Answer Set Programming for the Semantic Web

Tutorial

.
UNVERSTADELIACALABRA. - @@ @

e |
—
-

= Universidad
—er Rey Juan Carlos

@

Thomas Eiter, Roman Schindlauer (TU Wien)
Giovambattista lanni (TU Wien, Univ. della Calabria)
Axel Polleres (Univ. Rey Juan Carlos, Madrid)

Supported by IST REWERSE, FWF Project P17212-N04, CICyT project TIC-2003-9001-C02.

T. Eiter Unit 1 — ASP Basics

Unit 1 — ASP Basics

T. Eiter

KBS Group, Institute of Information Systems, TU Vienna

European Semantic Web Conference 2006
presented by A.Polleres, G. lanni

T. Eiter Unit 1 — ASP Basics

Unit Outline

@ Introduction
® Answer Set Programming
© Disjunctive ASP

O Answer Set Solvers

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Sudoku

6] [1] 14] |5
g[3] |56

7 1

8 a4 |7 6
6 3

7 o |1 4

5 2
7121 T8[9
4| [5] (8] |7

Task

Fill in the grid so that every row, every column, and every 3x3 box
contains the digits 1 through 9

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Social Dinner Example

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Social Dinner Example

e Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

T. Eiter Unit 1 — ASP Basics

Stratified Negation

Social Dinner Example

e Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

e In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Social Dinner Example

e Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

e In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

e The organizers realize that only one kind of wine would not
achieve the goal of fulfilling all the attendees’ preferences.

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Social Dinner Example

e Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

e In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

e The organizers realize that only one kind of wine would not
achieve the goal of fulfilling all the attendees’ preferences.

e Thus, they aim at automatically finding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Social Dinner Example

e Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

e In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

e The organizers realize that only one kind of wine would not
achieve the goal of fulfilling all the attendees’ preferences.

e Thus, they aim at automatically finding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Wanted!

A general-purpose approach for modeling and solving these and
many other problems

Issues:

e Diverse domains

Spatial and temporal reasoning

Constraints

Incomplete information

Preferences and priority

T. Eiter Unit 1 — ASP Basics

InFro Roots

Negation
Stratified Negation

Wanted!

A general-purpose approach for modeling and solving these and
many other problems

Issues:

e Diverse domains

Spatial and temporal reasoning

Constraints

Incomplete information

Preferences and priority

Proposal:

Answer Set Programming (ASP) paradigm!

T. Eiter Unit 1 — ASP Basics

InFro Roots

Negation
Stratified Negation

Roots of ASP — Knowledge Representation (KR)

How to model
e An agent’s belief sets
e Commonsense reasoning

e Defeasible inferences

e Preferences and priority

Approach
e use a logic-based formalism

e Inherent feature: nonmonotonicity

Many logical formalisms for knowledge representation have been
developed.

T. Eiter Unit 1 — ASP Basics

Intro Roots

Negation
Stratified Negation

Logic Programming — Prolog revisited

Logic as a Programming Language (?)

Kowalski (1979):
ALGORITHM = LOGIC + CONTROL J

e Knowledge for problem solving (LOGIC)

e “Processing” of the knowledge (CONTROL)

T. Eiter Unit 1 — ASP Basics

Prolog = “Programming in Logic” J

Basic data structures: terms

e Programs: rules and facts

Computing: Queries (goals)
e Proofs provide answers
e SLD-resolution
e unification - basic mechanism to manipulate data structures

Extensive use of recursion

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Simple Social Dinner Example

From simple.dlv:

e Wine bottles (brands) "a", ..., "e"
e plain ontology natively represented within the logic program.
e preference by facts

% A suite of wine bottles and their kinds

wineBottle("a"). isA("a","whiteWine"). isA("a","sweetWine").
wineBottle("b"). isA("b","whiteWine"). isA("b","dryWine").
wineBottle("c"). isA("c¢","whiteWine"). isA("c","dryWine").
wineBottle("d"). isA("d","redWine"). isA("d","dryWine").
wineBottle("e"). isA("e","redWine"). isA("e","sweetWine").

% Persons and their preferences

person("axel"). preferredWine("axel","whiteWine").
person("gibbi"). preferredWine("gibbi","redWine").
person("roman"). preferredWine("roman","dryWine").

% Available bottles a person likes
compliantBottle(X,Z) :- preferredWine(X,Y), isA(Z,Y).

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Example: Recursion

append ([]1,X,X)
append ([X|Y],Z, [XIT]) :- append(Y,Z,T)

reverse([],[]).
reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .

e both relations defined recursively
e terms represent complex objects: lists, sets, ...

Problem:

Reverse the list [a,b,c]

Ask query: ?7- reverse([a,b,c],X).

e A proof of the query yields a substitution: X=[c,b,a]

e The substitution constitutes an answer

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Prolog /2

The key: Techniques to search for proofs J

e Understanding of the resolution mechanism is important

e It may make a difference which logically equivalent form is
used (e.g., termination).

reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .
VS
reverse([X|Y],Z) :- reverse(Y,U), append(U, [X],Z) .

Query: 7- reverse([alX], [b,c,d,bl) J

Is this truly declarative programming? J

T. Eiter Unit 1 — ASP Basics

InFro Roots

Negation
Stratified Negation

Negation in Logic Programs

Why negation?
e Natural linguistic concept
e Facilitates declarative descriptions (definitions)

e Needed for programmers convenience

Clauses of the form:

- —

p(X)-qu(X1), - .., qu(Xk), not ri(Y1),...,not ri(Y))

Things get more complex! J

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Negation in Prolog

e “not ()" means “Negation as Failure (to prove)”

¢ Different from negation in classical logic!

Example

compliantBottle("axel","a"),

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
bottleSkipped(X) :- fail. 7 dummy declaration

Query:
?- bottleChosen(X).
X = "a"

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Programs with Negation /2

Modified rule:

compliantBottle("axel","a").

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

Result 7?7?77

Problem: not a single minimal model! J

Two alternatives:
o M;= { compliantBottle("axel","a"), bottleChosen("a") },
e M, = { compliantBottle("axel","a"), bottleSkipped("a") }.

Which one to choose?

T. Eiter Unit 1 — ASP Basics

InFro Roots

Negation
Stratified Negation

Semantics of Logic Programs with Negation

Great Logic Programming Schism

Single Intended Model Approach:
e Select a single model of all classical models

e Agreement for so-called “stratified programs:
“ Perfect model”

Multiple Preferred Model Approach:
e Select a subset of all classical models

e Different selection principles for non-stratified programs

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Stratified Negation

Intuition: For evaluating the body of a rule containing not r(f),
the value of the “negative” predicates r(f) should be known.

® Evaluate first r(t)
@ if r(f) is false, then not r(f) is true,
© if r(t) is true, then not r(f) is false and rule is not applicable.

Example:

compliantBottle("axel","a"),
bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

Computed model
M={ compliantBottle("axel","a"), bottleChosen("a") }.

Note: this introduces procedurality (violates declarativity)!

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Program Layers

e Evaluate predicates bottom up in layers
e Methods works if there is no cyclic negation (layered negation)

Example:
LO: compliantBottle("axel","a"). wineBottle("a"). expensive("a").
L1: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

LO: bottleSkipped(X) :- expensive(X), wineBottle(X).

Unique model resulting by layered evaluation (“perfect model”):

M = { compliantBottle("axel","a"), wineBottle("a"),
expensive("a"), bottleSkipped("a")}

T. Eiter Unit 1 — ASP Basics

Neg

g

Stratified Negation

Multiple preferred models

Unstratified Negation makes layering ambiguous:

LO: compliantBottle("axel","a").
L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
L7: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Multiple preferred models

Unstratified Negation makes layering ambiguous:

LO: compliantBottle("axel","a").
L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
L7: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

e Assign to a program (theory) not one but several intended models!
For instance: Answer sets!

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Multiple preferred models

Unstratified Negation makes layering ambiguous:

LO: compliantBottle("axel","a").
L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
L7: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

e Assign to a program (theory) not one but several intended models!

For instance: Answer sets!
e How to interpret these semantics? Answer set programming caters

for the following views:
@ skeptical reasoning: Only take entailed answers, i.e. true in all

models
@® brave reasoning: each model represents a different solution to

the problem
© additionally: one can define to consider only a subset of

preferred models

T. Eiter Unit 1 — ASP Basics

Roots
Negation
Stratified Negation

Multiple preferred models

Unstratified Negation makes layering ambiguous:

LO: compliantBottle("axel","a").
L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
L7: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

e Assign to a program (theory) not one but several intended models!
For instance: Answer sets!
e How to interpret these semantics? Answer set programming caters
for the following views:
@ skeptical reasoning: Only take entailed answers, i.e. true in all
models
@® brave reasoning: each model represents a different solution to
the problem
© additionally: one can define to consider only a subset of
preferred models
e (Alternative: well-founded inference takes a more “agnostic” view: One
model, leaving ambiguous literals unknown.)

T. Eiter Unit 1 — ASP Basics

Answer Set Programming Paradigm

General idea: Models are Solutions!

Reduce solving a problem instance / to computing models

Problem Encoding: | Theory ASP Model(s)
Instance Program P Solver Solution(s)

® Encode | as a (non-monotonic) logic program P, such that
solutions of / are represented by models of P

® Compute some model M of P, using an ASP solver
© CExtract a solution for / from M.

Variant: Compute multiple models (for multiple / all solutions)

T. Eiter Unit 1 — ASP Basics

Applications of ASP

ASP facilitates declarative problem solving

Problems in different domains (some with substantial amount of data), see
http://www.kr.tuwien.ac.at/projects/WASP/report.html

information integration

constraint satisfaction

planning, routing

semantic web

diagnosis

security analysis

configuration

computer-aided verification

ASP Showcase: http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

T. Eiter Unit 1 — ASP Basics

http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

ASP in Practice

Problem Encoding:
spec. (PS) | Program Ppg

Theory ASP | Model(s)

Solver Solution(s)

Data Encoding:
(D) Program P

Uniform encoding:

Separate problem specification, PS and input data D
(usually, facts)

e Compact, easily maintainable representation: Disjunctive Logic
programs with constraints: This is more than we saw so far!

e Integration of KR, DB, and search techniques

e Handling dynamic, knowledge intensive applications: data, defaults,
exceptions, closures, ...

T. Eiter Unit 1 — ASP Basics

Example: Sudoku

Problem specification PS
tab(i,j, n): cell (i,5), i,j €{0,...,8} has digit n J

From sudoku.dlv:

T. Eiter Unit 1 — ASP Basics

Example: Sudoku

Problem specification PS
tab(i,j, n): cell (i,5), i,j €{0,...,8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-
#int(X), 0 <= X, X <=8, #int(Y), 0 <=Y, Y <=38.

T. Eiter Unit 1 — ASP Basics

Example: Sudoku

Problem specification PS
tab(i,j, n): cell (i,5), i,j €{0,...,8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-
#int(X), 0 <= X, X <=8, #int(Y), 0 <=Y, Y <=38.

% Check rows and columns

i- tab(X,Y1,Z), tab(X,Y¥2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

T. Eiter Unit 1 — ASP Basics

Example: Sudoku

Problem specification PS
tab(i,j, n): cell (i,5), i,j €{0,...,8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-
#int(X), 0 <= X, X <=8, #int(Y), 0 <=Y, Y <=38.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<Y¥2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(x2,3,Ww1), div(¥1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,2), X1 <> X2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

T. Eiter it 1 — ASP Basics

Example: Sudoku

Problem specification PS
tab(i,j, n): cell (i,5), i,j €{0,...,8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-
#int(X), 0 <= X, X <=8, #int(Y), 0 <=Y, Y <=38.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<Y¥2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(x2,3,Ww1), div(¥1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,2), X1 <> X2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z, X = XminusDelta + Delta, Delta < Y.

T. Eiter it 1 — ASP Basics

Sudoku (cont'd)

Data D:

% Table positions X=0..8, Y=0..8
tab(0,1,6). tab(0,3,1). tab(0,5,4). tab(0,7,5).
tab(1,2,8). tab(1,3,3). tab(1,5,5). tab(1,6,6).

T. Eiter Unit 1 — ASP Basics

Sudoku (cont'd)

Data D:

% Table positions X=0..8, Y=0..8
tab(0,1,6). tab(0,3,1). tab(0,5,4). tab(0,7,5).
tab(1,2,8). tab(1,3,3). tab(1,5,5). tab(1,6,6).

Solution:
9[6]3|1]7]4]2]5]8
1]7[8]|32|5]6[4 |9
254|687 [3[1
s[2[1[4]3]7[5/9]6
4|ol6[8]5]2[3[1]7
7/3/5|9]6[1[8[2]4
5(8|9|7|1]|3]|4]6]|2
3[1|7|2]4]6|9]8[5
6|4]2[5]98][1]7]3

Task

Run suduko.dlv using our Web interface!

T. Eiter Unit 1 — ASP Basics

ASP - Desiderata

Expressive Power

Capable of representing a range of problems, hard problems
Disjunctive ASP: NEXPNP_complete problems !

Ease of Modeling
e [ntuitive semantics

e Concise encodings: Availability of predicates and variables
Note: SAT solvers do not support predicates and variables

e Modular programming: global models can be composed from
local models of components

Performance

Fast solvers available

T. Eiter Unit 1 — ASP Basics

Social Dinner Example Il

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

T. Eiter Unit 1 — ASP Basics

Social Dinner Example Il

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% These rules generate multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),
compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X) .

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

® Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

T. Eiter Unit 1 — ASP Basics

Social Dinner Example Il

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% These rules generate multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),
compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X) .

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

® Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

® Rule (3) computes which persons have a bottle

T. Eiter Unit 1 — ASP Basics

Social Dinner Example Il

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% Alternatively we could use disjunction:

(4) bottleSkipped(X) v bottleChosen(X) :- compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

® Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

® Rule (3) computes which persons have a bottle

® Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!

T. Eiter Unit 1 — ASP Basics

Answer Set Semantics

Variable-free, non-disjunctive programs first!

Rules

a- by,..., by, not c1,...,not c, J

where all a, b;, ¢j are atoms

a normal logic program P is a (finite) set of such rules

HB(P) is the set of all atoms with predicates and constants
from P.

T. Eiter Unit 1 — ASP Basics

e

compliantBottle("axel","a"). wineBottle("a").

bottleSkipped("a") :- not bottleChosen("a"),
compliantBottle("axel","a").

bottleChosen("a") :- not bottleSkipped("a"),
compliantBottle("axel","a").

hasBottleChosen('"axel") :- bottleChosen("a"),
compliantBottle("axel","a").

° HB(P) = { wineBottle("a"), wineBottle('"axel"),
bottleSkipped("a"), bottleSkipped("axel"), bottleChosen("a"
bottleChosen("axel"), compliantBottle("axel","a"),
compliantBottle("axel","axel"),

compliantBottle("a","axel") }

T. Eiter Unit 1 — ASP Basics

Answer Sets /2

Let

e P be a normal logic program
e M C HB(P) be a set of atoms

Gelfond-Lifschitz (GL) Reduct PV
The reduct PM is obtained as follows:

@ remove from P each rule
a- by,...,bm,not c1,...,not c,

where some ¢; is in M

® remove all literals of form not p from all remaining rules

T. Eiter Unit 1 — ASP Basics

Answer Sets /3

e The reduct PM is a Horn program
e It has the least model /m(P™)

Definition
M C HB(P) is an answer set of P if and only if M = Im(PM)

Intuition:
e M makes an assumption about what is true and what is false

o PM derives positive facts under the assumption of not (-) as by
M

e |f the result is M, then the assumption of M is “stable”

T. Eiter Unit 1 — ASP Basics

Computation of Im(P)

The least model of a not -free program can be computed by
fixpoint iteration.

Algorithm Compute LM(P)

Input: Horn program P;
Output: /m(P)
new M := (;
repeat
M = new_ M,
new M:={a|a-by,...,bp € P, {by,...,bn} C M}
until new M == M
return M

T. Eiter Unit 1 — ASP Basics

SEIES

compliantBottle ("axel","a"). wineBottle("a").
hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

e P has no not (i.e., is Horn)
e thus, PM = P for every M
e the single answer set of P is

M = Im(P) =
{ wineBottle("a"), compliantBottle("axel","a") }.

T. Eiter Unit 1 — ASP Basics

Examples I

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") :- not bottleChosen("a"),
compliantBottle("axel","a").
(3) bottleChosen("a") :- not bottleSkipped("a"),
compliantBottle("axel","a").
(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),
bottleSkipped("a") }

Im(P™) = M, and thus M is an answer set

T. Eiter Unit 1 — ASP Basics

Examples I

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") :- 5
compliantBottle("axel","a").
(3) bottleChosen("a") :- not bottleSkipped("a"),
compliantBottle("axel","a").
(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),
bottleSkipped("a") }

e Rule (2) “survives” the reduction (cancel not bottleChosen("a"))

Im(P™) = M, and thus M is an answer set

T. Eiter Unit 1 — ASP Basics

Examples I

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") :- 5
compliantBottle("axel","a").

(3)

(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

e Rule (2) “survives” the reduction (cancel not bottleChosen("a"))

e Rule (3) is dropped

Im(P™) = M, and thus M is an answer set

T. Eiter Unit 1 — ASP Basics

Examples IlI

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") :- not bottleChosen("a"),
compliantBottle("axel","a").
(3) bottleChosen("a") :- not bottleSkipped("a"),
compliantBottle("axel","a").
(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),
bottleChosen("a"), hasBottleChosen("axel") }

Im(P™) = M, and therefore M is another answer set

T. Eiter Unit 1 — ASP Basics

Examples IlI

(1) compliantBottle("axel","a"). wineBottle("a").
(2)

(3) bottleChosen("a") :- not bottleSkipped("a"),
compliantBottle("axel","a").
(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),
bottleChosen("a"), hasBottleChosen("axel") }

e Rule (2) is dropped

Im(P™) = M, and therefore M is another answer set

T. Eiter Unit 1 — ASP Basics

Examples IlI

(1) compliantBottle("axel","a"). wineBottle("a").
(2)

(3) bottleChosen("a'") ,

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),
bottleChosen("a"), hasBottleChosen("axel") }

e Rule (2) is dropped

e Rule (3) “survives” the reduction (cancel not bottleSkipped("a"))

Im(P™) = M, and therefore M is another answer set

T. Eiter Unit 1 — ASP Basics

Examples |V

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") :- not bottleChosen("a"),
compliantBottle("axel","a").
(3) bottleChosen("a") :- not bottleSkipped("a"),
compliantBottle("axel","a").
(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),
bottleChosen("a"), bottleSkipped("a"), hasBottleChosen("axel"), }

hn(Fﬂw) = { wineBottle("a"), compliantBottle("axel","a")} #* M
Thus, M is not an answer set

T. Eiter Unit 1 — ASP Basics

Examples |V

(1) compliantBottle("axel","a"). wineBottle("a").
(2)

(3)

(4) hasBottleChosen("axel") :- bottleChosen("a"),
compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),
bottleChosen("a"), bottleSkipped("a"), hasBottleChosen("axel"), }

e Rules (2) and (3) are dropped

hn(Fﬂw) = { wineBottle("a"), compliantBottle("axel","a")} #* M
Thus, M is not an answer set

T. Eiter Unit 1 — ASP Basics

Programs with Variables

e Like in Prolog, consider Herbrand models only!
e Adopt in ASP: no function symbols (“Datalog”)

e Each clause is a shorthand for all its ground substitutions, i.e.,
replacements of variables with constants

E.g., b(X) :- not s(X), <(¥,X).
is with constants "axel","a" short for:
b("a") - not S("a"), C("a","a").

b("a") - not s("a"), C("axel","a").
b("axel") :- not s("axel"), c("axel","axel").

b("axel") :- not s("axel"), c("axel","a").

T. Eiter Unit 1 — ASP Basics

Programs with Variables /2

e The Herbrand base of P, HB(P), consists of all ground
(variable-free) atoms with predicates and constant symbols from P

e The grounding of a rule r, Ground(r), consists of all rules obtained
from r if each variable in r is replaced by some ground term (over
P, unless specified otherwise)

e The grounding of program P, is Ground(P) = |J,.p Ground(r)

Definition
M C HB(P) is an answer set of P if and only if M is an answer set
of Ground(P)

T. Eiter Unit 1 — ASP Basics

Inconsistent Programs

Program
p :- not p. J

e This program has NO answer sets
e Let P be a program and p be a new atom

e Adding
p :- not p.

to P “kills" all answer sets of P

T. Eiter Unit 1 — ASP Basics

Constraints

e Adding
P:-4ds.-., 9m , DOt r1, ..., not r,, not p.

to P “kills" all answer sets of P that:
e contain q1,-..., Qm, and
e do not containry,..., T,

e Abbreviation:

- dls.--5 9m , not ry, ..., NOt r,. J

This is called a “constraint” (cf. integrity constraints in
databases)

T. Eiter Unit 1 — ASP Basics

Social Dinner Example Il

Task

Add a constraint to simpleGuess.dlv in order to filter answer sets in
which for some person no bottle is chosen

% This rule generates multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),
compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),
compliantBottle(Y,X).

% Ensure that each person gets a bottle.

(3) hasBottleChosen(X) :- bottleChosen(Z),
compliantBottle(X,Z).

(4) :- person(X), 7

T. Eiter Unit 1 — ASP Basics

Social Dinner Example Il

Task

Add a constraint to simpleGuess.dlv in order to filter answer sets in
which for some person no bottle is chosen

% This rule generates multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),
compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),
compliantBottle(Y,X).

% Ensure that each person gets a bottle.

(3) hasBottleChosen(X) :- bottleChosen(Z),
compliantBottle(X,Z).

(4) :- person(X), not hasBottleChosen(X).

Solution at simpleConstraint.dlv

T. Eiter Unit 1 — ASP Basics

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

T. Eiter Unit 1 — ASP Basics

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals /..., I, decide whether /y, .../,
simultaneously hold in every (resp., some) answer set of P

T. Eiter Unit 1 — ASP Basics

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals /..., I, decide whether /y, .../,
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals /i, ..., /, on variables Xi,..., Xk,
list all assignments of values v to Xi,..., Xk such that hv, ..., Lvis
cautiously resp. bravely true.

® seamless integration of query language and rule language

e expressivity beyond traditional query languages, e.g. SQL)

T. Eiter Unit 1 — ASP Basics

Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals /..., I, decide whether /y, .../,
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals /i, ..., /, on variables Xi,..., Xk,
list all assignments of values v to Xi,..., Xk such that hv, ..., Lvis
cautiously resp. bravely true.

® seamless integration of query language and rule language

e expressivity beyond traditional query languages, e.g. SQL)

Answer Set Computation

Compute some / all answer sets of a given program P.

T. Eiter Unit 1 — ASP Basics

Simple Social Dinner Example — Reasoning

e For our simple Social Dinner Example (simple.dlv), we have a
single answer set

e Therefore, cautious and brave reasoning coincides.

e compliantBottle("axel”,"a") is both a cautious and a brave
consequence of the program.

e For the query person(X), we obtain the answers "axel",
"gibbi", "roman".

T. Eiter Unit 1 — ASP Basics

Social Dinner Example |l — Reasoning

For simpleConstraint.dlv:

e The program has 20 answer sets.

e They correspond to the possibilities for all bottles being chosen
or skipped.

e The cautious query bottleChosen("a") fails.
e The brave query bottleChosen("a") succeeds.

e For the nonground query bottleChosen(X), we obtain under
cautious reasoning an empty answer.

T. Eiter Unit 1 — ASP Basics

ASP vs Prolog

Under answer set semantics,

e the order of program rules does not matter;

e the order of subgoals in a rule does not matter;

“Pure” declarative programming, different from Prolog

e no (unrestricted) function symbols in ASP solvers available
(finitary programs; other work in progress)

T. Eiter Unit 1 — ASP Basics

Disjunction

Disjunctive ASP

The use of disjunction in rule heads is natural

man(X) v woman(X) :- person(X)

ASP has thus been extended with disjunction

aaVaV - ---Vag-by,...,by,notcy,...,notc, J

The interpretation of disjunction is “minimal” (in LP spirit)

e Disjunctive rules thus permit to encode choices

T. Eiter Unit 1 — ASP Basics

Disjunction

Social Dinner Example Il — Disjunctive Version

Task
Replace the choice rules in simpleConstraint.dlv J

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).
bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

? v 7 :-compliantBottle(Y,X).

T. Eiter Unit 1 — ASP Basics

Disjunction

Social Dinner Example Il — Disjunctive Version

Task
Replace the choice rules in simpleConstraint.dlv J

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).
bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

bottleSkipped(X) V bottleChosen(X) :-compliantBottle(Y,X).

T. Eiter Unit 1 — ASP Basics

Disjunction

Social Dinner Example Il — Disjunctive Version

Task
Replace the choice rules in simpleConstraint.dlv

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).
bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

bottleSkipped(X) V bottleChosen(X) :-compliantBottle(Y,X).

Solution at simpleDisj.dlv. This form is more natural and intuitive! J

e Very often, disjunction corresponds to such cyclic negation

e However, disjunction is more expressive in general, and can not
be efficiently eliminated

T. Eiter Unit 1 — ASP Basics

Disjunction

Answer Sets of Disjunctive Programs

Define answer sets similar as for normal logic programs

Gelfond-Lifschitz Reduct PM

Extend PM to disjunctive programs:

@ remove each rule in Ground(P) with some literal not a in the
body such that a € M

@® remove all literals not a from all remaining rules in Ground(P)

However, Im(PM) does not necessarily exist (multiple minimal
models!)

Definition
M C HB(P) is an answer set of P if and only if M is a minimal
(wrt. C) model of PM

T. Eiter Unit 1 — ASP Basics

Disjunction

e

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") v bottleChosen("a"
compliantBottle("axel","a").
(3) hasBottleChosen('"axel") :- bottleChosen("a"),
compliantBottle("axel","a").

This program contains no not, so PM = P for every M
Its answer sets are its minimal models:

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 — ASP Basics

Disjunction

e

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") v bottleChosen("a"
compliantBottle("axel","a").
(3) hasBottleChosen('"axel") :- bottleChosen("a"),
compliantBottle("axel","a").

This program contains no not, so PM = P for every M
Its answer sets are its minimal models:

e M; = { wineBottle("a"), compliantBottle("axel","a"),
bottleSkipped("a") }

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 — ASP Basics

Disjunction

e

(1) compliantBottle("axel","a"). wineBottle("a").
(2) bottleSkipped("a") v bottleChosen("a"
compliantBottle("axel","a").
(3) hasBottleChosen('"axel") :- bottleChosen("a"),
compliantBottle("axel","a").

This program contains no not, so PM = P for every M
Its answer sets are its minimal models:

e M; = { wineBottle("a"), compliantBottle("axel","a"),
bottleSkipped("a") }

o M, = { wineBottle("a"), compliantBottle("axel","a"),
bottleChosen("a"), hasBottleChosen("axel") }

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 — ASP Basics

Disjunction

Properties of Answer Sets

Minimality:

Each answer set M of P is a minimal Herbrand model (wrt C).

Generalization of Stratified Semantics:

If negation in P is layered (" P is stratified”), then P has a unique answer
set, which coincides with the perfect model.

NP-Completeness:

Deciding whether a normal propositional program P has an answer set is
NP-complete in general.

= Answer Set Semantics is an expressive formalism;

Higher expressiveness through further language constructs (disjunction,
weak /weight constraints)

T. Eiter Unit 1 — ASP Basics

ASP Solvers

Answer Set Solvers

NP-completeness:
Efficient computation of answer sets is not easy!
Need to handle

@ complex data

@ search

Approach:
e Logic programming and deductive database techniques (for 1.)
e SAT/Constraint Programming techniques for 2.

Different sophisticated algorithms have been developed (like for

SAT solving)
There exist many ASP solvers (function-free programs only)

T. Eiter Unit 1 — ASP Basics

ASP Solvers

Answer Set Solvers on the Web

DLV http://www.dbai.tuwien.ac.at/proj/dlv/
SModels http://www.tcs.hut.fi/Software/smodels/
GnT http://www.tcs.hut.fi/Software/gnt/
Cmodels http://www.cs.utexas.edu/users/tag/cmodels/
ASSAT http://assat.cs.ust.hk/
NoMore http://www.cs.uni-potsdam.de/~linke/nomore/
XASP distributed with XSB v2.6
http://xsb.sourceforge.net
aspps http://www.cs.engr.uky.edu/ai/aspps/
ccalc http://www.cs.utexas.edu/users/tag/cc/

e Some provide a number of extensions to the language

described here.
e Rudimentary extension to include function symbols exist (=

finitary programs, Bonatti)
e Answer Set Solver Implementation: see Niemeld's ICLP

tutorial [61]

http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels/
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/~linke/nomore/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/

ASP Solvers

Architecture of ASP Solvers

Typically, a two level architecture

1. Grounding Step

Given a program P with variables, generate a (subset) of its
grounding which has the same models

DLV's grounder; Iparse (Smodels), XASP, aspps

Special techniques used:

e “Safe rules” (DLV)

e domain-restriction (Smodels)

T. Eiter Unit 1 — ASP Basics

ASP Solvers

Architecture of ASP Solvers /2

2. Model search
This is applied for ground programs.

Techniques:

® Translations to SAT (e.g. Cmodels, ASSAT)

® Special-purpose search procedures (Smodels, dlv, NoMore, aspps)

e Backtracking procedures for assigning truth value to atoms
e Similar to DPPL algorithm for SAT Solving
e Important: Heuristics (which atom/rule to consider next)

T. Eiter Unit 1 — ASP Basics

http://www.w3.org/Submission/WRL/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.dlvsystem.com/
http://www.w3.org/Submission/SWRL/
http://www.icons.rodan.pl/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz
http://www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz
http://www.tcs.hut.fi/Software/smodels/
http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

ASP Solvers

Questiontime. ..

T. Eiter Unit 1 — ASP Basics

ASP Solvers

Questiontime. ..

Coffee Break!

T. Eiter Unit 1 — ASP Basics

	Introduction
	Roots of ASP
	Negation in Logic Programs
	Stratified Negation

	Answer Set Programming
	Disjunctive ASP
	Answer Set Solvers

