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Sudoku

Task

Fill in the grid so that every row, every column, and every 3x3 box
contains the digits 1 through 9
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Social Dinner Example

• Imagine the ESWC organizers are planning a fancy dinner for
the ASP tutorial attendees.

• In order to make the attendees happy with this event and to
make them familiar with ontologies, the organizers decide to
ask them to declare their preferences about wines, in terms of
a class description reusing the (in)famous Wine Ontology

• The organizers realize that only one kind of wine would not
achieve the goal of ful�lling all the attendees' preferences.

• Thus, they aim at automatically �nding the cheapest selection
of bottles such that any attendee can have her preferred wine
at the dinner.

The organizers quickly realize that several building blocks are
needed to accomplish this task.
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Wanted!

A general-purpose approach for modeling and solving these and
many other problems

Issues:

• Diverse domains

• Spatial and temporal reasoning

• Constraints

• Incomplete information

• Preferences and priority

Proposal:

Answer Set Programming (ASP) paradigm!
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Roots of ASP � Knowledge Representation (KR)

How to model

• An agent's belief sets

• Commonsense reasoning

• Defeasible inferences

• Preferences and priority

Approach

• use a logic-based formalism

• Inherent feature: nonmonotonicity

Many logical formalisms for knowledge representation have been
developed.
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Logic Programming � Prolog revisited

Logic as a Programming Language (?)

Kowalski (1979):

ALGORITHM = LOGIC + CONTROL

• Knowledge for problem solving (LOGIC)

• �Processing� of the knowledge (CONTROL)
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Prolog

Prolog = �Programming in Logic�

• Basic data structures: terms

• Programs: rules and facts

• Computing: Queries (goals)
• Proofs provide answers
• SLD-resolution
• uni�cation - basic mechanism to manipulate data structures

• Extensive use of recursion
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Simple Social Dinner Example

From simple.dlv:

• Wine bottles (brands) "a", . . . , "e"

• plain ontology natively represented within the logic program.

• preference by facts

% A suite of wine bottles and their kinds

wineBottle("a"). isA("a","whiteWine"). isA("a","sweetWine").

wineBottle("b"). isA("b","whiteWine"). isA("b","dryWine").

wineBottle("c"). isA("c","whiteWine"). isA("c","dryWine").

wineBottle("d"). isA("d","redWine"). isA("d","dryWine").

wineBottle("e"). isA("e","redWine"). isA("e","sweetWine").

% Persons and their preferences

person("axel"). preferredWine("axel","whiteWine").

person("gibbi"). preferredWine("gibbi","redWine").

person("roman"). preferredWine("roman","dryWine").

% Available bottles a person likes

compliantBottle(X,Z) :- preferredWine(X,Y), isA(Z,Y).
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Example: Recursion

append([],X,X) .

append([X|Y],Z,[X|T]) :- append(Y,Z,T) .

reverse([],[]).

reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .

• both relations de�ned recursively

• terms represent complex objects: lists, sets, ...

Problem:

Reverse the list [a,b,c]

Ask query: ?- reverse([a,b,c],X).

• A proof of the query yields a substitution: X=[c,b,a]

• The substitution constitutes an answer
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Prolog /2

The key: Techniques to search for proofs

• Understanding of the resolution mechanism is important

• It may make a di�erence which logically equivalent form is
used (e.g., termination).

reverse([X|Y],Z) :- append(U,[X],Z), reverse(Y,U) .

vs
reverse([X|Y],Z) :- reverse(Y,U), append(U,[X],Z) .

Query: ?- reverse([a|X],[b,c,d,b])

Is this truly declarative programming?
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Negation in Logic Programs

Why negation?

• Natural linguistic concept

• Facilitates declarative descriptions (de�nitions)

• Needed for programmers convenience

Clauses of the form:

p(~X ):-q1( ~X1), . . . , qk( ~Xk), not r1( ~Y1), . . . , not rl ( ~Yl )

Things get more complex!
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Negation in Prolog

• �not (·)� means �Negation as Failure (to prove)�

• Di�erent from negation in classical logic!

Example

compliantBottle("axel","a"),

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

bottleSkipped(X) :- fail. % dummy declaration

Query:

?- bottleChosen(X).

X = "a"

T. Eiter Unit 1 � ASP Basics



Intro
ASP

Disjunction
ASP Solvers

Roots
Negation
Strati�ed Negation

Programs with Negation /2

Modi�ed rule:

compliantBottle("axel","a").

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

Result ????

Problem: not a single minimal model!

Two alternatives:

• M1= { compliantBottle("axel","a"), bottleChosen("a") },

• M2 = { compliantBottle("axel","a"), bottleSkipped("a") }.

Which one to choose?
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Semantics of Logic Programs with Negation

Great Logic Programming Schism

Single Intended Model Approach:

• Select a single model of all classical models

• Agreement for so-called �strati�ed programs�:
� Perfect model�

Multiple Preferred Model Approach:

• Select a subset of all classical models

• Di�erent selection principles for non-strati�ed programs
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Strati�ed Negation

Intuition: For evaluating the body of a rule containing not r(~t),
the value of the �negative� predicates r(~t) should be known.

1 Evaluate �rst r(~t)

2 if r(~t) is false, then not r(~t) is true,

3 if r(~t) is true, then not r(~t) is false and rule is not applicable.

Example:

compliantBottle("axel","a"),

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

Computed model
M = { compliantBottle("axel","a"), bottleChosen("a") }.

Note: this introduces procedurality (violates declarativity)!
T. Eiter Unit 1 � ASP Basics
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Program Layers

• Evaluate predicates bottom up in layers

• Methods works if there is no cyclic negation (layered negation)

Example:

L0: compliantBottle("axel","a"). wineBottle("a"). expensive("a").

L1: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

L0: bottleSkipped(X) :- expensive(X), wineBottle(X).

Unique model resulting by layered evaluation (�perfect model�):

M = { compliantBottle("axel","a"), wineBottle("a"),

expensive("a"), bottleSkipped("a")}
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Multiple preferred models

Unstrati�ed Negation makes layering ambiguous:

L0: compliantBottle("axel","a").

L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

L?: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

• Assign to a program (theory) not one but several intended models!
For instance: Answer sets!

• How to interpret these semantics? Answer set programming caters
for the following views:

1 skeptical reasoning: Only take entailed answers, i.e. true in all
models

2 brave reasoning: each model represents a di�erent solution to
the problem

3 additionally: one can de�ne to consider only a subset of
preferred models

• (Alternative: well-founded inference takes a more �agnostic� view: One
model, leaving ambiguous literals unknown.)
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Answer Set Programming Paradigm

General idea: Models are Solutions!

Reduce solving a problem instance I to computing models

1 Encode I as a (non-monotonic) logic program P , such that
solutions of I are represented by models of P

2 Compute some model M of P , using an ASP solver

3 Extract a solution for I from M.

Variant: Compute multiple models (for multiple / all solutions)
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Applications of ASP

ASP facilitates declarative problem solving

Problems in di�erent domains (some with substantial amount of data), see
http://www.kr.tuwien.ac.at/projects/WASP/report.html

• information integration

• constraint satisfaction

• planning, routing

• semantic web

• diagnosis

• security analysis

• con�guration

• computer-aided veri�cation

• . . .

ASP Showcase: http://www.kr.tuwien.ac.at/projects/WASP/showcase.html
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ASP in Practice

Uniform encoding:

Separate problem speci�cation, PS and input data D

(usually, facts)

• Compact, easily maintainable representation: Disjunctive Logic
programs with constraints: This is more than we saw so far!

• Integration of KR, DB, and search techniques

• Handling dynamic, knowledge intensive applications: data, defaults,
exceptions, closures, ...
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Example: Sudoku

Problem speci�cation PS

tab(i , j , n): cell (i , j), i , j ∈ {0, ..., 8} has digit n

From sudoku.dlv:

% Assign a value to each field
tab(X,Y,1) v tab(X,Y,2) v tab(X,Y,3) v
tab(X,Y,4) v tab(X,Y,5) v tab(X,Y,6) v
tab(X,Y,7) v tab(X,Y,8) v tab(X,Y,9) :-

#int(X), 0 <= X, X <= 8, #int(Y), 0 <= Y, Y <= 8.

% Check rows and columns
:- tab(X,Y1,Z), tab(X,Y2,Z), Y1<>Y2.
:- tab(X1,Y,Z), tab(X2,Y,Z), X1<>X2.

% Check subtable
:- tab(X1,Y1,Z), tab(X2,Y2,Z), Y1 <> Y2,
div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).
:- tab(X1,Y1,Z), tab(X2,Y2,Z), X1 <> X2,

div(X1,3,W1), div(X2,3,W1), div(Y1,3,W2), div(Y2,3,W2).

%Auxiliary: X divided by Y is Z
div(X,Y,Z) :- XminusDelta = Y*Z, X = XminusDelta + Delta, Delta < Y.
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Sudoku (cont'd)

Data D:
% Table positions X=0..8, Y=0..8

tab(0,1,6). tab(0,3,1). tab(0,5,4). tab(0,7,5).

tab(1,2,8). tab(1,3,3). tab(1,5,5). tab(1,6,6).

...

Solution:

Task

Run suduko.dlv using our Web interface!
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ASP - Desiderata

Expressive Power

Capable of representing a range of problems, hard problems
Disjunctive ASP: NEXPNP-complete problems !

Ease of Modeling

• Intuitive semantics

• Concise encodings: Availability of predicates and variables
Note: SAT solvers do not support predicates and variables

• Modular programming: global models can be composed from
local models of components

Performance

Fast solvers available
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Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!
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Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% These rules generate multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!
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Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% These rules generate multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!
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Social Dinner Example II

Extend the Simple Social Dinner Example (simple.dlv) to simpleGuess.dlv:

% Alternatively we could use disjunction:

(4) bottleSkipped(X) v bottleChosen(X) :- compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is
included in an answer set (but not both), if it contains compliantBottle(Y,X).

• Rule (3) computes which persons have a bottle

• Rule (4) (disjunction!) can be used for replacing (1)-(2), more on that later!
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Answer Set Semantics

• Variable-free, non-disjunctive programs �rst!

• Rules

a:- b1, . . . , bm, not c1, . . . , not cn

where all a, bi , cj are atoms

• a normal logic program P is a (�nite) set of such rules

• HB(P) is the set of all atoms with predicates and constants
from P .
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Example

compliantBottle("axel","a"). wineBottle("a").

bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

• HB(P) = { wineBottle("a"), wineBottle("axel"),

bottleSkipped("a"), bottleSkipped("axel"), bottleChosen("a")

bottleChosen("axel"), compliantBottle("axel","a"),

compliantBottle("axel","axel"), ...

compliantBottle("a","axel") }
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Answer Sets /2

Let

• P be a normal logic program

• M ⊆ HB(P) be a set of atoms

Gelfond-Lifschitz (GL) Reduct PM

The reduct PM is obtained as follows:

1 remove from P each rule

a:- b1, . . . , bm, not c1, . . . , not cn

where some ci is in M

2 remove all literals of form not p from all remaining rules
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Answer Sets /3

• The reduct PM is a Horn program

• It has the least model lm(PM)

De�nition

M ⊆ HB(P) is an answer set of P if and only if M = lm(PM)

Intuition:

• M makes an assumption about what is true and what is false

• PM derives positive facts under the assumption of not (·) as by
M

• If the result is M, then the assumption of M is �stable�
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Computation of lm(P)

The least model of a not -free program can be computed by
�xpoint iteration.

Algorithm Compute_LM(P)

Input: Horn program P;
Output: lm(P)

new_M := ∅;
repeat

M := new_M;
new_M := {a | a:-b1, . . . , bm ∈ P, {b1, . . . , bm} ⊆ M}

until new_M == M

return M
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Examples

compliantBottle("axel","a"). wineBottle("a").

hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

• P has no not (i.e., is Horn)

• thus, PM = P for every M

• the single answer set of P is

M = lm(P) =

{ wineBottle("a"), compliantBottle("axel","a") }.
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Examples II

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• Rule (2) �survives� the reduction (cancel not bottleChosen("a"))

• Rule (3) is dropped

lm(PM) = M, and thus M is an answer set
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Examples II

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• Rule (2) �survives� the reduction (cancel not bottleChosen("a"))

• Rule (3) is dropped

lm(PM) = M, and thus M is an answer set
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Examples II

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• Rule (2) �survives� the reduction (cancel not bottleChosen("a"))

• Rule (3) is dropped

lm(PM) = M, and thus M is an answer set
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Examples III

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

• Rule (2) is dropped

• Rule (3) �survives� the reduction (cancel not bottleSkipped("a"))

lm(PM) = M, and therefore M is another answer set
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Examples III

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

• Rule (2) is dropped

• Rule (3) �survives� the reduction (cancel not bottleSkipped("a"))

lm(PM) = M, and therefore M is another answer set
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Examples III

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

• Rule (2) is dropped

• Rule (3) �survives� the reduction (cancel not bottleSkipped("a"))

lm(PM) = M, and therefore M is another answer set
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Examples IV

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), bottleSkipped("a"), hasBottleChosen("axel"), }

• Rules (2) and (3) are dropped

lm(PM) = { wineBottle("a"), compliantBottle("axel","a")} 6= M

Thus, M is not an answer set
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Examples IV

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") :- not bottleChosen("a"),

compliantBottle("axel","a").

(3) bottleChosen("a") :- not bottleSkipped("a"),

compliantBottle("axel","a").

(4) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

Take M = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), bottleSkipped("a"), hasBottleChosen("axel"), }

• Rules (2) and (3) are dropped

lm(PM) = { wineBottle("a"), compliantBottle("axel","a")} 6= M

Thus, M is not an answer set
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Programs with Variables

• Like in Prolog, consider Herbrand models only!

• Adopt in ASP: no function symbols (�Datalog�)

• Each clause is a shorthand for all its ground substitutions, i.e.,
replacements of variables with constants

E.g., b(X) :- not s(X), c(Y,X).

is with constants "axel","a" short for:

b("a") :- not s("a"), c("a","a").

b("a") :- not s("a"), c("axel","a").

b("axel") :- not s("axel"), c("axel","axel").

b("axel") :- not s("axel"), c("axel","a").
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Programs with Variables /2

• The Herbrand base of P, HB(P), consists of all ground
(variable-free) atoms with predicates and constant symbols from P

• The grounding of a rule r , Ground(r), consists of all rules obtained
from r if each variable in r is replaced by some ground term (over
P, unless speci�ed otherwise)

• The grounding of program P, is Ground(P) =
⋃
r∈P Ground(r)

De�nition

M ⊆ HB(P) is an answer set of P if and only if M is an answer set
of Ground(P)
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Inconsistent Programs

Program

p :- not p.

• This program has NO answer sets

• Let P be a program and p be a new atom

• Adding

p :- not p.

to P �kills� all answer sets of P
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Constraints

• Adding

p :- q1,..., qm , not r1, ..., not rn, not p.

to P �kills� all answer sets of P that:

• contain q1,..., qm, and

• do not contain r1,..., rn

• Abbreviation:

:- q1,..., qm , not r1, ..., not rn.

This is called a �constraint� (cf. integrity constraints in
databases)
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Social Dinner Example II

Task

Add a constraint to simpleGuess.dlv in order to �lter answer sets in
which for some person no bottle is chosen

% This rule generates multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

% Ensure that each person gets a bottle.

(3) hasBottleChosen(X) :- bottleChosen(Z),

compliantBottle(X,Z).

(4) :- person(X), ?

Solution at simpleConstraint.dlv
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Social Dinner Example II

Task

Add a constraint to simpleGuess.dlv in order to �lter answer sets in
which for some person no bottle is chosen

% This rule generates multiple answer sets:

(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).

(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).

% Ensure that each person gets a bottle.

(3) hasBottleChosen(X) :- bottleChosen(Z),

compliantBottle(X,Z).

(4) :- person(X), not hasBottleChosen(X).

Solution at simpleConstraint.dlv
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Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals l1, . . . , ln, decide whether l1, . . . ln
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals l1, . . . , ln on variables X1, . . ., Xk ,
list all assignments of values ν to X1, . . . ,Xk such that l1ν, . . . , lnν is
cautiously resp. bravely true.

• seamless integration of query language and rule language

• expressivity beyond traditional query languages, e.g. SQL)

Answer Set Computation

Compute some / all answer sets of a given program P.
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Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning
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simultaneously hold in every (resp., some) answer set of P

Query Answering
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Answer Set Computation

Compute some / all answer sets of a given program P.
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Main Reasoning Tasks
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Decide whether a given program P has an answer set.
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Main Reasoning Tasks

Consistency

Decide whether a given program P has an answer set.

Cautious (resp. Brave) Reasoning

Given a program P and ground literals l1, . . . , ln, decide whether l1, . . . ln
simultaneously hold in every (resp., some) answer set of P

Query Answering

Given a program P and non-ground literals l1, . . . , ln on variables X1, . . ., Xk ,
list all assignments of values ν to X1, . . . ,Xk such that l1ν, . . . , lnν is
cautiously resp. bravely true.

• seamless integration of query language and rule language

• expressivity beyond traditional query languages, e.g. SQL)

Answer Set Computation

Compute some / all answer sets of a given program P.
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Simple Social Dinner Example � Reasoning

• For our simple Social Dinner Example (simple.dlv), we have a
single answer set

• Therefore, cautious and brave reasoning coincides.

• compliantBottle("axel","a") is both a cautious and a brave
consequence of the program.

• For the query person(X), we obtain the answers "axel",
"gibbi", "roman".
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Social Dinner Example II � Reasoning

For simpleConstraint.dlv:

• The program has 20 answer sets.

• They correspond to the possibilities for all bottles being chosen
or skipped.

• The cautious query bottleChosen("a") fails.

• The brave query bottleChosen("a") succeeds.

• For the nonground query bottleChosen(X), we obtain under
cautious reasoning an empty answer.
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ASP vs Prolog

Under answer set semantics,

• the order of program rules does not matter;

• the order of subgoals in a rule does not matter;

�Pure� declarative programming, di�erent from Prolog

• no (unrestricted) function symbols in ASP solvers available
(�nitary programs; other work in progress)

T. Eiter Unit 1 � ASP Basics



Intro
ASP

Disjunction
ASP Solvers

Disjunctive ASP

• The use of disjunction in rule heads is natural

man(X) v woman(X) :- person(X)

• ASP has thus been extended with disjunction

a1 ∨ a2 ∨ · · · ∨ ak :- b1, . . . , bm, not c1, . . . , not cn

• The interpretation of disjunction is �minimal� (in LP spirit)

• Disjunctive rules thus permit to encode choices
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Social Dinner Example II � Disjunctive Version

Task

Replace the choice rules in simpleConstraint.dlv

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

? ∨ ? :-compliantBottle(Y,X).

Solution at simpleDisj.dlv. This form is more natural and intuitive!

• Very often, disjunction corresponds to such cyclic negation

• However, disjunction is more expressive in general, and can not
be e�ciently eliminated
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Social Dinner Example II � Disjunctive Version

Task

Replace the choice rules in simpleConstraint.dlv

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

bottleSkipped(X) ∨ bottleChosen(X) :-compliantBottle(Y,X).

Solution at simpleDisj.dlv. This form is more natural and intuitive!

• Very often, disjunction corresponds to such cyclic negation

• However, disjunction is more expressive in general, and can not
be e�ciently eliminated
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Social Dinner Example II � Disjunctive Version

Task

Replace the choice rules in simpleConstraint.dlv

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent disjunctive rule

bottleSkipped(X) ∨ bottleChosen(X) :-compliantBottle(Y,X).

Solution at simpleDisj.dlv. This form is more natural and intuitive!

• Very often, disjunction corresponds to such cyclic negation

• However, disjunction is more expressive in general, and can not
be e�ciently eliminated
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Answer Sets of Disjunctive Programs

De�ne answer sets similar as for normal logic programs

Gelfond-Lifschitz Reduct PM

Extend PM to disjunctive programs:

1 remove each rule in Ground(P) with some literal not a in the
body such that a ∈ M

2 remove all literals not a from all remaining rules in Ground(P)

However, lm(PM) does not necessarily exist (multiple minimal
models!)

De�nition

M ⊆ HB(P) is an answer set of P if and only if M is a minimal
(wrt. ⊆) model of PM
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Example

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") v bottleChosen("a") :-

compliantBottle("axel","a").

(3) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

This program contains no not , so PM = P for every M

Its answer sets are its minimal models:

• M1 = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• M2 = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 � ASP Basics



Intro
ASP

Disjunction
ASP Solvers

Example

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") v bottleChosen("a") :-

compliantBottle("axel","a").

(3) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

This program contains no not , so PM = P for every M

Its answer sets are its minimal models:

• M1 = { wineBottle("a"), compliantBottle("axel","a"),

bottleSkipped("a") }

• M2 = { wineBottle("a"), compliantBottle("axel","a"),

bottleChosen("a"), hasBottleChosen("axel") }

This is the same as in the non-disjunctive version!

T. Eiter Unit 1 � ASP Basics



Intro
ASP

Disjunction
ASP Solvers

Example

(1) compliantBottle("axel","a"). wineBottle("a").

(2) bottleSkipped("a") v bottleChosen("a") :-

compliantBottle("axel","a").

(3) hasBottleChosen("axel") :- bottleChosen("a"),

compliantBottle("axel","a").

This program contains no not , so PM = P for every M

Its answer sets are its minimal models:
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This is the same as in the non-disjunctive version!
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Properties of Answer Sets

Minimality:

Each answer set M of P is a minimal Herbrand model (wrt ⊆).

Generalization of Strati�ed Semantics:

If negation in P is layered (�P is strati�ed�), then P has a unique answer
set, which coincides with the perfect model.

NP-Completeness:

Deciding whether a normal propositional program P has an answer set is
NP-complete in general.
⇒ Answer Set Semantics is an expressive formalism;
Higher expressiveness through further language constructs (disjunction,
weak/weight constraints)
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Answer Set Solvers

NP-completeness:

E�cient computation of answer sets is not easy!
Need to handle

1 complex data

2 search

Approach:

• Logic programming and deductive database techniques (for 1.)

• SAT/Constraint Programming techniques for 2.

Di�erent sophisticated algorithms have been developed (like for
SAT solving)
There exist many ASP solvers (function-free programs only)
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Answer Set Solvers on the Web

DLV http://www.dbai.tuwien.ac.at/proj/dlv/

SModels http://www.tcs.hut.fi/Software/smodels/

GnT http://www.tcs.hut.fi/Software/gnt/

Cmodels http://www.cs.utexas.edu/users/tag/cmodels/

ASSAT http://assat.cs.ust.hk/

NoMore http://www.cs.uni-potsdam.de/~linke/nomore/

XASP distributed with XSB v2.6
http://xsb.sourceforge.net

aspps http://www.cs.engr.uky.edu/ai/aspps/

ccalc http://www.cs.utexas.edu/users/tag/cc/

• Some provide a number of extensions to the language
described here.

• Rudimentary extension to include function symbols exist (⇒
�nitary programs, Bonatti)

• Answer Set Solver Implementation: see Niemelä's ICLP
tutorial [61]

T. Eiter Unit 1 � ASP Basics

http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels/
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/~linke/nomore/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/


Intro
ASP

Disjunction
ASP Solvers

Architecture of ASP Solvers

Typically, a two level architecture

1. Grounding Step

Given a program P with variables, generate a (subset) of its
grounding which has the same models
DLV's grounder; lparse (Smodels), XASP, aspps
Special techniques used:

• �Safe rules� (DLV)

• domain-restriction (Smodels)
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Architecture of ASP Solvers /2

2. Model search

This is applied for ground programs.

Techniques:

• Translations to SAT (e.g. Cmodels, ASSAT)

• Special-purpose search procedures (Smodels, dlv, NoMore, aspps)

• Backtracking procedures for assigning truth value to atoms
• Similar to DPPL algorithm for SAT Solving
• Important: Heuristics (which atom/rule to consider next)
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