-founded inference takes a more �agnostic� view: One
model, leaving ambiguous literals unknown.)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Multiple preferred models

Unstrati�ed Negation makes layering ambiguous:

L0: compliantBottle("axel","a").

L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

L?: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

• Assign to a program (theory) not one but several intended models!
For instance: Answer sets!

• How to interpret these semantics? Answer set programming caters
for the following views:

1 skeptical reasoning: Only take entailed answers, i.e. true in all
models

2 brave reasoning: each model represents a di�erent solution to
the problem

3 additionally: one can de�ne to consider only a subset of
preferred models

• (Alternative: well-founded inference takes a more �agnostic� view: One
model, leaving ambiguous literals unknown.)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Answer Set Programming Paradigm

General idea: Models are Solutions!

Reduce solving a problem instance I to computing models

1 Encode I as a (non-monotonic) logic program P , such that
solutions of I are represented by models of P

2 Compute some model M of P , using an ASP solver

3 Extract a solution for I from M.

Variant: Compute multiple models (for multiple / all solutions)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Applications of ASP

ASP facilitates declarative problem solving

Problems in di�erent domains (some with substantial amount of data), see
http://www.kr.tuwien.ac.at/projects/WASP/report.html

• information integration

• constraint satisfaction

• planning, routing

• semantic web

• diagnosis

• security analysis

• con�guration

• computer-aided veri�cation

• . . .

ASP Showcase: http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

T. Eiter Unit 1 � ASP Basics

http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

Intro
ASP

Disjunction
ASP Solvers

ASP in Practice

Uniform encoding:

Separate problem speci�cation, PS and input data D

(usually, facts)

• Compact, easily maintainable representation: Disjunctive Logic
programs with constraints: This is more than we saw so far!

• Integration of KR, DB, and search techniques

• Handling dynamic, knowledge intensive applications: data, defaults,
exceptions, closures, ...

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example: Sudoku

Problem speci�cation PS

tab(i , j , n): cell (i , j), i , j ∈ {0, ..., 8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-

#int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,

div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z, X = XminusDelta + Delta, Delta < Y.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example: Sudoku

Problem speci�cation PS

tab(i , j , n): cell (i , j), i , j ∈ {0, ..., 8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-

#int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,

div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z, X = XminusDelta + Delta, Delta < Y.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example: Sudoku

Problem speci�cation PS

tab(i , j , n): cell (i , j), i , j ∈ {0, ..., 8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-

#int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,

div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z, X = XminusDelta + Delta, Delta < Y.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example: Sudoku

Problem speci�cation PS

tab(i , j , n): cell (i , j), i , j ∈ {0, ..., 8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-

#int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,

div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z, X = XminusDelta + Delta, Delta < Y.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example: Sudoku

Problem speci�cation PS

tab(i , j , n): cell (i , j), i , j ∈ {0, ..., 8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-

#int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,

div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z, X = XminusDelta + Delta, Delta < Y.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Sudoku (cont'd)

Data D:
% Table positions X=0..8, Y=0..8

tab(0,1,6). tab(0,3,1). tab(0,5,4). tab(0,7,5).

tab(1,2,8). tab(1,3,3). tab(1,5,5). tab(1,6,6).

...

Solution:

Task

Run suduko.dlv using our Web interface!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Sudoku (cont'd)

Data D:
% Table positions X=0..8, Y=0..8

tab(0,1,6). tab(0,3,1). tab(0,5,4). tab(0,7,5).

tab(1,2,8). tab(1,3,3). tab(1,5,5). tab(1,6,6).

...

Solution:

Task

Run suduko.dlv using our Web interface!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

ASP - Desiderata

Expressive Power

Capable of representing a range of problems, hard problems
Disjunctive ASP: NEXPNP-complete problems !

Ease of Modeling

• Intuitive semantics

• Concise encodings: Availability of predicates and variables
Note: SAT solvers do not support predicates and variables

• Modular programming: global models can be composed from
local models of components

Performance

Fast solvers available

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% These rules generate multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% These rules generate multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% Alternatively we could use disjunction:

(4) bottleSkipped(X) v bottleChosen(X) :- compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Answer Set Semantics

• Variable-free, non-disjunctive programs �rst!

• Rules

a:- b1, . . . , bm, not c1, . . . , not cn

where all a, bi , cj are atoms

• a normal logic program P is a (�nite) set of such rules

• HB(P) is the set of all atoms with predicates and constants
from P .

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example

compliantBottle("axel","a"). wineBottle("a").

bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

• HB(P) = { wineBottle("a"), wineBottle("axel"),

bottleSkipped("a"), bottleSkipped("axel"), bottleChosen("a")

bottleChosen("axel"), compliantBottle("axel","a"),

compliantBottle("axel","axel"), ...

compliantBottle("a","axel") }

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Answer Sets /2

Let

• P be a normal logic program

• M ⊆ HB(P) be a set of atoms

Gelfond-Lifschitz (GL) Reduct PM

The reduct PM is obtained as follows:

1 remove from P each rule

a:- b1, . . . , bm, not c1, . . . , not cn

where some ci is in M

2 remove all literals of form not p from all remaining rules

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Answer Sets /3

• The reduct PM is a Horn program

• It has the least model lm(PM)

De�nition

M ⊆ HB(P) is an answer set of P if and only if M = lm(PM)

Intuition:

• M makes an assumption about what is true and what is false

• PM derives positive facts under the assumption of not (·) as by
M

• If the result is M, then the assumption of M is �stable�

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Computation of lm(P)

The least model of a not -free program can be computed by
�xpoint iteration.

Algorithm Compute_LM(P)

Input: Horn program P;
Output: lm(P)

new_M := ∅;
repeat

M := new_M;
new_M := {a | a:-b1, . . . , bm ∈ P, {b1, . . . , bm} ⊆ M}

until new_M == M

return M

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples

compliantBottle("axel","a"). wineBottle("a").

hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

• P has no not (i.e., is Horn)

• thus, PM = P for every M

• the single answer set of P is

M = lm(P) =

{ wineBottle("a"), compliantBottle("axel","a") }.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples II

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• Rule (2) �survives� the reduction (cancel not bottleChosen("a"))

• Rule (3) is dropped

lm(PM) = M, and thus M is an answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples II

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• Rule (2) �survives� the reduction (cancel not bottleChosen("a"))

• Rule (3) is dropped

lm(PM) = M, and thus M is an answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples II

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• Rule (2) �survives� the reduction (cancel not bottleChosen("a"))

• Rule (3) is dropped

lm(PM) = M, and thus M is an answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples III

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

• Rule (2) is dropped

• Rule (3) �survives� the reduction (cancel not bottleSkipped("a"))

lm(PM) = M, and therefore M is another answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples III

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

• Rule (2) is dropped

• Rule (3) �survives� the reduction (cancel not bottleSkipped("a"))

lm(PM) = M, and therefore M is another answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples III

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

• Rule (2) is dropped

• Rule (3) �survives� the reduction (cancel not bottleSkipped("a"))

lm(PM) = M, and therefore M is another answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples IV

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), bottleSkipped("a"), hasBottleChosen("axel"), }

• Rules (2) and (3) are dropped

lm(PM) = { wineBottle("a"), compliantBottle("axel","a")} 6= M

Thus, M is not an answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Examples IV

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), bottleSkipped("a"), hasBottleChosen("axel"), }

• Rules (2) and (3) are dropped

lm(PM) = { wineBottle("a"), compliantBottle("axel","a")} 6= M

Thus, M is not an answer set

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Programs with Variables

• Like in Prolog, consider Herbrand models only!

• Adopt in ASP: no function symbols (�Datalog�)

• Each clause is a shorthand for all its ground substitutions, i.e.,
replacements of variables with constants

E.g., b(X) :- not s(X), c(Y,X).

is with constants "axel","a" short for:

b("a") :- not s("a"), c("a","a").

b("a") :- not s("a"), c("axel","a").

b("axel") :- not s("axel"), c("axel","axel").

b("axel") :- not s("axel"), c("axel","a").

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Programs with Variables /2

• The Herbrand base of P, HB(P), consists of all ground
(variable-free) atoms with predicates and constant symbols from P

• The grounding of a rule r , Ground(r), consists of all rules obtained
from r if each variable in r is replaced by some ground term (over
P, unless speci�ed otherwise)

• The grounding of program P, is Ground(P) =
⋃
r∈P Ground(r)

De�nition

M ⊆ HB(P) is an answer set of P if and only if M is an answer set
of Ground(P)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Inconsistent Programs

Program

p :- not p.

• This program has NO answer sets

• Let P be a program and p be a new atom

• Adding

p :- not p.

to P �kills� all answer sets of P

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Constraints

• Adding

p :- q1,..., qm , not r1, ..., not rn, not p.

to P �kills� all answer sets of P that:

• contain q1,..., qm, and

• do not contain r1,..., rn

• Abbreviation:

:- q1,..., qm , not r1, ..., not rn.

This is called a �constraint� (cf. integrity constraints in
databases)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II

Task

Add a constraint to simpleGuess.dlv in order to �lter answer sets in
which for some person no bottle is chosen

% This rule generates multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

% Ensure that each person gets a bottle.

(3) hasBottleChosen(X) :- bottleChosen(Z),

compliantBottle(X,Z).

(4) :- person(X), ?

Solution at simpleConstraint.dlv

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II

Task

Add a constraint to simpleGuess.dlv in order to �lter answer sets in
which for some person no bottle is chosen

% This rule generates multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

% Ensure that each person gets a bottle.

(3) hasBottleChosen(X) :- bottleChosen(Z),

compliantBottle(X,Z).

(4) :- person(X), not hasBottleChosen(X).

Solution at simpleConstraint.dlv

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals l1, . . . , ln, decide whether l1, . . . ln
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals l1, . . . , ln on variables X1, . . ., Xk ,
list all assignments of values ν to X1, . . . ,Xk such that l1ν, . . . , lnν is
cautiously resp. bravely true.

• seamless integration of query language and rule language

• expressivity beyond traditional query languages, e.g. SQL)

Answer Set Computation

Compute some / all answer sets of a given program P.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals l1, . . . , ln, decide whether l1, . . . ln
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals l1, . . . , ln on variables X1, . . ., Xk ,
list all assignments of values ν to X1, . . . ,Xk such that l1ν, . . . , lnν is
cautiously resp. bravely true.

• seamless integration of query language and rule language

• expressivity beyond traditional query languages, e.g. SQL)

Answer Set Computation

Compute some / all answer sets of a given program P.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals l1, . . . , ln, decide whether l1, . . . ln
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals l1, . . . , ln on variables X1, . . ., Xk ,
list all assignments of values ν to X1, . . . ,Xk such that l1ν, . . . , lnν is
cautiously resp. bravely true.

• seamless integration of query language and rule language

• expressivity beyond traditional query languages, e.g. SQL)

Answer Set Computation

Compute some / all answer sets of a given program P.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals l1, . . . , ln, decide whether l1, . . . ln
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals l1, . . . , ln on variables X1, . . ., Xk ,
list all assignments of values ν to X1, . . . ,Xk such that l1ν, . . . , lnν is
cautiously resp. bravely true.

• seamless integration of query language and rule language

• expressivity beyond traditional query languages, e.g. SQL)

Answer Set Computation

Compute some / all answer sets of a given program P.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Simple Social Dinner Example � Reasoning

• For our simple Social Dinner Example (simple.dlv), we have a
single answer set

• Therefore, cautious and brave reasoning coincides.

• compliantBottle("axel","a") is both a cautious and a brave
consequence of the program.

• For the query person(X), we obtain the answers "axel",
"gibbi", "roman".

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II � Reasoning

For simpleConstraint.dlv:

• The program has 20 answer sets.

• They correspond to the possibilities for all bottles being chosen
or skipped.

• The cautious query bottleChosen("a") fails.

• The brave query bottleChosen("a") succeeds.

• For the nonground query bottleChosen(X), we obtain under
cautious reasoning an empty answer.

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

ASP vs Prolog

Under answer set semantics,

• the order of program rules does not matter;

• the order of subgoals in a rule does not matter;

�Pure� declarative programming, di�erent from Prolog

• no (unrestricted) function symbols in ASP solvers available
(�nitary programs; other work in progress)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Disjunctive ASP

• The use of disjunction in rule heads is natural

man(X) v woman(X) :- person(X)

• ASP has thus been extended with disjunction

a1 ∨ a2 ∨ · · · ∨ ak :- b1, . . . , bm, not c1, . . . , not cn

• The interpretation of disjunction is �minimal� (in LP spirit)

• Disjunctive rules thus permit to encode choices

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II � Disjunctive Version

Task

Replace the choice rules in simpleConstraint.dlv

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

? ∨ ? :-compliantBottle(Y,X).

Solution at simpleDisj.dlv. This form is more natural and intuitive!

• Very often, disjunction corresponds to such cyclic negation

• However, disjunction is more expressive in general, and can not
be e�ciently eliminated

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II � Disjunctive Version

Task

Replace the choice rules in simpleConstraint.dlv

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

bottleSkipped(X) ∨ bottleChosen(X) :-compliantBottle(Y,X).

Solution at simpleDisj.dlv. This form is more natural and intuitive!

• Very often, disjunction corresponds to such cyclic negation

• However, disjunction is more expressive in general, and can not
be e�ciently eliminated

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Social Dinner Example II � Disjunctive Version

Task

Replace the choice rules in simpleConstraint.dlv

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

bottleSkipped(X) ∨ bottleChosen(X) :-compliantBottle(Y,X).

Solution at simpleDisj.dlv. This form is more natural and intuitive!

• Very often, disjunction corresponds to such cyclic negation

• However, disjunction is more expressive in general, and can not
be e�ciently eliminated

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Answer Sets of Disjunctive Programs

De�ne answer sets similar as for normal logic programs

Gelfond-Lifschitz Reduct PM

Extend PM to disjunctive programs:

1 remove each rule in Ground(P) with some literal not a in the
body such that a ∈ M

2 remove all literals not a from all remaining rules in Ground(P)

However, lm(PM) does not necessarily exist (multiple minimal
models!)

De�nition

M ⊆ HB(P) is an answer set of P if and only if M is a minimal
(wrt. ⊆) model of PM

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") v bottleChosen("a") :-

compliantBottle("axel","a").

(3) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

This program contains no not , so PM = P for every M

Its answer sets are its minimal models:

• M1 = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• M2 = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") v bottleChosen("a") :-

compliantBottle("axel","a").

(3) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

This program contains no not , so PM = P for every M

Its answer sets are its minimal models:

• M1 = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• M2 = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Example

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") v bottleChosen("a") :-

compliantBottle("axel","a").

(3) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

This program contains no not , so PM = P for every M

Its answer sets are its minimal models:

• M1 = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• M2 = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Properties of Answer Sets

Minimality:

Each answer set M of P is a minimal Herbrand model (wrt ⊆).

Generalization of Strati�ed Semantics:

If negation in P is layered (�P is strati�ed�), then P has a unique answer
set, which coincides with the perfect model.

NP-Completeness:

Deciding whether a normal propositional program P has an answer set is
NP-complete in general.
⇒ Answer Set Semantics is an expressive formalism;
Higher expressiveness through further language constructs (disjunction,
weak/weight constraints)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Answer Set Solvers

NP-completeness:

E�cient computation of answer sets is not easy!
Need to handle

1 complex data

2 search

Approach:

• Logic programming and deductive database techniques (for 1.)

• SAT/Constraint Programming techniques for 2.

Di�erent sophisticated algorithms have been developed (like for
SAT solving)
There exist many ASP solvers (function-free programs only)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Answer Set Solvers on the Web

DLV http://www.dbai.tuwien.ac.at/proj/dlv/

SModels http://www.tcs.hut.fi/Software/smodels/

GnT http://www.tcs.hut.fi/Software/gnt/

Cmodels http://www.cs.utexas.edu/users/tag/cmodels/

ASSAT http://assat.cs.ust.hk/

NoMore http://www.cs.uni-potsdam.de/~linke/nomore/

XASP distributed with XSB v2.6
http://xsb.sourceforge.net

aspps http://www.cs.engr.uky.edu/ai/aspps/

ccalc http://www.cs.utexas.edu/users/tag/cc/

• Some provide a number of extensions to the language
described here.

• Rudimentary extension to include function symbols exist (⇒
�nitary programs, Bonatti)

• Answer Set Solver Implementation: see Niemelä's ICLP
tutorial [61]

T. Eiter Unit 1 � ASP Basics

http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels/
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/~linke/nomore/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/

Intro
ASP

Disjunction
ASP Solvers

Architecture of ASP Solvers

Typically, a two level architecture

1. Grounding Step

Given a program P with variables, generate a (subset) of its
grounding which has the same models
DLV's grounder; lparse (Smodels), XASP, aspps
Special techniques used:

• �Safe rules� (DLV)

• domain-restriction (Smodels)

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Architecture of ASP Solvers /2

2. Model search

This is applied for ground programs.

Techniques:

• Translations to SAT (e.g. Cmodels, ASSAT)

• Special-purpose search procedures (Smodels, dlv, NoMore, aspps)

• Backtracking procedures for assigning truth value to atoms
• Similar to DPPL algorithm for SAT Solving
• Important: Heuristics (which atom/rule to consider next)

[1] G. Alsaç and C. Baral.
Reasoning in description logics using declarative logic
programming.
Technical Report ASU 2001-02, Arizona State University,
2002.

[2] J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler,
M. Kifer, R. Krummenacher, H. Lausen, A. Polleres, and
R. Studer.
Web rule language (WRL), Sept. 2005.
W3C Member Submission,
http://www.w3.org/Submission/WRL/.

[3] Christian Anger, Kathrin Konczak, and Thomas Linke.
NoMoRe: A System for Non-Monotonic Reasoning.
In LPNMR'01, pp. 406�410. 2001.

[4] Chandrabose Aravindan, J. Dix, and I. Niemelä.
DisLoP: A Research Project on Disjunctive Logic
Programming.
AI Communications, 10(3/4):151�165, 1997.

[5] C. Bell, A. Nerode, R.T. Ng, and V.S. Subrahmanian.
Mixed Integer Programming Methods for Computing
Nonmonotonic Deductive Databases.
JACM, 41:1178�1215, 1994.

[6] T. Berners-Lee.
Web for real people, April 2005.
Keynote Speech at the 14th World Wide Web Conference
(WWW2005), slides available at
http://www.w3.org/2005/Talks/0511-keynote-tbl/.

[7] P. A. Bonatti.
Reasoning with In�nite Stable Models.
In Proceedings of the Seventeenth International Joint
Conference on Arti�cial Intelligence (IJCAI) 2001, pages
603�610, Seattle, WA, USA, Aug. 2001. Morgan Kaufmann
Publishers.

[8] M. Brain and M. D. Vos.
Debugging logic programs under the answer set semantics.
In Answer Set Programming, 2005.

[9] F. Buccafurri, N. Leone, and P. Rullo.
Enhancing Disjunctive Datalog by Constraints.
IEEE TKDE, 12(5):845�860, 2000.

[10] J. D. Bruijn, A. Polleres, R. Lara, and D. Fensel.
OWL DL vs. OWL Flight: Conceptual modeling and reasoning
for the semantic web.
In Proceedings of the 14th World Wide Web Conference
(WWW2005), Chiba, Japan, May 2005.

[11] F. Buccafurri, N. Leone, and P. Rullo.
Strong and Weak Constraints in Disjunctive Datalog.
In J. Dix, U. Furbach, and A. Nerode, editors, Proceedings of
the 4th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR'97), number 1265 in
LNAI, pages 2�17, Dagstuhl, Germany, July 1997. Springer.

[12] P. Burek and R. Grabos.
Dually structured concepts in the semantic web: Answer set
programming approach.
In Proceedings of the Second European Semantic Web
Conference, ESWC 2005, Heraklion, Crete, Greece, May 29 -
June 1, 2005, LNCS 3532, pages 377�391, 2005.

[13] F. Calimeri, G. Ianni, G. Ielpa, A. Pietramala, and M. C.
Santoro.
A system with template answer set programs.
In JELIA, pages 693�697, 2004.

[14] F. Calimeri and G. Ianni.
External sources of computation for Answer Set Solvers.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Logic Programming and Nonmonotonic Reasoning � 8th
International Conference, LPNMR'05, Diamante, Italy,
September 2005, Proceedings, volume 3662 of LNCS, pages
105�118. Springer, Sept. 2005.

[15] Weidong Chen and David Scott Warren.
Computation of Stable Models and Its Integration with Logical
Query Processing.
IEEE TKDE, 8(5):742�757, 1996.

[16] Paweª Cholewi«ski, V. Wiktor Marek, and M. Truszczy«ski.
Default Reasoning System DeReS.
In Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR '96), pp.
518�528, Cambridge, Massachusetts, USA, 1996.

[17] Paweª Cholewi«ski, V.W. Marek, Artur Mikitiuk, and
M. Truszczy«ski.
Computing with Default Logic.
Arti�cial Intelligence, 112(2�3):105�147, 1999.

[18] C. Cumbo, W. Faber, and G. Greco.
Enhancing the magic-set method for disjunctive datalog
programs.
In Proceedings of the the 20th International Conference on
Logic Programming � ICLP'04, volume 3132 of LNCS, pages
371�385, 2004.

[19] S. Decker, M. Sintek, and W. Nejdl.
The model-theoretic semantics of TRIPLE, Nov. 2002.

[20] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf.
AL-log: Integrating datalog and description logics.
Journal of Intelligent Information Systems (JIIS),
10(3):227�252, 1998.

[21] D. East and M. Truszczy«ski.
Propositional Satis�ability in Answer-set Programming.
In Proceedings of Joint German/Austrian Conference on
Arti�cial Intelligence, KI'2001, pp. 138�153. LNAI 2174, 2001.

[22] D. East and M. Truszczy«ski.
dcs: An Implementation of DATALOG with Constraints.
In NMR'2000, 2000.

[23] U. Egly, T. Eiter, H. Tompits, and S. Woltran.
Solving Advanced Reasoning Tasks using Quanti�ed Boolean
Formulas.
In AAAI'00, pp. 417�422. AAAI Press / MIT Press, 2000.

[24] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres.
A Logic Programming Approach to Knowledge-State Planning,
II: the DLVK System.
Arti�cial Intelligence, 144(1�2):157�211, 2003.

[25] T. Eiter, M. Fink, H. Tompits, and S. Woltran.
Strong and uniform equivalence in answer-set programming:
Characterizations and complexity results for the non-ground
case.
In AAAI, pages 695�700, 2005.

[26] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits.
A Uniform Integration of Higher-Order Reasoning and External
Evaluations in Answer Set Programming.
In International Joint Conference on Arti�cial Intelligence
(IJCAI) 2005, pages 90�96, Edinburgh, UK, Aug. 2005.

[27] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.
Combining Answer Set Programming with Description Logics
for the Semantic Web.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Ninth International Conference (KR2004),
Whistler, Canada, pages 141�151, 2004.
Extended Report RR-1843-03-13, Institut für
Informationssysteme, TU Wien, 2003.

[28] Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H.
2006.
E�ective Integration of Declarative Rules with external
Evaluations for Semantic Web Reasoning.
In European Semantic Web Conference 2006, Proceedings.
To appear.

[29] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and
Hans Tompits.
Towards e�cient evaluation of HEX programs.
In Proceedings 11th International Workshop on Nonmonotonic
Reasoning (NMR-2006), Answer Set Programming Track,
June 2006.
To appear.

[30] O. El-Khatib, E. Pontelli, and T. C. Son.
Justi�cation and debugging of answer set programs in asp.
In AADEBUG, pages 49�58, 2005.

[31] W. Faber, N. Leone, and G. Pfeifer.
A Comparison of Heuristics for Answer Set Programming.
In Proceedings of the 5th Dutch-German Workshop on
Nonmonotonic Reasoning Techniques and their Applications
(DGNMR 2001), pages 64�75, Apr. 2001.

[32] W. Faber, N. Leone, and G. Pfeifer.
Recursive aggregates in disjunctive logic programs: Semantics
and complexity.
In J. J. Alferes and J. Leite, editors, Proceedings of the 9th
European Conference on Arti�cial Intelligence (JELIA 2004),
number 3229 in LNAI, pages 200�212. Springer, Sept. 2004.

[33] W. Faber, N. Leone, and F. Ricca.
Heuristics for Hard ASP Programs.
In Nineteenth International Joint Conference on Arti�cial
Intelligence (IJCAI-05), pages 1562�1563, Aug. 2005.

[34] P. Ferraris and V. Lifschitz.
Weight constraints as nested expressions.
TPLP, 5(1�2):45�74, 2005.

[35] W. Faber and G. Pfeifer.
DLV homepage, since 1996.
http://www.dlvsystem.com/.

[36] M. Gelfond and V. Lifschitz.
Classical Negation in Logic Programs and Disjunctive
Databases.
NGC, 9:365�385, 1991.

[37] E. Giunchiglia and M. Maratea.
On the relation between answer set and sat procedures (or,
between cmodels and smodels).
In ICLP, pages 37�51, 2005.

[38] J. Gressmann, T. Janhunen, R. E. Mercer, T. Schaub,
S. Thiele, and R. Tichy.
Platypus: A platform for distributed answer set solving.
In LPNMR, pages 227�239, 2005.

[39] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker.
Description logic programs: Combining logic programs with
description logics.
In Proceedings of the Twelfth International World Wide Web
Conference, WWW2003, Budapest, Hungary, pages 48�57,
2003.

[40] S. Heymans.
Decidable Open Answer Set Programming.
PhD thesis, Theoretical Computer Science Lab (TINF),
Department of Computer Science, Vrije Universiteit Brussel,
Feb. 2006.

[41] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir.
Semantic web reasoning with conceptual logic programs.
In Rules and Rule Markup Languages for the Semantic Web:
Third International Workshop (RuleML 2004), pages 113�127,
Hiroshima, Japan, Nov. 2004.

[42] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir.
Nonmonotonic ontological and rule-based reasoning with
extended conceptual logic programs.
In Proceedings of the Second European Semantic Web
Conference, ESWC 2005. LNCS 3532, pages 392�407, 2005.

[43] I. Horrocks, B. Parsia, P. Patel-Schneider, and J. Hendler.
Semantic web architecture: Stack or two towers?
In F. Fages and S. Soliman, editors, Principles and Practice of
Semantic Web Reasoning (PPSWR 2005), number 3703 in
LNCS, pages 37�41. SV, 2005.

[44] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean.
Swrl: A semantic web rule language combining owl and ruleml,
May 2004.
W3C Member Submission.
http://www.w3.org/Submission/SWRL/.

[45] U. Hustadt, B. Motik, and U. Sattler.
Reducing shiq-description logic to disjunctive datalog
programs.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Ninth International Conference (KR2004),
Whistler, Canada, pages 152�162, 2004.

[46] ICONS homepage, since 2001.
http://www.icons.rodan.pl/.

[47] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, and J.-H. You.
Unfolding Partiality and Disjunctions in Stable Model
Semantics.
ACM TOCL, 2005.
To appear.

[48] M. Kifer, G. Lausen, and J. Wu.
Logical foundations of object-oriented and frame-based
languages.
Journal of the ACM, 42(4):741�843, 1995.

[49] N. Leone, G. Gottlob, R. Rosati, T. Eiter, W. Faber, Michael
Fink, Gianluigi Greco, G. Ianni, Edyta Kaªka, Domenico
Lembo, Maurizio Lenzerini, Vincenzino Lio, Bartosz Nowicki,
Marco Ruzzi, Witold Staniszkis, and Giorgio Terracina.
The INFOMIX System for Advanced Integration of Incomplete
and Inconsistent Data.
In Proceedings of the 24th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2005), pp.
915�917, Baltimore, Maryland, USA, 2005. ACM Press.

[50] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri,
and F. Scarcello.
The DLV System for Knowledge Representation and
Reasoning.
ACM TOCL, 2005.
To appear.

[51] N. Leone, S. Perri, and F. Scarcello.
Backjumping techniques for rules instantiation in the dlv
system.
In NMR, pages 258�266, 2004.

[52] A. Y. Levy and M.-C. Rousset.
Combining horn rules and description logics in CARIN.
Arti�cial Intelligence, 104:165 � 209, 1998.

[53] Yuliya Lierler.
Disjunctive Answer Set Programming via Satis�ability.
In Logic Programming and Nonmonotonic Reasoning � 8th
International Conference, LPNMR'05, Diamante, Italy, 2005,
Proceedings, LNCS 3662

[54] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT
solvers.
Arti�cial Intelligence, 157(1-2):115�137, 2004.

[55] V. Marek, I. Niemelä, and M. Truszczy±ki.
Logic programs with monotone cardinality atoms.
In Proceedings LPNMR-2004, volume 2923 of LNCS, pages
154�166, 2004.

[56] V.W. Marek and J.B. Remmel.
On Logic Programs with Cardinality Constraints.
In NMR'2002, pp. 219�228, 2002.

[57] N. McCain and H. Turner.
Satis�ability Planning with Causal Theories.
In KR'98, pp. 212�223. 1998.

[58] J. Mei, S. Liu, A. Yue, and Z. Lin.
An extension to OWL with general rules.
In Rules and Rule Markup Languages for the Semantic Web:
Third International Workshop (RuleML 2004), pages 155�169,
Hiroshima, Japan, Nov. 2004.

[59] B. Motik, U. Sattler, and R. Studer.
Query answering for owl-dl with rules.
Journal of Web Semantics: Science, Services and Agents on
the World Wide Web, 3(1):41�60, JUL 2005.

[60] B. Motik and R. Volz.
Optimizing query answering in description logics using
disjunctive deductive databases.
In F. Bry, C. Lutz, U. Sattler, and M. Schoop, editors,
Proceedings of the 10th International Workshop on Knowledge
Representation meets Databases (KRDB 2003), volume 79 of
CEUR Workshop Proceedings. CEUR-WS.org, Sept. 2003.

[61] I. Niemelä.
The implementation of answer set solvers, 2004.
Tutorial at ICLP 2004. Available at http://www.tcs.hut.
fi/~init/papers/niemela-iclp04-tutorial.ps.gz/.

[62] I. Niemelä, P. Simons, and T. Soininen.
Stable Model Semantics of Weight Constraint Rules.
In LPNMR'99, pp. 107�116.

[63] N. Pelov.
Non-monotone Semantics for Logic Programs with
Aggregates.
Available at http:
//www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz.,
Oct. 2002.

[64] A. Rainer.
Web Service Composition under Answer Set Programming.
In KI-Workshop "Planen, Scheduling und Kon�gurieren,
Entwerfenl" (PuK), 2005.

[65] R. Rosati.
On the decidability and complexity of integrating ontologies
and rules.
Journal of Web Semantics, 3(1):61�73, 2005.

[66] R. Rosati.
DL+log : Tight integration of description logics and
disjunctive datalog.
In KR2006, 2006.
To appear.

[67] D. Seipel and Helmut Thöne.
DisLog � A System for Reasoning in Disjunctive Deductive
Databases.
In Proceedings International Workshop on the Deductive
Approach to Information Systems and Databases (DAISD'94),
pp. 325�343. Universitat Politecnica de Catalunya (UPC),
1994.

[68] P. Simons.
Smodels Homepage, since 1996.
http://www.tcs.hut.fi/Software/smodels/.

[69] V.S. Subrahmanian, D. Nau, and C. Vago.
WFS + Branch and Bound = Stable Models.
IEEE TKDE, 7(3):362�377, 1995.

[70] T. Swift.
Deduction in Ontologies via ASP.
In V. Lifschitz and I. Niemelä, editors, Proc. of the Seventh
Int.l Conf. on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), LNCS, pages 275�288, Fort
Lauderdale, Florida, USA, Jan. 2004. Springer.

[71] T. Syrjänen.
Omega-restricted logic programs.
In Proceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning, Vienna, Austria,
September 2001. Springer.

[72] WASP report (IST-2001-37004). Model applications and
proofs-of-concept.
http:

//www.kr.tuwien.ac.at/projects/WASP/report.html.

[73] WASP showcase.
http:

//www.kr.tuwien.ac.at/projects/WASP/showcase.html.

[74] G. Yang and M. Kifer.
On the semantics of anonymous identity and rei�cation.
In CoopIS/DOA/ODBASE, pages 1047�1066, 2002.

[75] G. Yang, M. Kifer, and C. Zhao.
"�ora-2: A rule-based knowledge representation and inference
infrastructure for the semantic web.".
In R. Meersman, Z. Tari, and D. C. Schmidt, editors,
CoopIS/DOA/ODBASE, pages 671�688, 2003.

T. Eiter Unit 1 � ASP Basics

http://www.w3.org/Submission/WRL/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.dlvsystem.com/
http://www.w3.org/Submission/SWRL/
http://www.icons.rodan.pl/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz
http://www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz
http://www.tcs.hut.fi/Software/smodels/
http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

Intro
ASP

Disjunction
ASP Solvers

Questiontime. . .

Co�ee Break!

T. Eiter Unit 1 � ASP Basics

Intro
ASP

Disjunction
ASP Solvers

Questiontime. . .

Co�ee Break!

T. Eiter Unit 1 � ASP Basics

	Introduction
	Roots of ASP
	Negation in Logic Programs
	Stratified Negation

	Answer Set Programming
	Disjunctive ASP
	Answer Set Solvers

