Answer Set Programming for the Semantic Web

Tutorial

TechiscHE
— UNIVERSITAT
I Wien
i

@
§

',A

TecknoLoGY

Thomas Eiter, Roman Schindlauer
Giovambattista lanni
Axel Polleres

°
UNVERSTADELLACALABRA. @ @ @

| § Universidad
Rey Juan Carlos

(TU Wien)
(TU Wien, Univ. della Calabria)
(Univ. Rey Juan Carlos, Madrid)

Supported by IST REWERSE, FWF Project P17212-N04, CICyT project TIC-2003-9001-C02.

T. Eiter

Unit 5 — An ASP Extension: Nonmon. dl-Programs

Unit 5 — An ASP Extension: Nonmonotonic
dl-Programs

T. Eiter

KBS Group, Institute of Information Systems, TU Vienna

European Semantic Web Conference 2006

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Unit Outline

@ Introduction

@® dl-Programs

© Answer Set Semantics

O Applications and Properties

@ Further Aspects

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Introduction

Social Dinner Scenario

Social Dinner Scenario (cont'd)

e Instead of a native, simple ontology inside the program, an
external ontology should be used

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Introduction

Social Dinner Scenario

Social Dinner Scenario (cont'd)

e Instead of a native, simple ontology inside the program, an
external ontology should be used

e An ontology is available, formulated in OWL, which contains
information about available wine bottles, as instances of a
concept Wine.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Introduction

Social Dinner Scenario

Social Dinner Scenario (cont'd)

e Instead of a native, simple ontology inside the program, an
external ontology should be used

e An ontology is available, formulated in OWL, which contains
information about available wine bottles, as instances of a
concept Wine.

e It has further concepts SweetWine, DryWine, RedWine and
White Wine for different types of wine.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Introduction

Social Dinner Scenario

Social Dinner Scenario (cont'd)

e Instead of a native, simple ontology inside the program, an
external ontology should be used

e An ontology is available, formulated in OWL, which contains
information about available wine bottles, as instances of a
concept Wine.

e It has further concepts SweetWine, DryWine, RedWine and
White Wine for different types of wine.

e How to use this ontology from the logic program ?

e How to ascribe a semantics for this usage?

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

Nonmonotonic Description Logic Programs

® An extension of answer set programs with queries to DL knowledge bases
(through dl-atoms)

e Formal semantics for emerging programs (nonmonotonic dl-programs),
fostering the interfacing view
= Clean technical separation of DL engine and ASP solver

e New generalized definitions of answer sets of a general dl-program

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

Nonmonotonic Description Logic Programs

® An extension of answer set programs with queries to DL knowledge bases
(through dl-atoms)

e Formal semantics for emerging programs (nonmonotonic dl-programs),
fostering the interfacing view
= Clean technical separation of DL engine and ASP solver

e New generalized definitions of answer sets of a general dl-program

Important: bidirectional flow of information

=- The logic program also may provide input to DL knowledge base

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

Nonmonotonic Description Logic Programs

® An extension of answer set programs with queries to DL knowledge bases
(through dl-atoms)

e Formal semantics for emerging programs (nonmonotonic dl-programs),
fostering the interfacing view
= Clean technical separation of DL engine and ASP solver

e New generalized definitions of answer sets of a general dl-program

Important: bidirectional flow of information
=- The logic program also may provide input to DL knowledge base l

Prototype implementation, examples ’

http://www.kr.tuwien.ac.at/staff/roman/semweblp/

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Atoms

Approach to enable a call to a DL engine in ASP:

e Pose a query, @, to a DL knowledge base, L
¢ Allow to modify the extensional part (ABox) of KB

e Query evaluates to true, iff Q) is provable in modified L.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Atoms

Approach to enable a call to a DL engine in ASP:

e Pose a query, @, to a DL knowledge base, L
¢ Allow to modify the extensional part (ABox) of KB

e Query evaluates to true, iff Q) is provable in modified L.

Examples: wine ontology

e DIL[Wine](“ChiantiClassico”)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Programs B tome
DL Queries
dl-Programs
Social Dinner Scenario

dl-Atoms

Approach to enable a call to a DL engine in ASP:

e Pose a query, @, to a DL knowledge base, L
¢ Allow to modify the extensional part (ABox) of KB
e Query evaluates to true, iff Q) is provable in modified L.

Examples: wine ontology

e DL[Wine](“ChiantiClassico”)
® DL[Wine](X)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Atoms

Approach to enable a call to a DL engine in ASP:

e Pose a query, @, to a DL knowledge base, L
¢ Allow to modify the extensional part (ABox) of KB

e Query evaluates to true, iff Q) is provable in modified L.

Examples: wine ontology

e DL[Wine](“ChiantiClassico”)
e DL[Wine](X)
e DL[DryWine W my _dry; Wine](W)

add all assertions DryWine(c) to the ABox (extensional part) of L, such
that my__dry(c) holds.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Programs oS
&/ DL Queries

dl-Programs
Social Dinner Scenario

dl-Atoms /2

A dl-atom has the form
DL[S10p1p1, ..., Smop,, pm; Ql(t), m >0, J

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Atoms /2

A dl-atom has the form
DL[Sloplpla”'us7n0pm pm7Q](t)7 77?207 J

where

e cach S; is either a concept or a role

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Atoms /2

A dl-atom has the form
DL[S10p1p1, ..., Smop,, pm; Q|(t), m >0,

where
e each S; is either a concept or a role
e op, €{W, U},

Intuitively:

op; =W increases S; by p;.
op; =Y increases —.S; by p;.

Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Atoms /2

A dl-atom has the form
DL[510p1p1,...,Sm0pm p7n7Q](t)7 77?207

where
e each S; is either a concept or a role
e op; € {W,U},
e p; is a unary resp. binary predicate (input predicate),

Intuitively:

op; =W increases S; by p;.
op; = increases —.S; by p;.

Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Programs L
&/ DL Queries

dl-Programs
Social Dinner Scenario

dl-Atoms /2

A dl-atom has the form
DL[S10P1P17‘--7Sm0pm pm7QKt)7 mZO,

where

each S; is either a concept or a role

op; € {W, U},

e p; is a unary resp. binary predicate (input predicate),
Q(t) is a DL query.

Intuitively:

op; =W increases S; by p;.
op; =Y increases —.S; by p;.

Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms
dl-Programs DL Queries

dl-Programs

Social Dinner Scenario

DL Queries

A DL query Q(t) is one of
(a) a concept inclusion axiom C'C D, or its negation
~(CED),
(b) C(t) or =C(t), for a concept C' and term t, or
(¢) R(t1,t2) or ~R(t1,t2), for a role R and terms ¢y, to.

Remarks:

e Further queries are conceivable (e.g., conjunctive queries)

e The queries above are standard queries.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Programs

A dl-rule r is of form
a <« by,...,bg,not bgy1,...,n0t by, m>k>0,
where
e a is a classical first-order literal

e by,..., by, are classical first-order literals or dl-atoms (no
function symbols).

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

dl-Programs

A dl-rule r is of form
a <« by,...,bg,not bgy1,...,n0t by, m>k>0,
where
e a is a classical first-order literal

e by,..., by, are classical first-order literals or dl-atoms (no
function symbols).

Definition
A nonmonotonic description logic (dl-) program KB = (L, P)
consists of

e a knowledge base L in a description logic (|J *Box),

e a finite set of dl-rules P.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

Social Dinner IX

Task
Modify wineCover09a.dlp by fetching the wines now from the ontology.

For instance:

wineBottle(X) :- DL["Wine"] (X).

Fetches all the known instances of Wine.

Think at how the “isA" predicate could be redefined in terms of dl-atoms

isA(X,*“SweetWine’’) :- 7
isA(X,“DessertWine’) :- ?
isA(X,“ItalianWine’) :- 7
Solution at

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms

DL Queries
dl-Programs

Social Dinner Scenario

dl-Programs

Social Dinner IX

Task
Modify wineCover09a.dlp by fetching the wines now from the ontology.

For instance:

wineBottle(X) :- DL["Wine"] (X).

Fetches all the known instances of Wine.

Think at how the “isA" predicate could be redefined in terms of dl-atoms

isA(X,“SweetWine’’) :- DL[SweetWine] (X).
isA(X,“DessertWine’’) :- DL[DessertWine] (X).
isA(X,“ItalianWine’’) :- DL[ItalianWine] (X).

Solution at wineCover9b.dlp

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

dl-Atoms
dl-Programs BIL @t

dl-Programs

Social Dinner Scenario

Social Dinner X

® Suppose now that we learn that there is a bottle, “SelakslceWine”, which
is a white wine and not dry.

e We may add this information to the logic program by facts':

white (‘‘SelaksIceWine’”) . not_dry(‘“SelaksIceWine’’). J

® In our program, we may pass this information to the ontology by adding
in the dl-atoms the modification

White Wine W white, DryWinednot _dry. J

E.g., DL[Wine] (X) is changed to

DL[WhiteWine += white, DryWine -= not_dry; Wine] (X).)

1See wineCover09c.dlp

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Semantics of KB = (L, P)

e HB%: Set of all ground (classical) literals with predicate symbol
in P and constants from finite relational alphabet ®.

e Constants: those in P and (all) individuals in the ABox of L.

e Herbrand interpretation: consistent subset I C HB%

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Semantics of KB = (L, P)

e HB%: Set of all ground (classical) literals with predicate symbol
in P and constants from finite relational alphabet ®.

e Constants: those in P and (all) individuals in the ABox of L.

e Herbrand interpretation: consistent subset I C HB%

e [=1 ¢ for classical ground literal ¢, iff ¢ € I;

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Semantics of KB = (L, P)

e HB%: Set of all ground (classical) literals with predicate symbol
in P and constants from finite relational alphabet ®.

e Constants: those in P and (all) individuals in the ABox of L.

e Herbrand interpretation: consistent subset I C HB%
e [=1 ¢ for classical ground literal ¢, iff ¢ € I;
o I =1 DL[S10pyp1--.,Smop,, pPm; Q](c) if and only if
LUA (I)U---UA,I) EQ(c),

Si(e) |pi(e) eI}, for op,=U;
o A;(I)={-Si(e)|pi(e) I}, for op, =U.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Semantics of KB = (L, P)

e HB%: Set of all ground (classical) literals with predicate symbol
in P and constants from finite relational alphabet ®.

e Constants: those in P and (all) individuals in the ABox of L.
e Herbrand interpretation: consistent subset I C HB%
e [=1 ¢ for classical ground literal ¢, iff ¢ € I;
o I =1 DL[S10pyp1--.,Smop,, pPm; Q](c) if and only if
LUA (I)U---UA,I) EQ(c),
where
o A(D)={Si(e) |pi(e) €T}, for op, =
o A;(I)={-Si(e)|pi(e) eI}, for op,=U.

e The models of KB = (L, P) are the joint models of all rules in P
(defined as usual)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

SEIES

e Suppose L = Wine(“TaylorPort”), and I contains
wineBottle(“ TaylorPort”)

Then I =1, DL[“Wine”](“TaylorPort”) and
I =1, wineBottle(“TaylorPort”) - DL[“ Wine”|(“ TaylorPort”)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

SEIES

e Suppose L = Wine(“TaylorPort”), and I contains
wineBottle(“ TaylorPort”)
Then I =1, DL[“Wine”](“TaylorPort”) and
I =1, wineBottle(“TaylorPort”) - DL[“ Wine”|(“ TaylorPort”)

e Suppose I = {white(“siw”), not__dry(“siw”)}.

Then I ':L
DL[“WhiteWine” & white, “DryWine” Inot_dry; “ Wine”|(“siw”)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Examples /2

e Suppose L = DL[“Wine”](“Milk”). Then for every I,
I = compliant(joe, “Milk”) - DL[“ Wine”](“Milk”)
I =1 not DL[“Wine”|(“Milk”).

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Examples /2

e Suppose L = DL[“Wine”](“Milk”). Then for every I,
I = compliant(joe, “Milk”) - DL[“ Wine”](“Milk”)
I =1 not DL[“Wine”|(“Milk”).

e Note that I =5, not DL[“Wine”](“Milk”) is different from
I |=1, DL~ Wine”|(“Milk”).

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Examples /2

e Suppose L = DL[“Wine”](“Milk”). Then for every I,
I = compliant(joe, “Milk”) - DL[“ Wine”](“Milk”)
I =1 not DL[“Wine”|(“Milk”).
e Note that I =5, not DL[“Wine”](“Milk”) is different from
I \=1 DL[~“Wine”|(“Milk").
e Inconsistency of L is revealed with unsatisfiable DL queries:
inconsistent - DL[“Wine” C —“Wine”|
Shorthand: DL[1]

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Examples /2

e Suppose L = DL[“Wine”](“Milk”). Then for every I,
I = compliant(joe, “Milk”) - DL[“ Wine”](“Milk”)
I =1 not DL[“Wine”|(“Milk”).
e Note that I =5, not DL[“Wine”](“Milk”) is different from
I \=1 DL[~“Wine”|(“Milk").
e Inconsistency of L is revealed with unsatisfiable DL queries:
inconsistent - DL[“Wine” C —“Wine”|
Shorthand: DL[1]

e Consistency can be checked by

consistent - not DL[“Wine” T =“Wine”]

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Answer Sets

Answer Sets of positive KB = (L, P) (no not in P):
e KB = (L, P) has the least model Im(KB) (if satisfiable)
e The single answer set of KB is Im(KB)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Answer Sets

Answer Sets of positive KB = (L, P) (no not in P):
e KB = (L, P) has the least model Im(KB) (if satisfiable)
e The single answer set of KB is Im(KB)

Answer Sets of general KB = (L, P):
o Use a reduct KB’ akin to the Gelfond-Lifschitz (GL) reduct:

KB! = (L, PT)

where P! is the GL-reduct of P wrt. I (treat dl-atoms like
regular atoms)

e [is an answer set of KB iff I = Im(KB').

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Some Semantical Properties

e Existence: Positive dl-programs without “—" and constraints
always have an answer set

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Some Semantical Properties

e Existence: Positive dl-programs without “—" and constraints
always have an answer set

e Uniqueness: Layered use of “not” (stratified dl-program) =
single answer set

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Some Semantical Properties

e Existence: Positive dl-programs without “—" and constraints
always have an answer set

e Uniqueness: Layered use of “not” (stratified dl-program) =
single answer set

o Conservative extension: For dl-program KB = (L, P) without
dl-atoms, the answer sets are the answer sets of P.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Semantical Properties

e Existence: Positive dl-programs without “—" and constraints
always have an answer set

e Uniqueness: Layered use of “not” (stratified dl-program) =
single answer set

o Conservative extension: For dl-program KB = (L, P) without
dl-atoms, the answer sets are the answer sets of P.

e Minimality: answer sets of KB are models, and moreover
minimal models.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Definitions
Examples
Answer Sets
Properties

Answer Set Semantics

Semantical Properties

e Existence: Positive dl-programs without “—" and constraints
always have an answer set

e Uniqueness: Layered use of “not” (stratified dl-program) =
single answer set

o Conservative extension: For dl-program KB = (L, P) without
dl-atoms, the answer sets are the answer sets of P.

e Minimality: answer sets of KB are models, and moreover
minimal models.

e Fixpoint Semantics: Positive and stratified dl-programs with
monotone dl-atoms possess fixpoint characterizations of the
answer set.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Some Reasoning Applications

e dl-atoms allow to query description knowledge base repeatedly

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Some Reasoning Applications

e dl-atoms allow to query description knowledge base repeatedly

e We might use dl-programs as rule-based “glue” for inferences
on a DL base.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Some Reasoning Applications

e dl-atoms allow to query description knowledge base repeatedly

e We might use dl-programs as rule-based “glue” for inferences
on a DL base.

e In this way, inferences can be combined

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Reasoning Applications

e dl-atoms allow to query description knowledge base repeatedly

e We might use dl-programs as rule-based “glue” for inferences
on a DL base.

e In this way, inferences can be combined

e Here, we show some applications where non-monotonic and
minimization features of dl-programs can be exploited

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Closed World Assumption (CWA)

Reiter’s Closed World Assumption (CWA)

For ground atom p(c), infer —p(c) if KB [~ p(c)

e Express CWA for concepts (1, ..., C) wrt. individuals in L:

—c1(X) «— not DL[C4](X)
—cp(X) < not DL[Ck](X)

e CWA for roles R: easy extension

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Applications and Properties Default R

Query Answering under CWA

Example: L = { SparklingWine(“VeuveCliquot”),
(Sparklingwine M = White Wine)(“Lambrusco”) }.

Query: WhiteWine(“ VewveCliquot”) (Y/N)?

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Query Answering under CWA

Example: L = { SparklingWine(“VeuveCliquot”),
(Sparklingwine M = White Wine)(“Lambrusco”) }.

Query: WhiteWine(“ VewveCliquot”) (Y/N)?

Add CWA-literals to L:
5p(X) < mnot DL[SparklingWine](X)
ww(X) < not DL[White Wine](X)
ww(X) < DL[Sparkling Winedsp,
White Winedww; White Wine](X)

Ask whether KB = ww(“VeuveCliquot”) or
KB = ww(“ VeuveCliquot™)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Extended CWA

e CWA can be inconsistent (disjunctive knowledge)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Extended CWA

e CWA can be inconsistent (disjunctive knowledge)

e Example:
Knowledge base

L = { Artist(“Jody”), Artist = Painter Ll Singer }
o CWA for Painter, Singer adds
= Painter(“Jody”), ~Singer(“Jody”).

e This implies —~Artist(“Jody”)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Minimal Models

e ECWA singles out “minimal” models of L wrt Painter and
Singer (UNA in L on ABox):

(X) « not p(X)
(X) « not s(X)
p(X) <« DL[Painterdp, SingerdJs; Painter](X)
(X) <« DL[Painterdp, Singerds; Singer](X)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Minimal Models

e ECWA singles out “minimal” models of L wrt Painter and
Singer (UNA in L on ABox):

p(X) — not p(X)
5(X) «— not s(X)
p(X) «— DL[Painterdp, Singerds; Painter](X)
s(X) « DL[Painterdp, Singerds; Singer](X)

Answer sets:
M, = {p(“Jody”),s(“Jody”)},
Mz = {s(“Jody”),p(“Jody”)}

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Minimal Models

e ECWA singles out “minimal” models of L wrt Painter and
Singer (UNA in L on ABox):

(X) — not p(X)
(X) « not s(X)

p(X) «— DL[Painterdp, Singerds; Painter](X)
(X) <« DL[Painterdp, Singerds; Singer](X)
Answer sets:

M, = {p(“Jody”),s(“Jody”)},
My = {s(“Jody”),p(“Jody”)}

e Extendible to keep concepts “fixed”
~ ECWA(¢; P;Q; Z)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA
Applications and Properties Default Reasoning

Default Reasoning

Add simple default rules a la Poole (1988) on top of ontologies

Example: wine ontology

L = { SparklingWine(* VeuveCliquot”),
(“SparklingWine” M —“White Wine”)(“Lambrusco”) },

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

CWA
Extended CWA

Applications and Properties Default Reasoning

Default Reasoning

Add simple default rules a la Poole (1988) on top of ontologies
Example: wine ontology

L = { SparklingWine(* VeuveCliquot”),
(“SparklingWine” M —“White Wine”)(“Lambrusco”) },

Use default rule: Sparkling wines are white by default

rl: white(W) « DL[SparklingWine|(W), not ~white(W)
r2: —white(W) «— DL[White Wine W white; = White Wine](W)
r3: f <« not f, DL[L] /* kill model if L is inconsistent */

e |n answer set semantics, r2 effects maximal application of r1.

e Answer Set: M = {white(“VeuveCliquot”), —~white(“Lambrusco”)}

T. Eiter

Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Further Aspects of dl-programs

e Stratified dl-programs: intuitively, composed of hierarchic layers of
positive dl-programs linked via default negation.
This generalization of the classic notion of stratification embodies a
fragment of the language having single answer sets.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype

Further Aspects Reviewer Assignment

Further Aspects of dl-programs

e Stratified dl-programs: intuitively, composed of hierarchic layers of
positive dl-programs linked via default negation.

This generalization of the classic notion of stratification embodies a
fragment of the language having single answer sets.

e Non-monotonic dl-atoms: Operator A
DL[WhiteWineAmy _ White Wine](X)
Constrain White Wine to my_ White Wine

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Further Aspects of dl-programs

e Stratified dl-programs: intuitively, composed of hierarchic layers of
positive dl-programs linked via default negation.

This generalization of the classic notion of stratification embodies a
fragment of the language having single answer sets.

e Non-monotonic dl-atoms: Operator A
DL[White WineAmy _ White Wine](X)
Constrain White Wine to my_ White Wine

o Weak answer-set semantics (Here: Strong answer sets)
Treat also positive dl-atoms like not -literals in the reduct

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Further Aspects of dl-programs

e Stratified dl-programs: intuitively, composed of hierarchic layers of
positive dl-programs linked via default negation.

This generalization of the classic notion of stratification embodies a
fragment of the language having single answer sets.

e Non-monotonic dl-atoms: Operator A
DL[White WineAmy _ White Wine](X)
Constrain White Wine to my_ White Wine

o Weak answer-set semantics (Here: Strong answer sets)
Treat also positive dl-atoms like not -literals in the reduct

o Well-founded semantics

Generalization of the traditional well-founded semantics for normal
logic programs.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Computational Complexity

Deciding strong answer set existence for dl-programs
(completeness results)

KB=(L,P) | Lin SHIF(D) L in SHOIN (D)

positive EXP NEXP
stratified EXP pNEXP
general NEXP NpPNEXP

Recall: Satisfiability problem in
e SHIF(D)/SHOIN (D) is EXP-/NEXP-complete (unary numbers).
e ASP is EXP-complete for positive/stratified programs P, and
NEXP-complete for arbitrary P
e Key observation: The number of ground dl-atoms is polynomial
o NPNEXP — pNEXP iq joss powerful than disjunctive ASP (= NEXPNF)

e Similar results for query answering

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

NLP-DL Prototype

e Fully operational prototype: NLP-DL

http://www.kr.tuwien.ac.at/staff/roman/semweblp/.

e Accepts ontologies formulated in OWL-DL (as processed by
RACER) and a set of dl-rules, where <, W, and U, are written as
Mot M=t oand "-=" respectively.

o Model computation: compute

e the answer sets
e the well-founded model

Preliminary computation of the well-founded model may be
exploited for optimization.

e Reasoning: both brave and cautious reasoning, well-founded
inferences

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

http://www.kr.tuwien.ac.at/staff/roman/semweblp/

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Example: Review Assignment

It is given an ontology about scientific publications

e Concept Author stores authors

e Concept Senior (senior author)

e Concept ClubI00 (authors with more than 100 paper)

[]

e Goal: Assign submitted papers to reviewers

e Note: Precise definitions are not so important (encapsulation)

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Review Assignment /2

Facts:

paper (subml) . author(subml,"jdbr"). author(submi,"htom").
paper(subm2). author(subm2,"teit"). author(subm2,"gian").
author (subm2,"rsch"). author(subm2,"apol").

Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype

Further Aspects Reviewer Assignment

Review Assignment /2

Facts:

paper (subml). author(subml,"jdbr"). author(submi,"htom").
paper (subm2). author(subm2,"teit"). author(subm2,"gian").
author (subm2,"rsch"). author(subm2,"apol").

The program committee:

pe("vlif"). pc("mgel"). pc("dfen"). pc("fley"). pc("smil").
pe("mkif"). pc("ptra"). pc(“"ggot"). pc("ihor").

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype

Further Aspects Reviewer Assignment

Review Assignment /2

Facts:

paper (subml). author(subml,"jdbr"). author(submi,"htom").
paper (subm2). author(subm2,"teit"). author(subm2,"gian").
author (subm2,"rsch"). author(subm2,"apol").

The program committee:

pe("vlif"). pc("mgel"). pc("dfen"). pc("fley"). pc("smil").
pe("mkif"). pc("ptra"). pc(“"ggot"). pc("ihor").

All PC members are in the “Club100” with more than 100 papers:
Consider all senior researchers as candidate reviewers adding the club100 information
to the OWL knowledge base:

cand(X,P) :- paper(P), DL["club100" += pc;"senior"](X).

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Review Assignment /3

Guess a reviewer assignment:

assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Review Assignment /3

Guess a reviewer assignment:

assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).

Check that each paper is assigned to at most one person:

:- assign(X,P), assign(X1,P), X1 != X.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Review Assignment /3

Guess a reviewer assignment:

assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).

Check that each paper is assigned to at most one person:
:- assign(X,P), assign(X1,P), X1 != X.

A reviewer can't review a paper by him/herself:

:- assign(A,P), author(P,A).

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Review Assignment /3

Guess a reviewer assignment:

assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).

Check that each paper is assigned to at most one person:
:- assign(X,P), assign(X1,P), X1 != X.

A reviewer can't review a paper by him/herself:

:- assign(A,P), author(P,A).

Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).
error(P) :- paper(P), not a(P).
:~ error(P).

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Review Assignment /3

Guess a reviewer assignment:

assign(X,P) :- not -assign(X,P), cand(X,P).
-assign(X,P) :- not assign(X,P), cand(X,P).

Check that each paper is assigned to at most one person:
:- assign(X,P), assign(X1,P), X1 != X.

A reviewer can't review a paper by him/herself:

:- assign(A,P), author(P,A).

Check whether all papers are correctly assigned (by projection)

a(P) :- assign(X,P).
error(P) :- paper(P), not a(P).
:~ error(P).

Note: error(P) detects unassignable papers rather than a simple constraint.

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

Computational Complexity
Prototype
Reviewer Assignment

Further Aspects

Task

Try out the complete reviewer example!

Run reviewer.dlp !

T. Eiter Unit 5 — An ASP Extension: Nonmon. dl-Programs

http://www.w3.org/Submission/WRL/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.dlvsystem.com/
http://www.w3.org/Submission/SWRL/
http://www.icons.rodan.pl/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.tcs.hut.fi/~init/papers/niemela-iclp04-tutorial.ps.gz/
http://www.cs.kuleuven.ac.be/~pelov/papers/nma.ps.gz
http://www.tcs.hut.fi/Software/smodels/
http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

	Introduction
	Social Dinner Scenario
	Combining ASP and DL

	dl-Programs
	dl-Atoms
	DL Queries
	dl-Programs
	Social Dinner Scenario

	Answer Set Semantics
	Definitions
	Examples
	Answer Sets
	Properties

	Applications and Properties
	CWA
	Extended CWA
	Default Reasoning

	Further Aspects
	
	Computational Complexity
	Prototype
	Reviewer Assignment

