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Motivation

Modern Problem Solving:

• Many solvers, KBs.

• Accessed via API

• Solution is a structure all agree with

Goal:

• CDCL-like algorithms for this setting

• Problems specified with Algebra of Modular Systems
• Module: class of structures
• Operations like Relational Algebra lifted to classes of

structures
• (See Ternovska, GTTV ’15).
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Assumptions for Today

• Conjunctions of Modules

• Response times highly variable
⇒ need asynchronous solving

• Module Mi:
• set of assignments for propositional vocabulary σi
• queried with a partial assignment
• responds (in finite time) with one of:

• 〈Accept, A〉
• 〈Reject, A〉

where A is a set of clauses with Mi |= A.
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CDCL (a bit abstractly)

Input: Clause set Φ
Output: SAT or UNSAT

1Γ← Φ // Clause set, initialized to the input clauses.
2δ ← 〈〉 // Decision sequence, initialized to empty.
3repeat
4Γ, δ ← Extend-and-Learn(Γ, δ)
5if � ∈ Γ then
6return UNSAT
7if δ |= Γ then
8return SAT

9end
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CDCL → CDCL-AMS

Input: Modular System M with vocabulary σ
Output: SAT or UNSAT

1Γ← ∅ // Clause set, initialized to empty.
2δ 6= 〈〉 // Initial decision sequence nonempty.
3repeat
4Γ, δ ⇐ Modified by Module Response
5Γ, δ ← Extend-and-Learn(Γ, δ)
6if � ∈ Γ then
7return UNSAT
8if δ |= Γ then
9δ ⇒ Sent Modules

10end
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CDCL-AMS Data

Γ:

• current set of clauses (M |= Γ)

Query:

• A CDCL Assignment stack,

• For each Mi, label on prefix accepted by Mi

QUERIES:

• Set of queries waiting to be sent to a module

• Each satisfied Γ when added

HOLD:

• Clauses corresponding to members of QUERIES

• Used in UP, but not in conflict clause deriviation

CONTINUE:

• module responses waiting to be handled
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CDCL-AMS

Input: Modular System M with vocabulary σ
Output: SAT or UNSAT

1Γ← ∅ // Clause set, initialized to empty.
2δ 6= 〈〉 // Initial decision sequence nonempty.
3repeat
4if CONTINUE not empty then
5Remove a response from CONTINUE
6Update Γ,δ and HOLD
7if δ |=M then return SAT

8Γ, δ ← Extend-and-Learn(Γ, δ)
9if � ∈ Γ then return UNSAT

10if δ |= Γ then
11Add δ to QUEUE, Decisions(δ) to HOLD
12δ ← a proper prefix of δ

13end
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Correctness and Complexity

Partial Correctness:

• CDCL-AMS returns SAT
⇒ δ total for and accepted by every module

• CDCL-AMS returns UNSAT
⇒ M |= Γ and Γ |= �, so M has no solution.

Termination: Progress is

1. δ is extended, or

2. A solver accepted a larger prefix of δ

3. δ was “killed” by a new clause

Complexity: O(T (n)2n)

• n = |σ|
• T (n) is max response time for a module.
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Work in Progress

• Refinements, Heuristics, Implementability issues

• Versions for:

1. Modules which are Expanders
2. Modules which return a limited set of alternatives
3. Systems over full Modular System Algebra
4. Modules which are Dynamic
5. Exploiting Problem Structure
6. Exploiting Specific Modules
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