
Answer Set Programming for the Semantic Web

Tutorial

Thomas Eiter, Roman Schindlauer (TU Wien)
Giovambattista Ianni (TU Wien, Univ. della Calabria)

Axel Polleres (Univ. Rey Juan Carlos, Madrid)

Supported by IST REWERSE, FWF Project P17212-N04, CICyT project TIC-2003-9001-C02.

Unit 7 � Hands-On Session



Unit 7 � Hands-On Session

European Semantic Web Conference 2006

Unit 7 � Hands-On Session



Unit 7: Hands-On Session

Each of the previous units was accompanied with small practical
examples which you could follow over the Web-Interface to DLV.

Now: Try yourself!

Practice and combine your experiences from the di�erent units in
several exercises. Your tutor has the details!

Discover how to manipulate your online calendar ICAL/RDF data
from an ASP application.

Specify an appointment matching strategy using declarative

programming.

Grab a Tutor and get started!

The tutors will provide sets of new examples to be solved and can
reexplain exercises from the di�erent units. Don't hesitate to ask
questions and let us know your opinions!

Unit 7 � Hands-On Session



The Calendar Example

• The Google Calendar is available in machine readable format

1 Ask for your team number (in range 1 . . . 6)
2 Login at: http://calendar.google.com
3 User: teamX@gibbi.com, where X = 1 . . . 6
4 Pass: passwo

• Feel free to make any change to your calendar!

Unit 7 � Hands-On Session



Data Flow

Google Calendar ⇒ Online Converter
ICAL → RDF

⇒
dlvhex

GOAL: Given calendar data in RDF, and a meeting day, �nd a
suitable time slot for arranging a meeting between the six teams,
under given constraints.
Fast prototype a simple program accomplishing the task, written in
dlvhex

Unit 7 � Hands-On Session



Data Flow

Google Calendar ⇒ Online Converter
ICAL → RDF

⇒
dlvhex

GOAL: Given calendar data in RDF, and a meeting day, �nd a
suitable time slot for arranging a meeting between the six teams,
under given constraints.
Fast prototype a simple program accomplishing the task, written in
dlvhex

Unit 7 � Hands-On Session



Data Flow

Google Calendar ⇒ Online Converter
ICAL → RDF

⇒
dlvhex

GOAL: Given calendar data in RDF, and a meeting day, �nd a
suitable time slot for arranging a meeting between the six teams,
under given constraints.
Fast prototype a simple program accomplishing the task, written in
dlvhex

Unit 7 � Hands-On Session



How to manipulate these data from a dlvhex program

• Go to example calendar1.dlht.

• Several building bricks available:

Fact Predicates (prede�ned)

1 meetingDate("yyyy-mm-dd"). Set this to the meeting day.

2 calendar(teamX,URL). The public URL of each calendar. Comment out
with % the teams you don't want to participate to the meeting.

3 inrange("yyyy-mm-ddThh:mm:ss"). Possible starting times: prede�ned
to range from 08:00:00 to 19:00:00 (in slots of one hour) for the
meeting day.

4 busy(teamID,startTime,endTime,eventType). Time slot a given
teamID is busy. eventType can be either "OPAQUE" (non movable
appointment) or "TRANSPARENT" (�exible appointment).

5 succ(time1,time2). It's true if time2 is the next time slot w.r.t. time1
(one hour later). For instance it holds
succ("2006-06-11T09:00:00","2006-06-11T10:00:00")

Unit 7 � Hands-On Session



Other Building Bricks

Templates

1 overlap{p(*,*,*),q(*,*,*)}(team1,team2). Given two ternary
predicates p and q, having extension in format
(groupID,StartTime,EndTime) this template is true for all the couples
team1,team2 such that team1 and team2 have two overlapping events.

2 Example: Given facts
chosenSlot(slot,"2006-06-11T08:00:00","2006-06-11T10:00:00"),

event(team1,"2006-06-11T09:00:00","2006-06-11T11:30:00") and
rule

conflict(X,Y) :-

overlap{chosenSlot(*,*,*),event(*,*,*)}(X,Y), then

conflict(slot,team1) is true.

Unit 7 � Hands-On Session



Other Building Bricks

Templates

1 any{p(*)}(value). Chooses (nondeterministically) exactly one value
from the values of p.

2 Example: Given facts slot("2006-06-11T08:00:00"),
slot("2006-06-11T09:00:00") and a one rule program

chosenSlot(X) :- any{slot(*)}(X).

then we have two di�erent answer sets, one containing
chosenSlot("2006-06-11T09:00:00") and the other containing
chosenSlot("2006-06-11T08:00:00").

Unit 7 � Hands-On Session



Tasks to accomplish:

Task

Task 1 (easy): write a program that �nds a time slot where all the

participant are available.

Task

Task 2 (easy): write a program that �nds a time slot where as

many as possible participants are available.

Task

Task 3 (medium): write a program that �nds a time slot where

con�icts with opaque events are forbidden, while con�icts with

transparent events are minimized.

Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session



Restaurant Seating Problem

• A restaurant has tables (table(T)) with certain number of chairs
(nchairs(T,C)).

• Persons (person(T)) should be seated such that persons who like each other
(likes(P1,P2)) are at the same table.

• Persons who dislike each other (dislikes(P1,P2)) are at di�erent tables1.

• GOAL: �nd a suitable seat for everyone.

Guess if person P sits at table T or not

at(P,T) v not_at(P,T) :- person(P), table(T).

Check capacity of tables

:- table(T), chairs(T,C), not #count { P: at(P,T) } <= C.

Check seating of each person

:- person(P), not #count{T : at(P,T)} = 1.

Check �likes�

:- like(P1,P2), at(P1,T), not at(P2,T).

Check �dislikes�

:- dislike(P1,P2), at(P1,T), at(P2,T).

1Example seating.dlv
Unit 7 � Hands-On Session


