
Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

Clause Learning for Modular Systems

David Mitchell and Eugenia Ternovska

LPNMR 2015

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

Outline

Introduction

Asynchronous CDCL for Sets of Modules

Correctness

End

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

Motivation

Modern Problem Solving:

• Many solvers, KBs.

• Accessed via API

• Solution is a structure all agree with

Goal:

• CDCL-like algorithms for this setting

• Problems specified with Algebra of Modular Systems
• Module: class of structures
• Operations like Relational Algebra lifted to classes of

structures
• (See Ternovska, GTTV ’15).

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

Assumptions for Today

• Conjunctions of Modules

• Response times highly variable
⇒ need asynchronous solving

• Module Mi:
• set of assignments for propositional vocabulary σi
• queried with a partial assignment
• responds (in finite time) with one of:

• 〈Accept, A〉
• 〈Reject, A〉

where A is a set of clauses with Mi |= A.

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

CDCL (a bit abstractly)

Input: Clause set Φ
Output: SAT or UNSAT

1Γ← Φ // Clause set, initialized to the input clauses.
2δ ← 〈〉 // Decision sequence, initialized to empty.
3repeat
4Γ, δ ← Extend-and-Learn(Γ, δ)
5if � ∈ Γ then
6return UNSAT
7if δ |= Γ then
8return SAT

9end

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

CDCL → CDCL-AMS

Input: Modular System M with vocabulary σ
Output: SAT or UNSAT

1Γ← ∅ // Clause set, initialized to empty.
2δ 6= 〈〉 // Initial decision sequence nonempty.
3repeat
4Γ, δ ⇐ Modified by Module Response
5Γ, δ ← Extend-and-Learn(Γ, δ)
6if � ∈ Γ then
7return UNSAT
8if δ |= Γ then
9δ ⇒ Sent Modules

10end

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

CDCL-AMS Data

Γ:

• current set of clauses (M |= Γ)

Query:

• A CDCL Assignment stack,

• For each Mi, label on prefix accepted by Mi

QUERIES:

• Set of queries waiting to be sent to a module

• Each satisfied Γ when added

HOLD:

• Clauses corresponding to members of QUERIES

• Used in UP, but not in conflict clause deriviation

CONTINUE:

• module responses waiting to be handled

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

CDCL-AMS

Input: Modular System M with vocabulary σ
Output: SAT or UNSAT

1Γ← ∅ // Clause set, initialized to empty.
2δ 6= 〈〉 // Initial decision sequence nonempty.
3repeat
4if CONTINUE not empty then
5Remove a response from CONTINUE
6Update Γ,δ and HOLD
7if δ |=M then return SAT

8Γ, δ ← Extend-and-Learn(Γ, δ)
9if � ∈ Γ then return UNSAT

10if δ |= Γ then
11Add δ to QUEUE, Decisions(δ) to HOLD
12δ ← a proper prefix of δ

13end

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

Correctness and Complexity

Partial Correctness:

• CDCL-AMS returns SAT
⇒ δ total for and accepted by every module

• CDCL-AMS returns UNSAT
⇒ M |= Γ and Γ |= �, so M has no solution.

Termination: Progress is

1. δ is extended, or

2. A solver accepted a larger prefix of δ

3. δ was “killed” by a new clause

Complexity: O(T (n)2n)

• n = |σ|
• T (n) is max response time for a module.

Outline Introduction Asynchronous CDCL for Sets of Modules Correctness End

Work in Progress

• Refinements, Heuristics, Implementability issues

• Versions for:

1. Modules which are Expanders
2. Modules which return a limited set of alternatives
3. Systems over full Modular System Algebra
4. Modules which are Dynamic
5. Exploiting Problem Structure
6. Exploiting Specific Modules

	Introduction
	Asynchronous CDCL for Sets of Modules
	Correctness
	End

