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Unit 7: Hands-On Session

Each of the previous units was accompanied with small practical
examples which you could follow over the Web-Interface to DLV.

Now: Try yourself!

Practice and combine your experiences from the di�erent units in
several exercises. Your tutor has the details!

Discover how to manipulate your online calendar ICAL/RDF data
from an ASP application.

Specify an appointment matching strategy using declarative

programming.

Grab a Tutor and get started!

The tutors will provide sets of new examples to be solved and can
reexplain exercises from the di�erent units. Don't hesitate to ask
questions and let us know your opinions!
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The Calendar Example

• The Google Calendar is available in machine readable format

1 Ask for your team number (in range 1 . . . 6)
2 Login at: http://calendar.google.com
3 User: teamX@gibbi.com, where X = 1 . . . 6
4 Pass: passwo

• Feel free to make any change to your calendar!
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Data Flow

Google Calendar ⇒ Online Converter
ICAL → RDF

⇒
dlvhex

GOAL: Given calendar data in RDF, and a meeting day, �nd a
suitable time slot for arranging a meeting between the six teams,
under given constraints.
Fast prototype a simple program accomplishing the task, written in
dlvhex
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How to manipulate these data from a dlvhex program

• Go to example calendar1.dlht.

• Several building bricks available:

Fact Predicates (prede�ned)

1 meetingDate("yyyy-mm-dd"). Set this to the meeting day.

2 calendar(teamX,URL). The public URL of each calendar. Comment out
with % the teams you don't want to participate to the meeting.

3 inrange("yyyy-mm-ddThh:mm:ss"). Possible starting times: prede�ned
to range from 08:00:00 to 19:00:00 (in slots of one hour) for the
meeting day.

4 busy(teamID,startTime,endTime,eventType). Time slot a given
teamID is busy. eventType can be either "OPAQUE" (non movable
appointment) or "TRANSPARENT" (�exible appointment).

5 succ(time1,time2). It's true if time2 is the next time slot w.r.t. time1
(one hour later). For instance it holds
succ("2006-06-11T09:00:00","2006-06-11T10:00:00")
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Other Building Bricks

Templates

1 overlap{p(*,*,*),q(*,*,*)}(team1,team2). Given two ternary
predicates p and q, having extension in format
(groupID,StartTime,EndTime) this template is true for all the couples
team1,team2 such that team1 and team2 have two overlapping events.

2 Example: Given facts
chosenSlot(slot,"2006-06-11T08:00:00","2006-06-11T10:00:00"),

event(team1,"2006-06-11T09:00:00","2006-06-11T11:30:00") and
rule

conflict(X,Y) :-

overlap{chosenSlot(*,*,*),event(*,*,*)}(X,Y), then

conflict(slot,team1) is true.
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Other Building Bricks

Templates

1 any{p(*)}(value). Chooses (nondeterministically) exactly one value
from the values of p.

2 Example: Given facts slot("2006-06-11T08:00:00"),
slot("2006-06-11T09:00:00") and a one rule program

chosenSlot(X) :- any{slot(*)}(X).

then we have two di�erent answer sets, one containing
chosenSlot("2006-06-11T09:00:00") and the other containing
chosenSlot("2006-06-11T08:00:00").
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Tasks to accomplish:

Task

Task 1 (easy): write a program that �nds a time slot where all the

participant are available.

Task

Task 2 (easy): write a program that �nds a time slot where as

many as possible participants are available.

Task

Task 3 (medium): write a program that �nds a time slot where

con�icts with opaque events are forbidden, while con�icts with

transparent events are minimized.
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Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
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