
Enablers and Inhibitors in Causal Justifications
of Logic Programs

Pedro Cabalar and Jorge Fandinno

Department of Computer Science
University of Corunna (Spain)
{cabalar,fandino}@udc.es

September 28th, 2015
LPNMR’15

Lexington, KY, USA

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 1 / 30

Joint work with Jorge Fandinno (recent PhD)

A Causal Semantics for Logic Programming
September 11th, 2015

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 2 / 30

Context: Causal Justifications

Logic programming is an important paradigm for problem solving.

Sometimes, is not enough to provide some conclusions, but we also
are required to provide explanations for them.
É In LP, true atoms must be justified.

É Extensive literature on justifications and debugging in LP
[Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09;
Oetsch et al 10; Schulz & Toni 13]

A pair of multi-valued approaches with algebraic constructions:
É Why-not Provenance [Damásio et al 2013]:
oriented to debugging and explanation, well-founded semantics

É Causal Graphs [Cabalar and Fandinno 14]:
causes = proof graphs from (the positive part) of an ASP program

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 3 / 30

Context: Causal Justifications

Logic programming is an important paradigm for problem solving.

Sometimes, is not enough to provide some conclusions, but we also
are required to provide explanations for them.
É In LP, true atoms must be justified.

É Extensive literature on justifications and debugging in LP
[Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09;
Oetsch et al 10; Schulz & Toni 13]

A pair of multi-valued approaches with algebraic constructions:
É Why-not Provenance [Damásio et al 2013]:
oriented to debugging and explanation, well-founded semantics

É Causal Graphs [Cabalar and Fandinno 14]:
causes = proof graphs from (the positive part) of an ASP program

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 3 / 30

Context: Causal Justifications

Logic programming is an important paradigm for problem solving.

Sometimes, is not enough to provide some conclusions, but we also
are required to provide explanations for them.
É In LP, true atoms must be justified.

É Extensive literature on justifications and debugging in LP
[Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09;
Oetsch et al 10; Schulz & Toni 13]

A pair of multi-valued approaches with algebraic constructions:
É Why-not Provenance [Damásio et al 2013]:
oriented to debugging and explanation, well-founded semantics

É Causal Graphs [Cabalar and Fandinno 14]:
causes = proof graphs from (the positive part) of an ASP program

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 3 / 30

Context: Causal Justifications

Logic programming is an important paradigm for problem solving.

Sometimes, is not enough to provide some conclusions, but we also
are required to provide explanations for them.
É In LP, true atoms must be justified.

É Extensive literature on justifications and debugging in LP
[Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09;
Oetsch et al 10; Schulz & Toni 13]

A pair of multi-valued approaches with algebraic constructions:
É Why-not Provenance [Damásio et al 2013]:
oriented to debugging and explanation, well-founded semantics

É Causal Graphs [Cabalar and Fandinno 14]:
causes = proof graphs from (the positive part) of an ASP program

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 3 / 30

Our proposal

We propose Extended Causal Justifications mixing both:

causal explanations = proof graphs built with rule labels

+

negative terms = related to default negation, they define
enablers and inhibitors for applying causal rules

Our interest: representing (relevant) causal knowledge rather than
debugging or providing all possible explanations

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 4 / 30

Our proposal

We propose Extended Causal Justifications mixing both:

causal explanations = proof graphs built with rule labels

+

negative terms = related to default negation, they define
enablers and inhibitors for applying causal rules

Our interest: representing (relevant) causal knowledge rather than
debugging or providing all possible explanations

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 4 / 30

Motivation Example

Example

If James Bond drinks drug d, he will have
paralysis p unless has been administered
an antidote a.
The MI5 daily administers Bond
antidote a, unless he is on holiday h.

Le Chiffre has poured drug d
on Bond’s drink!

p : p ← d, not a
a : a ← not h
d : d

Bond does not have paralysis, but why not?

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 5 / 30

Motivation Example

Example

If James Bond drinks drug d, he will have
paralysis p unless has been administered
an antidote a.
The MI5 daily administers Bond
antidote a, unless he is on holiday h.

Le Chiffre has poured drug d
on Bond’s drink!

p : p ← d, not a
a : a ← not h
d : d

Bond does not have paralysis, but why not?

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 5 / 30

Motivation Example

Example

If James Bond drinks drug d, he will have
paralysis p unless has been administered
an antidote a.
The MI5 daily administers Bond
antidote a, unless he is on holiday h.

Le Chiffre has poured drug d
on Bond’s drink!

p : p ← d, not a
a : a ← not h
d : d

Bond does not have paralysis, but why not?

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 5 / 30

Motivation Example

Example

If James Bond drinks drug d, he will have
paralysis p unless has been administered
an antidote a.
The MI5 daily administers Bond
antidote a, unless he is on holiday h.

Le Chiffre has poured drug d
on Bond’s drink!

p : p ← d, not a
a : a ← not h
d : d

Bond does not have paralysis, but why not?
Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 5 / 30

Motivation Example

Example
Suppose now that, that day,
Bond was actually on a
holiday with Vesper.

p : p ← d, not a
a : a ← not h
d : d
h : h

Counterfactuals:
É Had Le Chiffre not poured the drug d , Bond would not have
paralysis d .

É Had Bond not being on holiday h, he would not have paralysis d .

Causality:
É Is the drug d a cause of Bond’s paralysis d?

Yes!!

É Is a holiday h a cause of Bond’s paralysis d?

Controversial!!!

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 6 / 30

Motivation Example

Example
Suppose now that, that day,
Bond was actually on a
holiday with Vesper.

p : p ← d, not a
a : a ← not h
d : d
h : h

Counterfactuals:
É Had Le Chiffre not poured the drug d , Bond would not have
paralysis d .

É Had Bond not being on holiday h, he would not have paralysis d .

Causality:
É Is the drug d a cause of Bond’s paralysis d?

Yes!!

É Is a holiday h a cause of Bond’s paralysis d?

Controversial!!!

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 6 / 30

Motivation Example

Example
Suppose now that, that day,
Bond was actually on a
holiday with Vesper.

p : p ← d, not a
a : a ← not h
d : d
h : h

Counterfactuals:
É Had Le Chiffre not poured the drug d , Bond would not have
paralysis d .

É Had Bond not being on holiday h, he would not have paralysis d .

Causality:
É Is the drug d a cause of Bond’s paralysis d? Yes!!
É Is a holiday h a cause of Bond’s paralysis d?

Controversial!!!

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 6 / 30

Motivation Example

Example
Suppose now that, that day,
Bond was actually on a
holiday with Vesper.

p : p ← d, not a
a : a ← not h
d : d
h : h

Counterfactuals:
É Had Le Chiffre not poured the drug d , Bond would not have
paralysis d .

É Had Bond not being on holiday h, he would not have paralysis d .

Causality:
É Is the drug d a cause of Bond’s paralysis d? Yes!!
É Is a holiday h a cause of Bond’s paralysis d? Controversial!!!

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 6 / 30

Motivation Example

Is a holiday h a cause of Bond’s paralysis d?
É Yes: [Lewis73; Halpern and Pearl2001/2005]
É No: [Hall2004/2007; Mauldlin2004]
É May be: [Halpern and Hitchcock2011]

Plato: “distinguish the real cause from that without which the
cause would not be able to act as a cause.”
É The drug d is the real cause producing the paralysis.
É The holiday h is an enabler of the cause.

When not on holiday, the antidote a becomes an inhibitor of the
potential cause (the drug) of Bond’s paralysis.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 7 / 30

Motivation Example

Is a holiday h a cause of Bond’s paralysis d?
É Yes: [Lewis73; Halpern and Pearl2001/2005]
É No: [Hall2004/2007; Mauldlin2004]
É May be: [Halpern and Hitchcock2011]

Plato: “distinguish the real cause from that without which the
cause would not be able to act as a cause.”
É The drug d is the real cause producing the paralysis.
É The holiday h is an enabler of the cause.

When not on holiday, the antidote a becomes an inhibitor of the
potential cause (the drug) of Bond’s paralysis.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 7 / 30

Motivation Example

Is a holiday h a cause of Bond’s paralysis d?
É Yes: [Lewis73; Halpern and Pearl2001/2005]
É No: [Hall2004/2007; Mauldlin2004]
É May be: [Halpern and Hitchcock2011]

Plato: “distinguish the real cause from that without which the
cause would not be able to act as a cause.”
É The drug d is the real cause producing the paralysis.
É The holiday h is an enabler of the cause.

When not on holiday, the antidote a becomes an inhibitor of the
potential cause (the drug) of Bond’s paralysis.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 7 / 30

In this work

We propose a multivalued semantics for LP, Extended Causal
Justifications (ECJ), that captures causes, enablers and inhibitors.

Generalizes, under the well-founded semantics, both
É Causal Graph justifications (CG): only captures real causes.
É Why-not Provenance (WnP): only captures counterfactual
dependence

We also obtain a formal comparation between CG and WnP.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 8 / 30

Outline

1 Extended Causal Justifications

2 Relation to Causal Graph Justifications

3 Relation to Why not Provenance Justifications

4 Conclusions and Ongoing Work

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 9 / 30

Positive programs

Syntax: as usual plus an (optional) rule label

ri : H ← B1, . . . , Bm, not Bm+1, . . . , not Bn

with H and Bj atoms. ri can be a label ri = ` or t= 1.

Labels in the following program are part of the syntax
p : p ← d, not a
a : a ← not h
d : d

We will assign the expression formed by rule labels (∼a ∗ d) · p to
the atom p.
É d (negated label) is an inhibitor of the drug d.
É ‘·’ captures the order of rule application: p would have been applied
to d if a had not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 10 / 30

Positive programs

Syntax: as usual plus an (optional) rule label

ri : H ← B1, . . . , Bm, not Bm+1, . . . , not Bn

with H and Bj atoms. ri can be a label ri = ` or t= 1.

Labels in the following program are part of the syntax
p : p ← d, not a
a : a ← not h
d : d

We will assign the expression formed by rule labels (∼a ∗ d) · p to
the atom p.
É d (negated label) is an inhibitor of the drug d.
É ‘·’ captures the order of rule application: p would have been applied
to d if a had not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 10 / 30

Positive programs

Syntax: as usual plus an (optional) rule label

ri : H ← B1, . . . , Bm, not Bm+1, . . . , not Bn

with H and Bj atoms. ri can be a label ri = ` or t= 1.

Labels in the following program are part of the syntax
p : p ← d, not a
a : a ← not h
d : d

We will assign the expression formed by rule labels (∼a ∗ d) · p to
the atom p.

É d (negated label) is an inhibitor of the drug d.
É ‘·’ captures the order of rule application: p would have been applied
to d if a had not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 10 / 30

Positive programs

Syntax: as usual plus an (optional) rule label

ri : H ← B1, . . . , Bm, not Bm+1, . . . , not Bn

with H and Bj atoms. ri can be a label ri = ` or t= 1.

Labels in the following program are part of the syntax
p : p ← d, not a
a : a ← not h
d : d

We will assign the expression formed by rule labels (∼a ∗ d) · p to
the atom p.
É d (negated label) is an inhibitor of the drug d.
É ‘·’ captures the order of rule application: p would have been applied
to d if a had not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 10 / 30

Causal Values

Causal terms are expressions of the form
t ::= ` |

∏

S |
∑

S | t1 · t2 | ∼t1
where ` is a rule label, S is a set of causal terms and t1 and t2 are
causal terms.

By 1 and 0 we denote the empty product
∏

; and sum
∑

;,
respectively.

Causal values are the equivalence classes of causal terms under
completely distributive (complete) lattice

Associativity
t + (u+w) = (t+u) + w
t ∗ (u ∗w) = (t ∗ u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗ u)
t = t ∗ (t+u)

Distributive
t + (u ∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗ u) + (t ∗w)

Identity

t = t + 0
t = t ∗ 1

Annihilator
1 = 1 + t
0 = 0 ∗ t

plus . . .

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 11 / 30

Causal Values

Causal terms are expressions of the form
t ::= ` |

∏

S |
∑

S | t1 · t2 | ∼t1
where ` is a rule label, S is a set of causal terms and t1 and t2 are
causal terms.

By 1 and 0 we denote the empty product
∏

; and sum
∑

;,
respectively.

Causal values are the equivalence classes of causal terms under
completely distributive (complete) lattice

Associativity
t + (u+w) = (t+u) + w
t ∗ (u ∗w) = (t ∗ u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗ u)
t = t ∗ (t+u)

Distributive
t + (u ∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗ u) + (t ∗w)

Identity

t = t + 0
t = t ∗ 1

Annihilator
1 = 1 + t
0 = 0 ∗ t

plus . . .

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 11 / 30

Causal Values

Causal terms are expressions of the form
t ::= ` |

∏

S |
∑

S | t1 · t2 | ∼t1
where ` is a rule label, S is a set of causal terms and t1 and t2 are
causal terms.

By 1 and 0 we denote the empty product
∏

; and sum
∑

;,
respectively.

Causal values are the equivalence classes of causal terms under
completely distributive (complete) lattice

Associativity
t + (u+w) = (t+u) + w
t ∗ (u ∗w) = (t ∗ u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗ u)
t = t ∗ (t+u)

Distributive
t + (u ∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗ u) + (t ∗w)

Identity

t = t + 0
t = t ∗ 1

Annihilator
1 = 1 + t
0 = 0 ∗ t

plus . . .
Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 11 / 30

Causal Values

plus the following axioms for ‘·’

Associativity
t · (u·w) = (t·u) · w

Product Distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Identity

t = t · 1
t = 1 · t

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Absorption
t + u·t·w = t
t ∗ u·t·w = u·t·w

Annihilator

0 = t · 0
0 = 0 · t

Label idempotence
` · ` = `

Graph Representation
c · d · e = (c · d) ∗ (d · e) with d 6= 1

plus the following axioms for ‘∼’

pseudo-compl.
t ∗ ∼t= 0
∼∼∼t =∼t

De Morgan
∼(t+u)=(∼t ∗ ∼u)
∼(t ∗ u)=(∼t+∼u)

excluded middle
∼t + ∼∼t=1

appl. negation
∼(t · u)=∼(t ∗ u)

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 12 / 30

Causal Values

plus the following axioms for ‘·’

Associativity
t · (u·w) = (t·u) · w

Product Distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Identity

t = t · 1
t = 1 · t

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Absorption
t + u·t·w = t
t ∗ u·t·w = u·t·w

Annihilator

0 = t · 0
0 = 0 · t

Label idempotence
` · ` = `

Graph Representation
c · d · e = (c · d) ∗ (d · e) with d 6= 1

plus the following axioms for ‘∼’

pseudo-compl.
t ∗ ∼t= 0
∼∼∼t =∼t

De Morgan
∼(t+u)=(∼t ∗ ∼u)
∼(t ∗ u)=(∼t+∼u)

excluded middle
∼t + ∼∼t=1

appl. negation
∼(t · u)=∼(t ∗ u)

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 12 / 30

Causal Values

Every causal value can be represented by a term in
disjunctive normal form
É sum ‘+’ is not in the scope of another connective: it separates
alternative causes

É negation ‘∼’ is only applied to labels or negated labels

(∼a ∗ d) · p + (∼∼h ∗ d)·p

∼a means that a is an inhibitor of d.

Negation is not classical, ∼∼h 6= h allows to distinguish between
an enabler h and the real cause d . . .

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 13 / 30

Causal Values

Every causal value can be represented by a term in
disjunctive normal form
É sum ‘+’ is not in the scope of another connective: it separates
alternative causes

É negation ‘∼’ is only applied to labels or negated labels

(∼a ∗ d) · p + (∼∼h ∗ d)·p

∼a means that a is an inhibitor of d.

Negation is not classical, ∼∼h 6= h allows to distinguish between
an enabler h and the real cause d . . .

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 13 / 30

Causal Values

Every causal value can be represented by a term in
disjunctive normal form
É sum ‘+’ is not in the scope of another connective: it separates
alternative causes

É negation ‘∼’ is only applied to labels or negated labels

(∼a ∗ d) · p + (∼∼h ∗ d)·p

∼a means that a is an inhibitor of d.

Negation is not classical, ∼∼h 6= h allows to distinguish between
an enabler h and the real cause d . . .

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 13 / 30

Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· 1 ≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 14 / 30

Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· 1 ≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 14 / 30

Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· �A1 ≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 14 / 30

Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 14 / 30

Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 14 / 30

Semantics

Definition (Reduct)

The reduct PJ of a program P w.r.t. an interpretation J contains

ri : H ← B1, . . . ,Bm, J(not Bm+1), . . . , J(not Bn)

per each rule in P.

By ΓP(J), we denote the least model I of PJ.

ΓP(J) is antimonotonic and, thus Γ 2P (J) is monotonic.

Definition (Causal well-founded model)
The causal well-founded model WP is a mapping such that

WP(A)
def
= lfp(Γ 2P)(A)

WP(not A) def
= ∼gfp(Γ 2P)(A)

WP(undefA)
def
= ∼WP(A) ∗ ∼WP(not A)

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 15 / 30

Well-founded causal model

For instance, the least and greatest fixpoint of

p : p ← d, not a
a : a ← not h

d : d
h : h

coincide and satisfy
lfp(Γ 2P)(a) = ∼h·a lfp(Γ 2P)(p) = (∼a ∗ d)·p + (∼∼h ∗ d)·p

Each addend is a justification: ∼h·a, (∼a ∗ d)·p and (∼∼h ∗ d)·p.

If a justification contains a negated label (odd num. of times) is
said to be inhibited.
É The antidote a has not been administered because Bond was on a
holiday h.

Otherwise, a justification is said to be enabled.
É Bond is paralyzed because h has enabled d to cause p: (∼∼h ∗ d)·p.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 16 / 30

Well-founded causal model

For instance, the least and greatest fixpoint of

p : p ← d, not a
a : a ← not h

d : d
h : h

coincide and satisfy
lfp(Γ 2P)(a) = ∼h·a lfp(Γ 2P)(p) = (∼a ∗ d)·p + (∼∼h ∗ d)·p

Each addend is a justification: ∼h·a, (∼a ∗ d)·p and (∼∼h ∗ d)·p.

If a justification contains a negated label (odd num. of times) is
said to be inhibited.
É The antidote a has not been administered because Bond was on a
holiday h.

Otherwise, a justification is said to be enabled.
É Bond is paralyzed because h has enabled d to cause p: (∼∼h ∗ d)·p.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 16 / 30

Well-founded causal model

For instance, the least and greatest fixpoint of

p : p ← d, not a
a : a ← not h

d : d
h : h

coincide and satisfy
lfp(Γ 2P)(a) = ∼h·a lfp(Γ 2P)(p) = (∼a ∗ d)·p + (∼∼h ∗ d)·p

Each addend is a justification: ∼h·a, (∼a ∗ d)·p and (∼∼h ∗ d)·p.

If a justification contains a negated label (odd num. of times) is
said to be inhibited.
É The antidote a has not been administered because Bond was on a
holiday h.

Otherwise, a justification is said to be enabled.
É Bond is paralyzed because h has enabled d to cause p: (∼∼h ∗ d)·p.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 16 / 30

Well-founded causal model

The axiom ∼(t · u) = ∼(t ∗ u) allow us to break justifications into
inhibited and enabled:

(∼(∼h · a) ∗ d)·p = (∼(∼h ∗ a) ∗ d)·p
= ((∼∼h+ ∼a) ∗ d)·p
= (∼∼h ∗ d)·p + (∼a ∗ d)·p

Theorem

An atom is true, false of undefined in the standard well-founded model
iff there is some enabled justification for it.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 17 / 30

Theorem

Inhibited justifications become enabled justifications when the inhibitors
are removed.

For instance, ∼h·a is an inhibited justification for a in

p : p ← d, not a
a : a ← not h

d : d
h : h

and rule a is an enabled justification for a in

p : p ← d, not a
a : a ← not h

d : d
���XXXh : h

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 18 / 30

Undefined literals

Consider the usual cycle
r1 : a ← not b r2 : b ← not a

The least and greatest fixpoint do not coincide.

lfp(Γ 2P)(a) = ∼r2 ·r1 gfp(Γ 2P)(a) = r1

WP(a) = ∼r2 ·r1 WP(not a) = ∼r1

a is not true because of r2 and it is not false because of r1.

a is undefined because of rules r1 and r2.

WP(undefa) = ∼WP(a) ∗ WP(not a)
= ∼(∼r2 ·r1) ∗ ∼∼r1 = ∼∼r1∗ ∼∼r2

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 19 / 30

Undefined literals

Consider the usual cycle
r1 : a ← not b r2 : b ← not a

The least and greatest fixpoint do not coincide.

lfp(Γ 2P)(a) = ∼r2 ·r1 gfp(Γ 2P)(a) = r1

WP(a) = ∼r2 ·r1 WP(not a) = ∼r1

a is not true because of r2 and it is not false because of r1.

a is undefined because of rules r1 and r2.

WP(undefa) = ∼WP(a) ∗ WP(not a)
= ∼(∼r2 ·r1) ∗ ∼∼r1 = ∼∼r1∗ ∼∼r2

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 19 / 30

Undefined literals

Consider the usual cycle
r1 : a ← not b r2 : b ← not a

The least and greatest fixpoint do not coincide.

lfp(Γ 2P)(a) = ∼r2 ·r1 gfp(Γ 2P)(a) = r1

WP(a) = ∼r2 ·r1 WP(not a) = ∼r1

a is not true because of r2 and it is not false because of r1.

a is undefined because of rules r1 and r2.

WP(undefa) = ∼WP(a) ∗ WP(not a)
= ∼(∼r2 ·r1) ∗ ∼∼r1 = ∼∼r1∗ ∼∼r2

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 19 / 30

Undefined literals

Consider the usual cycle
r1 : a ← not b r2 : b ← not a

The least and greatest fixpoint do not coincide.

lfp(Γ 2P)(a) = ∼r2 ·r1 gfp(Γ 2P)(a) = r1

WP(a) = ∼r2 ·r1 WP(not a) = ∼r1

a is not true because of r2 and it is not false because of r1.

a is undefined because of rules r1 and r2.

WP(undefa) = ∼WP(a) ∗ WP(not a)
= ∼(∼r2 ·r1) ∗ ∼∼r1 = ∼∼r1∗ ∼∼r2

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 19 / 30

Undefined literals

Consider the usual cycle
r1 : a ← not b r2 : b ← not a

The least and greatest fixpoint do not coincide.

lfp(Γ 2P)(a) = ∼r2 ·r1 gfp(Γ 2P)(a) = r1

WP(a) = ∼r2 ·r1 WP(not a) = ∼r1

a is not true because of r2 and it is not false because of r1.

a is undefined because of rules r1 and r2.

WP(undefa) = ∼WP(a) ∗ WP(not a)
= ∼(∼r2 ·r1) ∗ ∼∼r1 = ∼∼r1∗ ∼∼r2

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 19 / 30

Outline

1 Extended Causal Justifications

2 Relation to Causal Graph Justifications

3 Relation to Why not Provenance Justifications

4 Conclusions and Ongoing Work

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 20 / 30

Causal Graph Justifications

Causal Graph Justifications (CG) is an extension of the stable
model semantics whereas ECJ is an extension of the
well-founded semantics.

CG does not capture enablers nor inhibited justifications.

(∼∼h ∗ d) · p(∼a ∗ d) · p

d · p0

λcλc

ECJ justifications can be mapped into CG justifications.
É Removing all inhibited justifications and
É Removing all enablers for the remaining ones.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 21 / 30

Causal Graph Justifications

Causal Graph Justifications (CG) is an extension of the stable
model semantics whereas ECJ is an extension of the
well-founded semantics.

CG does not capture enablers nor inhibited justifications.

(∼∼h ∗ d) · p(∼a ∗ d) · p

d · p0

λcλc

ECJ justifications can be mapped into CG justifications.
É Removing all inhibited justifications and
É Removing all enablers for the remaining ones.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 21 / 30

Causal Graph Justifications

CG stable models can be related to the Γ 2P fixpoints.

Theorem

For any enabled justification, there is a CG-justification w.r.t all stable
models obtained by removing all enablers.

The converse does not hold in general as happened with the
standard well-founded and stable model semantics.

r1 : a← not b r2 : b← not a, not c r4 : d← b, not d
r3 : c← a c : c

Two-valued standard well-founded model {a, c}. WP(c) = c.
Unique standard stable model {a, c}. I(c) = c + r1 ·r3.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 22 / 30

Outline

1 Extended Causal Justifications

2 Relation to Causal Graph Justifications

3 Relation to Why not Provenance Justifications

4 Conclusions and Ongoing Work

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 23 / 30

Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.

É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 24 / 30

Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).

É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 24 / 30

Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.

É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 24 / 30

Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 24 / 30

Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 24 / 30

Why-not Provenance Justifications

WnP may contain more justifications that we call hypothetical.

É Suppose that Le Chiffre did not pour the drug and Bond is not on
holidays.

p : p ← d, not a
a : a ← not h

Clearly, Bond is not paralyzed, but there is an hypothetical WnP
justification ¬not(d)∧¬not(h)∧ not(a)∧ p meaning that p would
have been true if we had added facts d and h to the program while
not adding fact a.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 25 / 30

Why-not Provenance Justifications

WnP may contain more justifications that we call hypothetical.
É Suppose that Le Chiffre did not pour the drug and Bond is not on
holidays.

p : p ← d, not a
a : a ← not h

Clearly, Bond is not paralyzed, but there is an hypothetical WnP
justification ¬not(d)∧¬not(h)∧ not(a)∧ p meaning that p would
have been true if we had added facts d and h to the program while
not adding fact a.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 25 / 30

Why-not Provenance Justifications

WnP may contain more justifications that we call hypothetical.
É Suppose that Le Chiffre did not pour the drug and Bond is not on
holidays.

p : p ← d, not a
a : a ← not h

Clearly, Bond is not paralyzed, but there is an hypothetical WnP
justification ¬not(d)∧¬not(h)∧ not(a)∧ p meaning that p would
have been true if we had added facts d and h to the program while
not adding fact a.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 25 / 30

Why-not Provenance Justifications

Theorem

For any non-hypothetical WnP justification, there is a corresponding
ECJ justification, and vice-versa.

Hypothetical WnP justifications can be captured augmenting the
program with facts

∼not(a) : a

for every atom a which is not already a fact.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 26 / 30

Why-not Provenance Justifications

ECJ justifications can be mapped into both, CG and WnP
Justifications.

(∼∼h ∗ d) · p

d · p h∧ d∧ p
λc

λp

??

Can we establish a direct correspondence between CJ and WnP?

Theorem

For any non-hypothetical and enabled WnP-justification, there is some
CG-justification, w.r.t. to all causal stable models, such that the former
contains all the vertices of the later (may contain more).

As usual the converse does not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 27 / 30

Why-not Provenance Justifications

ECJ justifications can be mapped into both, CG and WnP
Justifications.

(∼∼h ∗ d) · p

d · p h∧ d∧ p
λc

λp

??

Can we establish a direct correspondence between CJ and WnP?

Theorem

For any non-hypothetical and enabled WnP-justification, there is some
CG-justification, w.r.t. to all causal stable models, such that the former
contains all the vertices of the later (may contain more).

As usual the converse does not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 27 / 30

Why-not Provenance Justifications

ECJ justifications can be mapped into both, CG and WnP
Justifications.

(∼∼h ∗ d) · p

d · p h∧ d∧ p
λc

λp

??

Can we establish a direct correspondence between CJ and WnP?

Theorem

For any non-hypothetical and enabled WnP-justification, there is some
CG-justification, w.r.t. to all causal stable models, such that the former
contains all the vertices of the later (may contain more).

As usual the converse does not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 27 / 30

Why-not Provenance Justifications

ECJ justifications can be mapped into both, CG and WnP
Justifications.

(∼∼h ∗ d) · p

d · p h∧ d∧ p
λc

λp

??

Can we establish a direct correspondence between CJ and WnP?

Theorem

For any non-hypothetical and enabled WnP-justification, there is some
CG-justification, w.r.t. to all causal stable models, such that the former
contains all the vertices of the later (may contain more).

As usual the converse does not hold.

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 27 / 30

Conclusions

Conclusions

A multivalued extension of well-founded semantics that captures
inhibitors, enablers and causes by introducing ‘∼’ in the CG algebra.
Allows distinguishing between enablers ‘∼∼a’ and real causes ‘a’.
The existence of enabled justifications is a sufficient and
necessary condition for the truth value of an atom.
It captures both WnP and CJ justification.
We established a formal relation between WnP and CJ.

Ongoing work

Incorporate enablers and inhibitors to the stable model semantics.
Deriving new conclusions from the cause-effect relations
(ASPOCP 2015)
Non deterministic causal laws: disjunctive and probabilistic LP

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 28 / 30

Conclusions

Conclusions

A multivalued extension of well-founded semantics that captures
inhibitors, enablers and causes by introducing ‘∼’ in the CG algebra.
Allows distinguishing between enablers ‘∼∼a’ and real causes ‘a’.
The existence of enabled justifications is a sufficient and
necessary condition for the truth value of an atom.
It captures both WnP and CJ justification.
We established a formal relation between WnP and CJ.

Ongoing work

Incorporate enablers and inhibitors to the stable model semantics.
Deriving new conclusions from the cause-effect relations
(ASPOCP 2015)
Non deterministic causal laws: disjunctive and probabilistic LP

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 28 / 30

Enablers and Inhibitors in Causal Justifications
of Logic Programs

Pedro Cabalar and Jorge Fandinno

Thanks for your attention!

September 28th, 2015
LPNMR’15

Lexington, KY, USA

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 29 / 30

Stable Model Semantics

Programs with odd negative cycles may have standard stable
model, but no ΓP fixpoint

r1 : p ←
r2 : p ← not p

. . . although they have Γ 2P fixpoints.

lfp(Γ 2P)(p) = r1 gfp(Γ 2P)(p) = r1 + ∼r1 ·r2

p is clearly true because of r1, but what about r2?

Cabalar and Fandinno (Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt])Enablers and Inhibitors LPNMR’15 30 / 30

	Extended Causal Justifications
	Relation to Causal Graph Justifications
	Relation to Why not Provenance Justifications
	Conclusions and Ongoing Work

