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Context: Causal Justifications

Logic programming is an important paradigm for problem solving.

Sometimes, is not enough to provide some conclusions, but we also
are required to provide explanations for them.
É In LP, true atoms must be justified.

É Extensive literature on justifications and debugging in LP
[Denecker & De Schreye 93; Gebser et al 08; Pontelli et al 09;
Oetsch et al 10; Schulz & Toni 13]

A pair of multi-valued approaches with algebraic constructions:
É Why-not Provenance [Damásio et al 2013]:
oriented to debugging and explanation, well-founded semantics

É Causal Graphs [Cabalar and Fandinno 14]:
causes = proof graphs from (the positive part) of an ASP program
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Our proposal

We propose Extended Causal Justifications mixing both:

causal explanations = proof graphs built with rule labels

+

negative terms = related to default negation, they define
enablers and inhibitors for applying causal rules

Our interest: representing (relevant) causal knowledge rather than
debugging or providing all possible explanations
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Motivation Example

Example

If James Bond drinks drug d, he will have
paralysis p unless has been administered
an antidote a.
The MI5 daily administers Bond
antidote a, unless he is on holiday h.

Le Chiffre has poured drug d
on Bond’s drink!

p : p ← d, not a
a : a ← not h
d : d

Bond does not have paralysis, but why not?
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Motivation Example

Example
Suppose now that, that day,
Bond was actually on a
holiday with Vesper.

p : p ← d, not a
a : a ← not h
d : d
h : h

Counterfactuals:
É Had Le Chiffre not poured the drug d , Bond would not have
paralysis d .

É Had Bond not being on holiday h, he would not have paralysis d .

Causality:
É Is the drug d a cause of Bond’s paralysis d?

Yes!!

É Is a holiday h a cause of Bond’s paralysis d?

Controversial!!!
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Motivation Example

Is a holiday h a cause of Bond’s paralysis d?
É Yes: [Lewis73; Halpern and Pearl2001/2005]
É No: [Hall2004/2007; Mauldlin2004]
É May be: [Halpern and Hitchcock2011]

Plato: “distinguish the real cause from that without which the
cause would not be able to act as a cause.”
É The drug d is the real cause producing the paralysis.
É The holiday h is an enabler of the cause.

When not on holiday, the antidote a becomes an inhibitor of the
potential cause (the drug) of Bond’s paralysis.
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In this work

We propose a multivalued semantics for LP, Extended Causal
Justifications (ECJ), that captures causes, enablers and inhibitors.

Generalizes, under the well-founded semantics, both
É Causal Graph justifications (CG): only captures real causes.
É Why-not Provenance (WnP): only captures counterfactual
dependence

We also obtain a formal comparation between CG and WnP.
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Outline

1 Extended Causal Justifications

2 Relation to Causal Graph Justifications

3 Relation to Why not Provenance Justifications

4 Conclusions and Ongoing Work
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Positive programs

Syntax: as usual plus an (optional) rule label

ri : H ← B1, . . . , Bm, not Bm+1, . . . , not Bn

with H and Bj atoms. ri can be a label ri = ` or t= 1.

Labels in the following program are part of the syntax
p : p ← d, not a
a : a ← not h
d : d

We will assign the expression formed by rule labels (∼a ∗ d) · p to
the atom p.
É d (negated label) is an inhibitor of the drug d.
É ‘·’ captures the order of rule application: p would have been applied
to d if a had not hold.
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Causal Values

Causal terms are expressions of the form
t ::= ` |

∏

S |
∑

S | t1 · t2 | ∼t1
where ` is a rule label, S is a set of causal terms and t1 and t2 are
causal terms.

By 1 and 0 we denote the empty product
∏

; and sum
∑

;,
respectively.

Causal values are the equivalence classes of causal terms under
completely distributive (complete) lattice

Associativity
t + (u+w) = (t+u) + w
t ∗ (u ∗w) = (t ∗ u) ∗ w

Commutativity
t + u = u + t
t ∗ u = u ∗ t

Absorption
t = t + (t ∗ u)
t = t ∗ (t+u)

Distributive
t + (u ∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗ u) + (t ∗w)

Identity

t = t + 0
t = t ∗ 1

Annihilator
1 = 1 + t
0 = 0 ∗ t

plus . . .
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Causal Values

plus the following axioms for ‘·’

Associativity
t · (u·w) = (t·u) · w

Product Distributivity
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Identity

t = t · 1
t = 1 · t

Addition distributivity
t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Absorption
t + u·t·w = t
t ∗ u·t·w = u·t·w

Annihilator

0 = t · 0
0 = 0 · t

Label idempotence
` · ` = `

Graph Representation
c · d · e = (c · d) ∗ (d · e) with d 6= 1

plus the following axioms for ‘∼’

pseudo-compl.
t ∗ ∼t= 0
∼∼∼t =∼t

De Morgan
∼(t+u)=(∼t ∗ ∼u)
∼(t ∗ u)=(∼t+∼u)

excluded middle
∼t + ∼∼t=1

appl. negation
∼(t · u)=∼(t ∗ u)
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Causal Values

Every causal value can be represented by a term in
disjunctive normal form
É sum ‘+’ is not in the scope of another connective: it separates
alternative causes

É negation ‘∼’ is only applied to labels or negated labels

(∼a ∗ d) · p + (∼∼h ∗ d)·p

∼a means that a is an inhibitor of d.

Negation is not classical, ∼∼h 6= h allows to distinguish between
an enabler h and the real cause d . . .
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Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· 1 ≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 14 / 30



Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· 1 ≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 14 / 30



Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· �A1 ≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 14 / 30



Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 14 / 30



Semantics

Definition (Causal model)
A causal model of P is an interpretation satisfying, for each rule:

�

I(B1) ∗ . . . ∗ I(Bn) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

· t ≤ I(H)

Labelling a rule with t= 1 is used to ignore the trace of a rule.
�

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
�

≤ I(H)

Theorem

A positive program has a least model, which can be computed by
iteration of a direct consequences operator from the bottom
interpretation.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 14 / 30



Semantics

Definition (Reduct)

The reduct PJ of a program P w.r.t. an interpretation J contains

ri : H ← B1, . . . ,Bm, J(not Bm+1), . . . , J(not Bn)

per each rule in P.

By ΓP(J), we denote the least model I of PJ.

ΓP(J) is antimonotonic and, thus Γ 2P (J) is monotonic.

Definition (Causal well-founded model)
The causal well-founded model WP is a mapping such that

WP(A)
def
= lfp(Γ 2P )(A)

WP(not A) def
= ∼gfp(Γ 2P )(A)

WP(undefA)
def
= ∼WP(A) ∗ ∼WP(not A)
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Well-founded causal model

For instance, the least and greatest fixpoint of

p : p ← d, not a
a : a ← not h

d : d
h : h

coincide and satisfy
lfp(Γ 2P )(a) = ∼h·a lfp(Γ 2P )(p) = (∼a ∗ d)·p + (∼∼h ∗ d)·p

Each addend is a justification: ∼h·a, (∼a ∗ d)·p and (∼∼h ∗ d)·p.

If a justification contains a negated label (odd num. of times) is
said to be inhibited.
É The antidote a has not been administered because Bond was on a
holiday h.

Otherwise, a justification is said to be enabled.
É Bond is paralyzed because h has enabled d to cause p: (∼∼h ∗ d)·p.
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Well-founded causal model

The axiom ∼(t · u) = ∼(t ∗ u) allow us to break justifications into
inhibited and enabled:

(∼(∼h · a) ∗ d)·p = (∼(∼h ∗ a) ∗ d)·p
= ((∼∼h+ ∼a) ∗ d)·p
= (∼∼h ∗ d)·p + (∼a ∗ d)·p

Theorem

An atom is true, false of undefined in the standard well-founded model
iff there is some enabled justification for it.
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Theorem

Inhibited justifications become enabled justifications when the inhibitors
are removed.

For instance, ∼h·a is an inhibited justification for a in

p : p ← d, not a
a : a ← not h

d : d
h : h

and rule a is an enabled justification for a in

p : p ← d, not a
a : a ← not h

d : d
���XXXh : h
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Undefined literals

Consider the usual cycle
r1 : a ← not b r2 : b ← not a

The least and greatest fixpoint do not coincide.

lfp(Γ 2P )(a) = ∼r2 ·r1 gfp(Γ 2P )(a) = r1

WP(a) = ∼r2 ·r1 WP(not a) = ∼r1

a is not true because of r2 and it is not false because of r1.

a is undefined because of rules r1 and r2.

WP(undefa) = ∼WP(a) ∗ WP(not a)
= ∼(∼r2 ·r1) ∗ ∼∼r1 = ∼∼r1∗ ∼∼r2
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Causal Graph Justifications

Causal Graph Justifications (CG) is an extension of the stable
model semantics whereas ECJ is an extension of the
well-founded semantics.

CG does not capture enablers nor inhibited justifications.

(∼∼h ∗ d) · p(∼a ∗ d) · p

d · p0

λcλc

ECJ justifications can be mapped into CG justifications.
É Removing all inhibited justifications and
É Removing all enablers for the remaining ones.
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Causal Graph Justifications

CG stable models can be related to the Γ 2P fixpoints.

Theorem

For any enabled justification, there is a CG-justification w.r.t all stable
models obtained by removing all enablers.

The converse does not hold in general as happened with the
standard well-founded and stable model semantics.

r1 : a← not b r2 : b← not a, not c r4 : d← b, not d
r3 : c← a c : c

Two-valued standard well-founded model {a, c}. WP(c) = c.
Unique standard stable model {a, c}. I(c) = c + r1 ·r3.
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Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.

É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 24 / 30



Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).

É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 24 / 30



Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.

É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 24 / 30



Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 24 / 30



Why-not Provenance Justifications

Why-not Provenance (WnP) Justifications
É is also defined as an extension of well-founded semantics.
É are just sets: it does not capture the causal structure (graph).
É it does not distinguish between enablers and real causes.
É it may require extra labels asserting which facts cannot hold.

(∼∼h ∗ d) · p(∼a ∗ d) · p d · p

h∧ d∧ p¬a∧ d∧ p not(a)∧ d∧ p

λpλp λp

ECJ justifications can be mapped into WnP justifications.
É Replacing both, ‘∗’ and ‘·’, by ‘∧’.
É Replacing double negated labels by positive ones ∼∼h =⇒ h
É Adding not(a) for each negative literal not a in the body of some
rule in the justification.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 24 / 30



Why-not Provenance Justifications

WnP may contain more justifications that we call hypothetical.

É Suppose that Le Chiffre did not pour the drug and Bond is not on
holidays.

p : p ← d, not a
a : a ← not h

Clearly, Bond is not paralyzed, but there is an hypothetical WnP
justification ¬not(d)∧¬not(h)∧ not(a)∧ p meaning that p would
have been true if we had added facts d and h to the program while
not adding fact a.
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Why-not Provenance Justifications

Theorem

For any non-hypothetical WnP justification, there is a corresponding
ECJ justification, and vice-versa.

Hypothetical WnP justifications can be captured augmenting the
program with facts

∼not(a) : a

for every atom a which is not already a fact.

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 26 / 30



Why-not Provenance Justifications

ECJ justifications can be mapped into both, CG and WnP
Justifications.

(∼∼h ∗ d) · p

d · p h∧ d∧ p
λc

λp

??

Can we establish a direct correspondence between CJ and WnP?

Theorem

For any non-hypothetical and enabled WnP-justification, there is some
CG-justification, w.r.t. to all causal stable models, such that the former
contains all the vertices of the later (may contain more).

As usual the converse does not hold.
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Conclusions

Conclusions

A multivalued extension of well-founded semantics that captures
inhibitors, enablers and causes by introducing ‘∼’ in the CG algebra.
Allows distinguishing between enablers ‘∼∼a’ and real causes ‘a’.
The existence of enabled justifications is a sufficient and
necessary condition for the truth value of an atom.
It captures both WnP and CJ justification.
We established a formal relation between WnP and CJ.

Ongoing work

Incorporate enablers and inhibitors to the stable model semantics.
Deriving new conclusions from the cause-effect relations
(ASPOCP 2015)
Non deterministic causal laws: disjunctive and probabilistic LP

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 28 / 30



Conclusions

Conclusions

A multivalued extension of well-founded semantics that captures
inhibitors, enablers and causes by introducing ‘∼’ in the CG algebra.
Allows distinguishing between enablers ‘∼∼a’ and real causes ‘a’.
The existence of enabled justifications is a sufficient and
necessary condition for the truth value of an atom.
It captures both WnP and CJ justification.
We established a formal relation between WnP and CJ.

Ongoing work

Incorporate enablers and inhibitors to the stable model semantics.
Deriving new conclusions from the cause-effect relations
(ASPOCP 2015)
Non deterministic causal laws: disjunctive and probabilistic LP

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 28 / 30



Enablers and Inhibitors in Causal Justifications
of Logic Programs

Pedro Cabalar and Jorge Fandinno

Thanks for your attention!

September 28th, 2015
LPNMR’15

Lexington, KY, USA

Cabalar and Fandinno ( Department of Computer Science University of Corunna (Spain) {cabalar,fandino}@udc.es[10pt] )Enablers and Inhibitors LPNMR’15 29 / 30



Stable Model Semantics

Programs with odd negative cycles may have standard stable
model, but no ΓP fixpoint

r1 : p ←
r2 : p ← not p

. . . although they have Γ 2P fixpoints.

lfp(Γ 2P )(p) = r1 gfp(Γ 2P )(p) = r1 + ∼r1 ·r2

p is clearly true because of r1, but what about r2?
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