Enablers and Inhibitors in Causal Justifications of Logic Programs

Pedro Cabalar and Jorge Fandinno

Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es

September 28th, 2015 LPNMR'15 Lexington, KY, USA Joint work with Jorge Fandinno (recent PhD)

A Causal Semantics for Logic Programming September 11th, 2015

- Logic programming is an important paradigm for problem solving.
- Sometimes, is not enough to provide some conclusions, but we also are required to provide explanations for them.
 - ► In LP, true atoms must be justified.

- Logic programming is an important paradigm for problem solving.
- Sometimes, is not enough to provide some conclusions, but we also are required to provide explanations for them.
 - ► In LP, true atoms must be justified.
 - Extensive literature on justifications and debugging in LP [Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09; Oetsch et al 10; Schulz & Toni 13]

- Logic programming is an important paradigm for problem solving.
- Sometimes, is not enough to provide some conclusions, but we also are required to provide explanations for them.
 - ► In LP, true atoms must be justified.
 - Extensive literature on justifications and debugging in LP [Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09; Oetsch et al 10; Schulz & Toni 13]
- A pair of multi-valued approaches with algebraic constructions:
 - Why-not Provenance [Damásio et al 2013]: oriented to debugging and explanation, well-founded semantics
 - Causal Graphs [Cabalar and Fandinno 14]: causes = proof graphs from (the positive part) of an ASP program

- Logic programming is an important paradigm for problem solving.
- Sometimes, is not enough to provide some conclusions, but we also are required to provide explanations for them.
 - ► In LP, true atoms must be justified.
 - Extensive literature on justifications and debugging in LP [Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09; Oetsch et al 10; Schulz & Toni 13]
- A pair of multi-valued approaches with algebraic constructions:
 - Why-not Provenance [Damásio et al 2013]: oriented to debugging and explanation, well-founded semantics
 - Causal Graphs [Cabalar and Fandinno 14]: causes = proof graphs from (the positive part) of an ASP program

+

We propose Extended Causal Justifications mixing both:

• causal explanations = proof graphs built with rule labels

• **negative terms** = related to default negation, they define enablers and inhibitors for applying causal rules +

We propose Extended Causal Justifications mixing both:

• causal explanations = proof graphs built with rule labels

• **negative terms** = related to default negation, they define enablers and inhibitors for applying causal rules

Our interest: representing (relevant) causal knowledge rather than debugging or providing all possible explanations

Example

- If James Bond drinks drug d, he will have paralysis p unless has been administered an antidote a.
- The MI5 daily administers Bond antidote a, unless he is on holiday h.

Example

- If James Bond drinks drug d, he will have paralysis p unless has been administered an antidote a.
- The MI5 daily administers Bond antidote a, unless he is on holiday h.

• Le Chiffre has poured drug d on Bond's drink!

Example

- If James Bond drinks drug d, he will have paralysis p unless has been administered an antidote a.
- The MI5 daily administers Bond antidote a, unless he is on holiday h.

• Le Chiffre has poured drug d on Bond's drink!

p :	р	\leftarrow	d, not a
a:	a	\leftarrow	not h
d :	d		

Example

- If James Bond drinks drug d, he will have paralysis p unless has been administered an antidote a.
- The MI5 daily administers Bond antidote a, unless he is on holiday h.

p :	р	\leftarrow	d, not a
a :	a	\leftarrow	not h
d :	d		

- Le Chiffre has poured drug d on Bond's drink!
- Bond does not have paralysis, but why not?

Example

• Suppose now that, that day, Bond was actually on a **holiday** with Vesper.

 $\begin{array}{rrrrr} p: & p & \leftarrow & d, \mbox{ not a} \\ a: & a & \leftarrow & \mbox{ not h} \\ d: & d \\ h: & h \end{array}$

Example

• Suppose now that, that day, Bond was actually on a **holiday** with Vesper.

 $\begin{array}{rrrrr} p: p & \leftarrow & d, \mbox{ not a} \\ a: a & \leftarrow & \mbox{ not h} \end{array}$

- d: d
- h: h

• Counterfactuals:

- ► Had Le Chiffre not poured the drug *d*, Bond would not have paralysis *d*.
- Had Bond not being on holiday h, he would not have paralysis d.

Example

• Suppose now that, that day, Bond was actually on a **holiday** with Vesper.

 $\begin{array}{rrrrr} p: p & \leftarrow & d, \mbox{ not a} \\ a: a & \leftarrow & \mbox{ not h} \end{array}$

- d: d
- h: h

• Counterfactuals:

- ► Had Le Chiffre not poured the drug *d*, Bond would not have paralysis *d*.
- Had Bond not being on holiday h, he would not have paralysis d.

• Causality:

- ► Is the drug *d* a cause of Bond's paralysis *d*? Yes!!
- ► Is a holiday *h* a cause of Bond's paralysis *d*?

Example

• Suppose now that, that day, Bond was actually on a **holiday** with Vesper.

 $p: p \leftarrow d, not a$ $a: a \leftarrow not h$

- d: d
- h: h

• Counterfactuals:

- ► Had Le Chiffre not poured the drug *d*, Bond would not have paralysis *d*.
- Had Bond not being on holiday h, he would not have paralysis d.

• Causality:

- ► Is the drug *d* a cause of Bond's paralysis *d*? Yes!!
- ► Is a holiday *h* a cause of Bond's paralysis *d*? Controversial!!!

- Is a holiday *h* a cause of Bond's paralysis *d*?
 - ► Yes: [Lewis73; Halpern and Pearl2001/2005]
 - ► No: [Hall2004/2007; Mauldlin2004]
 - ► May be: [Halpern and Hitchcock2011]

• Is a holiday *h* a cause of Bond's paralysis *d*?

- ► Yes: [Lewis73; Halpern and Pearl2001/2005]
- ► No: [Hall2004/2007; Mauldlin2004]
- ► May be: [Halpern and Hitchcock2011]

- Plato: "distinguish the real cause from that without which the cause would not be able to act as a cause."
 - ► The drug *d* is the real cause producing the paralysis.
 - ► The holiday *h* is an enabler of the cause.

• Is a holiday *h* a cause of Bond's paralysis *d*?

- ► Yes: [Lewis73; Halpern and Pearl2001/2005]
- No: [Hall2004/2007; Mauldlin2004]
- ► May be: [Halpern and Hitchcock2011]

- Plato: "distinguish the real cause from that without which the cause would not be able to act as a cause."
 - ► The drug *d* is the real cause producing the paralysis.
 - ► The holiday *h* is an enabler of the cause.
- When not on holiday, the antidote *a* becomes an inhibitor of the potential cause (the drug) of Bond's paralysis.

- We propose a multivalued semantics for LP, Extended Causal Justifications (ECJ), that captures causes, enablers and inhibitors.
- Generalizes, under the well-founded semantics, both
 - Causal Graph justifications (CG): only captures real causes.
 - Why-not Provenance (WnP): only captures counterfactual dependence
- We also obtain a formal comparation between CG and WnP.

Outline

1 Extended Causal Justifications

- 2 Relation to Causal Graph Justifications
- **3** Relation to Why not Provenance Justifications
- 4 Conclusions and Ongoing Work

• Syntax: as usual plus an (optional) rule label $r_i: H \leftarrow B_1, \dots, B_m, \text{not } B_{m+1}, \dots, \text{not } B_n$ with H and B_j atoms. r_i can be a label $r_i = \ell$ or t = 1.

• Syntax: as usual plus an (optional) rule label $r_i: H \leftarrow B_1, \dots, B_m, \text{not } B_{m+1}, \dots, \text{not } B_n$ with H and B_j atoms. r_i can be a label $r_i = \ell$ or t = 1.

• Labels in the following program are part of the syntax

 $\begin{array}{rrrr} p: & p & \leftarrow & d, \, \text{not a} \\ \texttt{a:} & \texttt{a} & \leftarrow & \text{not h} \\ \texttt{d:} & \texttt{d} \end{array}$

• Syntax: as usual plus an (optional) rule label $r_i: H \leftarrow B_1, \dots, B_m, \text{not } B_{m+1}, \dots, \text{not } B_n$ with H and B_j atoms. r_i can be a label $r_i = \ell$ or t = 1.

• Labels in the following program are part of the syntax

 $\begin{array}{rrrr} p: & p & \leftarrow & d, \, \text{not a} \\ a: & a & \leftarrow & \text{not h} \\ d: & d \end{array}$

• We will assign the expression formed by rule labels $({\sim}a*d)\cdot p$ to the atom p.

- Syntax: as usual plus an (optional) rule label $r_i: H \leftarrow B_1, \dots, B_m, \text{not } B_{m+1}, \dots, \text{not } B_n$ with H and B_j atoms. r_i can be a label $r_i = \ell$ or t = 1.
- Labels in the following program are part of the syntax

 $\begin{array}{rrrr} p: & p & \leftarrow & d, \, \text{not a} \\ a: & a & \leftarrow & \text{not h} \\ d: & d \end{array}$

- We will assign the expression formed by rule labels $(\sim a * d) \cdot p$ to the atom p.
 - d (negated label) is an inhibitor of the drug d.
 - '·' captures the order of rule application: p would have been applied to d if a had not hold.

• Causal terms are expressions of the form

 $t ::= \ell \mid \prod S \mid \sum S \mid t_1 \cdot t_2 \mid \sim t_1$ where ℓ is a rule label, S is a set of causal terms and t_1 and t_2 are causal terms.

• Causal terms are expressions of the form $t ::= \ell \mid \prod S \mid \sum S \mid t_1 \cdot t_2 \mid \sim t_1$ where ℓ is a rule label, S is a set of causal terms and t_1 and t_2 are causal terms.

• By 1 and 0 we denote the empty product $\prod \emptyset$ and sum $\sum \emptyset$, respectively.

• Causal terms are expressions of the form

 $t ::= \ell \mid \prod S \mid \sum S \mid t_1 \cdot t_2 \mid \sim t_1$ where ℓ is a rule label, S is a set of causal terms and t_1 and t_2 are causal terms.

- By 1 and 0 we denote the empty product $\prod \emptyset$ and sum $\sum \emptyset$, respectively.
- **Causal values** are the equivalence classes of causal terms under completely distributive (complete) lattice

Associativity	Commutativity	Absorption	
t + (u+w) = (t+u) + w	t+u = u+t	t = t + (t * u)	
t * (u * w) = (t * u) * w	t * u = u * t	t = t * (t+u)	
Distributive	Identity	Annihilator	
t + (u * w) = (t+u) * (t+w)	t = t + 0	1 = 1 + t	
t * (u+w) = (t*u) + (t*w)	t = t * 1	0 = 0 * t	
plus			

Cabalar and Fandinno

• plus the following axioms for ' \cdot '

Associativity	Product Distributivity	Identity	
$\overline{t \cdot (u \cdot w)} = (t \cdot u) \cdot w$	$c \cdot (d * e) = (c \cdot d) * (c \cdot e)$	$t = t \cdot 1$	
	$(c*d)\cdot e = (c\cdot e)*(d\cdot e)$	$t = 1 \cdot t$	
Addition distributivity	Absorption	Appibilator	
$\frac{1}{1} = \frac{1}{1} = \frac{1}$			
$\iota \cdot (\iota + w) = (\iota \cdot \iota) + (\iota \cdot w)$	$l + u \cdot l \cdot w = l$	$0 = l \cdot 0$	
$(t+u)\cdot w = (t\cdot w) + (u\cdot w)$	$t * u \cdot t \cdot w = u \cdot t \cdot w$	$0 = 0 \cdot t$	
$\frac{\text{Label idempotence}}{\ell \cdot \ell} = \ell$	$\frac{Graph Representation}{c \cdot d \cdot e} = (c \cdot d) * (d \cdot e)$	with $d \neq 1$	

• plus the following axioms for '·'

Associativity	Product Distributivity	Identity	
$t \cdot (u \cdot w) = (t \cdot u) \cdot w$	$c \cdot (d * e) = (c \cdot d) * (c \cdot e)$	$t = t \cdot 1$	
	$(c*d) \cdot e = (c \cdot e) * (d \cdot e)$	$t = 1 \cdot t$	
Addition distributivity	Absorption	Annihilator	
$t \cdot (u+w) = (t \cdot u) + (t \cdot w)$	$t + u \cdot t \cdot w = t$	$0 = t \cdot 0$	
$(t + u) \cdot w = (t \cdot w) + (u \cdot w)$	$t * u \cdot t \cdot w = u \cdot t \cdot w$	$0 = 0 \cdot t$	
Label idempotence	Graph Representation		
$\ell \cdot \ell = \ell$	$c \cdot d \cdot e = (c \cdot d) * (d \cdot e)$	with $d \neq 1$	

• plus the following axioms for '~'

 $\begin{array}{c} pseudo-compl.\\ t\ \ast\ \sim t=\ 0\\ \sim \sim t\ =\sim t \end{array} \quad \begin{array}{c} De\ Morgan\\ \hline \sim(t+u)=(\sim t\ \ast\sim u)\\ \sim(t\ \ast\ u)=(\sim t\ \ast\sim u) \end{array} \quad \begin{array}{c} excluded\ middle\\ \hline \sim t\ +\ \sim t=1 \end{array} \quad \begin{array}{c} appl.\ negation\\ \hline \sim(t\ \cdot\ u)=\sim(t\ \ast\ u) \end{array}$

- Every causal value can be represented by a term in disjunctive normal form
 - sum '+' is not in the scope of another connective: it separates alternative causes
 - \blacktriangleright negation '~' is only applied to labels or negated labels

 $(\sim a * d) \cdot p + (\sim h * d) \cdot p$

- Every causal value can be represented by a term in disjunctive normal form
 - sum '+' is not in the scope of another connective: it separates alternative causes
 - \blacktriangleright negation '~' is only applied to labels or negated labels

 $(\sim a * d) \cdot p + (\sim h * d) \cdot p$

• \sim a means that a is an inhibitor of d.

- Every causal value can be represented by a term in disjunctive normal form
 - sum '+' is not in the scope of another connective: it separates alternative causes
 - \blacktriangleright negation '~' is only applied to labels or negated labels

$$(\sim a * d) \cdot p + (\sim h * d) \cdot p$$

- \sim a means that a is an inhibitor of d.
- Negation is not classical, ~h ≠ h allows to distinguish between an enabler h and the real cause d ...

Definition (Causal model)

A causal model of P is an interpretation satisfying, for each rule: $\left(\mbox{ } I(B_1)*\ldots * I(B_n)*I(\mbox{ n t} B_{m+1})*\ldots * I(\mbox{ n t} B_n) \end{tabular} \right) \cdot \mbox{ t } \leq \mbox{ } I(H)$

Definition (Causal model)

A causal model of P is an interpretation satisfying, for each rule: ($I(B_1) * ... * I(B_n) * I(not B_{m+1}) * ... * I(not B_n)$) $\cdot t \leq I(H)$

• Labelling a rule with t = 1 is used to ignore the trace of a rule. ($I(B_1) * ... * I(B_m) * I(not B_{m+1}) * ... * I(not B_n)$) · 1 \leq I(H)

Definition (Causal model)

A causal model of P is an interpretation satisfying, for each rule: ($I(B_1) * ... * I(B_n) * I(not B_{m+1}) * ... * I(not B_n)$) $\cdot t \leq I(H)$

• Labelling a rule with t = 1 is used to ignore the trace of a rule. ($I(B_1) * ... * I(B_m) * I(not B_{m+1}) * ... * I(not B_n)$) $\cdot X \leq I(H)$

Definition (Causal model)

A causal model of P is an interpretation satisfying, for each rule: ($I(B_1) * ... * I(B_n) * I(not B_{m+1}) * ... * I(not B_n)$) $\cdot t \leq I(H)$

• Labelling a rule with t = 1 is used to ignore the trace of a rule. ($I(B_1) * ... * I(B_m) * I(not B_{m+1}) * ... * I(not B_n)$) \leq I(H)

Definition (Causal model)

A causal model of P is an interpretation satisfying, for each rule: ($I(B_1) * ... * I(B_n) * I(not B_{m+1}) * ... * I(not B_n)$) · t \leq I(H)

• Labelling a rule with t = 1 is used to ignore the trace of a rule.

 $(I(B_1)*\ldots*I(B_m)*I(not B_{m+1})*\ldots*I(not B_n)) \leq I(H)$

Theorem

A positive program has a least model, which can be computed by iteration of a direct consequences operator from the bottom interpretation.

Definition (Reduct)

The reduct P^J of a program P w.r.t. an interpretation J contains $r_i: H \leftarrow B_1, \dots, B_m, J(\text{not } B_{m+1}), \dots, J(\text{not } B_n)$ per each rule in P.

- By $\Gamma_{P}(J)$, we denote the least model I of P^{J} .
- $\Gamma_{\!P}(J)$ is antimonotonic and, thus $\Gamma_{\!P}^2(J)$ is monotonic.

• Each addend is a justification: $\sim h \cdot a$, $(\sim a * d) \cdot p$ and $(\sim h * d) \cdot p$.

• For instance, the least and greatest fixpoint of

p: $p \leftarrow d$, not a d: d a: $a \leftarrow not h$ h: h

coincide and satisfy $\mathsf{lfp}(\Gamma_p^2)(a) \ = \ \sim h \cdot a \qquad \qquad \mathsf{lfp}(\Gamma_p^2)(p) \ = \ (\sim a \ast d) \cdot p \ + \ (\sim h \ast d) \cdot p$

- Each addend is a justification: $\sim h \cdot a$, $(\sim a * d) \cdot p$ and $(\sim h * d) \cdot p$.
- If a justification contains a negated label (odd num. of times) is said to be inhibited.
 - The antidote a has not been administered because Bond was on a holiday h.

• For instance, the least and greatest fixpoint of

p: $p \leftarrow d$, not a d: d a: $a \leftarrow not h$ h: h

coincide and satisfy $\mathsf{lfp}(\Gamma_p^2)(a) = \sim h \cdot a \qquad \mathsf{lfp}(\Gamma_p^2)(p) = (\sim a * d) \cdot p + (\sim h * d) \cdot p$

- Each addend is a justification: $\sim h \cdot a$, $(\sim a * d) \cdot p$ and $(\sim h * d) \cdot p$.
- If a justification contains a negated label (odd num. of times) is said to be inhibited.
 - The antidote a has not been administered because Bond was on a holiday h.
- Otherwise, a justification is said to be enabled.
 - Bond is paralyzed because h has enabled d to cause $p \colon ({\sim\!\!\!\!\sim} h \ast d) \cdot p.$

Well-founded causal model

• The axiom $\sim (t \cdot u) = \sim (t * u)$ allow us to break justifications into inhibited and enabled:

$$(\sim(\sim h \cdot a) * d) \cdot p = (\sim(\sim h * a) * d) \cdot p$$

= ((\\~h + \nambda a) * d) \cdot p
= (\\~h * d) \cdot p + (\nambda a * d) \cdot p

Theorem

An atom is true, false of undefined in the standard well-founded model iff there is some **enabled justification** for it.

Theorem

Inhibited justifications become enabled justifications when the inhibitors are removed.

 \bullet For instance, ${\sim}{\rm h}{\cdot}{\rm a}$ is an inhibited justification for ${\rm a}$ in

р:	$p \leftarrow d$, not a	d :	d
a:	$a \leftarrow not h$	h :	h

and rule ${\tt a}$ is an enabled justification for ${\tt a}$ in

p :	$p \leftarrow d$, not a	d: d
a :	$a \leftarrow not h$	<u>b</u>

 $r_2: b \leftarrow not a$

Consider the usual cycle r₁: a ← not b r₂: b ← not a
The least and greatest fixpoint do not coincide.

 $\mathsf{lfp}(\Gamma_p^2)(a) = \sim r_2 \cdot r_1 \qquad gfp(\Gamma_p^2)(a) = r_1$

Undefined literals

Consider the usual cycle

 r₁: a ← not b
 r₂: b ← not a

 The least and greatest fixpoint do not coincide.

$$\begin{split} \mathsf{lfp}(\Gamma_p^2)(\mathsf{a}) &= &\sim\!\!\mathbf{r}_2 \cdot \mathbf{r}_1 & \mathsf{gfp}(\Gamma_p^2)(\mathsf{a}) &= & \mathsf{r}_1 \\ & & \mathbb{W}_P(\mathsf{a}) &= &\sim\!\!\mathbf{r}_2 \cdot \mathbf{r}_1 & & \mathbb{W}_P(\mathsf{not}\;\mathsf{a}) &= &\sim\!\!\mathbf{r}_1 \end{split}$$

Consider the usual cycle

 r₁: a ← not b
 r₂: b ← not a

 The least and greatest fixpoint do not coincide.

 lfp(Γ_p²)(a) = ~r₂·r₁
 gfp(Γ_p²)(a) = r₁
 W_p(a) = ~r₂·r₁
 W_p(not a) = ~r₁

• a is not true because of r_2 and it is not false because of r_1 .

Consider the usual cycle

 r₁: a ← not b
 r₂: b ← not a

 The least and greatest fixpoint do not coincide.

$$\begin{split} & \mathsf{lfp}(\Gamma_p^2)(\mathsf{a}) &= & \sim\!\!\mathbf{r}_2\!\cdot\!\mathbf{r}_1 & & \mathsf{gfp}(\Gamma_p^2)(\mathsf{a}) &= & \mathsf{r}_1 \\ & & \mathbb{W}_P(\mathsf{a}) &= & \sim\!\!\mathbf{r}_2\!\cdot\!\mathbf{r}_1 & & \mathbb{W}_P(\mathsf{not}\,\mathsf{a}) &= & \sim\!\!\mathbf{r}_1 \end{split}$$

- a is not true because of r_2 and it is not false because of r_1 .
- a is undefined because of rules r_1 and r_2 . $\mathbb{W}_p(\text{undef a}) = \sim \mathbb{W}_p(a) * \mathbb{W}_p(\text{not a})$ $= \sim (\sim r_2 \cdot r_1) * \cdots \sim r_1 = \cdots \sim r_1 * \sim r_2$

Outline

Extended Causal Justifications

2 Relation to Causal Graph Justifications

3 Relation to Why not Provenance Justifications

4 Conclusions and Ongoing Work

Causal Graph Justifications

 Causal Graph Justifications (CG) is an extension of the stable model semantics whereas ECJ is an extension of the well-founded semantics.

Causal Graph Justifications

- Causal Graph Justifications (CG) is an extension of the stable model semantics whereas ECJ is an extension of the well-founded semantics.
- CG does not capture enablers nor inhibited justifications.

 $\begin{array}{ccc} (\sim a * d) \cdot p & (\sim h * d) \cdot p \\ \lambda^{c} & \lambda^{c} \\ 0 & d \cdot p \end{array}$

- ECJ justifications can be mapped into CG justifications.
 - Removing all inhibited justifications and
 - Removing all enablers for the remaining ones.

CG stable models can be related to the $\Gamma_{\!p}^2$ fixpoints.

Theorem

For any enabled justification, there is a CG-justification w.r.t all stable models obtained by removing all enablers.

- The converse does not hold in general as happened with the standard well-founded and stable model semantics.
- Two-valued standard well-founded model {a, c}. $W_p(c) = c$. Unique standard stable model {a, c}. $I(c) = c + r_1 \cdot r_3$.

Outline

Extended Causal Justifications

2 Relation to Causal Graph Justifications

3 Relation to Why not Provenance Justifications

4 Conclusions and Ongoing Work

• Why-not Provenance (WnP) Justifications

► is also defined as an extension of well-founded semantics.

- Why-not Provenance (WnP) Justifications
 - ► is also defined as an extension of well-founded semantics.
 - ► are just sets: it does not capture the causal structure (graph).

- Why-not Provenance (WnP) Justifications
 - ► is also defined as an extension of well-founded semantics.
 - ► are just sets: it does not capture the causal structure (graph).
 - it does not distinguish between enablers and real causes.

- Why-not Provenance (WnP) Justifications
 - ► is also defined as an extension of well-founded semantics.
 - ► are just sets: it does not capture the causal structure (graph).
 - it does not distinguish between enablers and real causes.
 - it may require extra labels asserting which facts cannot hold.

- Why-not Provenance (WnP) Justifications
 - is also defined as an extension of well-founded semantics.
 - ▶ are just sets: it does not capture the causal structure (graph).
 - it does not distinguish between enablers and real causes.
 - it may require extra labels asserting which facts cannot hold.

$$\begin{array}{ccc} (\sim \mathbf{a} \ast \mathbf{d}) \cdot \mathbf{p} & (\sim \mathbf{h} \ast \mathbf{d}) \cdot \mathbf{p} & \mathbf{d} \cdot \mathbf{p} \\ \lambda^{p} \downarrow & \lambda^{p} \downarrow & \lambda^{p} \downarrow \\ \neg \mathbf{a} \wedge \mathbf{d} \wedge \mathbf{p} & \mathbf{h} \wedge \mathbf{d} \wedge \mathbf{p} & \textit{not}(\mathbf{a}) \wedge \mathbf{d} \wedge \mathbf{p} \end{array}$$

• ECJ justifications can be mapped into WnP justifications.

- Replacing both, '*' and '.' by ' \wedge '.
- \blacktriangleright Replacing double negated labels by positive ones ${\sim}h$ \Longrightarrow h
- Adding not(a) for each negative literal not a in the body of some rule in the justification.

• WnP may contain more justifications that we call hypothetical.

- WnP may contain more justifications that we call hypothetical.
 - Suppose that Le Chiffre did not pour the drug and Bond is not on holidays.

 $p: p \leftarrow d, not a$ $a: a \leftarrow not h$

- WnP may contain more justifications that we call hypothetical.
 - Suppose that Le Chiffre did not pour the drug and Bond is not on holidays.

 $p: p \leftarrow d, not a$ $a: a \leftarrow not h$

• Clearly, Bond is not paralyzed, but there is an hypothetical WnP justification $\neg not(d) \land \neg not(h) \land not(a) \land p$ meaning that p would have been true if we had added facts d and h to the program while not adding fact a.

Theorem

For any non-hypothetical WnP justification, there is a corresponding ECJ justification, and vice-versa.

• Hypothetical WnP justifications can be captured augmenting the program with facts

 $\sim not(a)$: a

for every atom a which is not already a fact.

• ECJ justifications can be mapped into both, CG and WnP Justifications.

• ECJ justifications can be mapped into both, CG and WnP Justifications.

• Can we establish a direct correspondence between CJ and WnP?

• ECJ justifications can be mapped into both, CG and WnP Justifications.

• Can we establish a direct correspondence between CJ and WnP?

Theorem

For any non-hypothetical and enabled WnP-justification, there is some CG-justification, w.r.t. to all causal stable models, such that the former contains all the vertices of the later (may contain more).

• ECJ justifications can be mapped into both, CG and WnP Justifications.

• Can we establish a direct correspondence between CJ and WnP?

Theorem

For any non-hypothetical and enabled WnP-justification, there is some CG-justification, w.r.t. to all causal stable models, such that the former contains all the vertices of the later (may contain more).

• As usual the converse does not hold.

Cabalar and Fandinno

Enablers and Inhibitors

Conclusions

Conclusions

- A multivalued extension of well-founded semantics that captures inhibitors, enablers and causes by introducing '~' in the CG algebra.
- \bullet Allows distinguishing between enablers '~~a' and real causes 'a'.
- The existence of enabled justifications is a sufficient and necessary condition for the truth value of an atom.
- It captures both WnP and CJ justification.
- We established a formal relation between WnP and CJ.

Conclusions

Conclusions

- A multivalued extension of well-founded semantics that captures inhibitors, enablers and causes by introducing '~' in the CG algebra.
- \bullet Allows distinguishing between enablers '~~a' and real causes 'a'.
- The existence of enabled justifications is a sufficient and necessary condition for the truth value of an atom.
- It captures both WnP and CJ justification.
- We established a formal relation between WnP and CJ.

Ongoing work

- Incorporate enablers and inhibitors to the stable model semantics.
- Deriving new conclusions from the cause-effect relations (ASPOCP 2015)
- Non deterministic causal laws: disjunctive and probabilistic LP

Enablers and Inhibitors in Causal Justifications of Logic Programs

Pedro Cabalar and Jorge Fandinno

Thanks for your attention!

September 28th, 2015 LPNMR'15 Lexington, KY, USA • Programs with odd negative cycles may have standard stable model, but no $\Gamma_{\!P}$ fixpoint

 $\begin{array}{rcl} r_1:p & \leftarrow \\ r_2:p & \leftarrow & \texttt{not} \ p \end{array}$

• ... although they have Γ_P^2 fixpoints.

 $\mathsf{lfp}(\Gamma_{\mathsf{P}}^2)(\mathsf{p}) = \mathsf{r}_1 \qquad \mathsf{gfp}(\Gamma_{\mathsf{P}}^2)(\mathsf{p}) = \mathsf{r}_1 + \sim \mathsf{r}_1 \cdot \mathsf{r}_2$

• p is clearly true because of r_1 , but what about r_2 ?