
Efficient Problem Solving on Tree Decompositions

using Binary Decision Diagrams

Günther Charwat Stefan Woltran

Database and Artificial Intelligence Group
Institute of Information Systems

TU Wien

LPNMR’15 - 30 September 2015

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 1

Motivation
Solve your favorite intractable (graph) problem...

O(2n)

O(2w · n)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 2

Motivation
Solve your favorite intractable (graph) problem...

O(2n) O(2w · n)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 2

Motivation
Solve your favorite intractable (graph) problem...

O(2n)

O(2w · n)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 2

Motivation
Solve your favorite intractable (graph) problem...

O(2n)

O(2w · n)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 2

Motivation
Solve your favorite intractable (graph) problem...

O(2n)

O(2w · n)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 2

Motivation
Solve your favorite intractable (graph) problem...

O(2n)

O(2w · n)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 2

Motivation
Solve your favorite intractable (graph) problem...

O(2n) O(2w · n)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 2

Motivation
Dynamic programming on tree decompositions in a nutshell

Basic idea

I For hard problems exploit structural properties of instance

I Confine complexity to a parameter

I Many problems are fixed-parameter tractable (fpt) w.r.t. tree-width
w , i.e. solvable in time

f (w) · nO(1)

General Approach

1. Decompose instance

2. Solve partial problems

3. Get result at final node

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 3

Motivation
Dynamic programming on tree decompositions in a nutshell

Basic idea

I For hard problems exploit structural properties of instance

I Confine complexity to a parameter

I Many problems are fixed-parameter tractable (fpt) w.r.t. tree-width
w , i.e. solvable in time

f (w) · nO(1)

General Approach

1. Decompose instance

2. Solve partial problems

3. Get result at final node

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 3

Motivation

Practical realization

I Intermediate results stored in tables

I Computation via manipulation of rows

Problem: Large memory footprint

Our paradigm

I Native support for efficient storage

I Logic-based algorithm specifications

I Algorithms define how sets of partial solutions are computed

We use Binary Decision Diagrams as data structure

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 4

Motivation

Practical realization

I Intermediate results stored in tables

I Computation via manipulation of rows

Problem: Large memory footprint

Our paradigm

I Native support for efficient storage

I Logic-based algorithm specifications

I Algorithms define how sets of partial solutions are computed

We use Binary Decision Diagrams as data structure

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 4

Background
Tree decompositions

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.

1. Each vertex must occur in some bag.

2. For each edge, there is a bag containing both endpoints.

3. If vertex v appears in bags of nodes n0 and n1, then v is also in the
bag of each node on the path between n0 and n1.

Example

a b c

d e

b, cn4

a, bn1 b, c, d n3

c, d , e n2

I Width: Size of largest bag minus 1

I Tree-width: Minimum width over all possible tree decompositions

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 5

Background
Tree decompositions

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.

1. Each vertex must occur in some bag.

2. For each edge, there is a bag containing both endpoints.

3. If vertex v appears in bags of nodes n0 and n1, then v is also in the
bag of each node on the path between n0 and n1.

Example

a b c

d e

b, cn4

a, bn1 b, c, d n3

c, d , e n2

I Width: Size of largest bag minus 1

I Tree-width: Minimum width over all possible tree decompositions

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 5

Background
Tree decompositions

Definition

Each node in a normalized tree decomposition is of one of the following
types: leaf, introduction, removal, or join node.

a b c

d e

Input instance

b, c

a, b b, c, d

c, d , e

Tree decomposition

∅

c

b, c

b, c

b

a, b

b, c

b, c, d

c, d

c, d , e

Normalized tree decomposition

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 6

Background
Binary Decision Diagrams (BDDs)

I Data structure for storing Boolean functions

I Representation as rooted DAG

I Reduced Ordered BDDs [Bryant, 1986] particularly space efficient

Example (BDD and ROBDD)

Let formula φ = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

a

b1 b2

c1 c2 c3 c4

> ⊥

OBBD of φ.

a

b

c

> ⊥

ROBBD of φ.

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 7

Background
Binary Decision Diagrams (BDDs)

I Data structure for storing Boolean functions

I Representation as rooted DAG

I Reduced Ordered BDDs [Bryant, 1986] particularly space efficient

Example (BDD and ROBDD)

Let formula φ = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

a

b1 b2

c1 c2 c3 c4

> ⊥

OBBD of φ.

a

b

c

> ⊥

ROBBD of φ.

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 7

Background
Binary Decision Diagrams (BDDs)

I Data structure for storing Boolean functions

I Representation as rooted DAG

I Reduced Ordered BDDs [Bryant, 1986] particularly space efficient

Example (BDD and ROBDD)

Let formula φ = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

a

b1 b2

c1 c2 c3 c4

> ⊥

OBBD of φ.

a

b

c

> ⊥

ROBBD of φ.

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 7

Background
Binary Decision Diagrams (BDDs)

I Data structure for storing Boolean functions

I Representation as rooted DAG

I Reduced Ordered BDDs [Bryant, 1986] particularly space efficient

Example (BDD and ROBDD)

Let formula φ = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

a

b1 b2

c1 c2 c3 c4

> ⊥

OBBD of φ.

a

b

c

> ⊥

ROBBD of φ.

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 7

Background
Binary Decision Diagrams (BDDs)

Advantages of BDDs

I Well-studied concept (applied to model checking, planning, software
verification, . . .)

I Efficient implementations available

I Memory-efficient storage handled directly by data structure

I Logic-based algorithm specification

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 8

Background
Binary Decision Diagrams (BDDs)

BDDs support

I Standard logical operators (∧, ∨, ¬, ↔, . . .)

I Existential quantification (∃VB)

I Restriction and renaming (B[v/·] where · ∈ {>,⊥, v ′})

Size of ROBDDs

I Bounded by O(2|VB|)

I Heavily depends on variable ordering

I Finding optimal ordering is NP-complete [Bollig and Wegener, 1996]

I But there are good heuristics (e.g., [Rudell, 1993])

In practice often only polynomially large! [Friedman and Supowit, 1987]

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 9

Background
Binary Decision Diagrams (BDDs)

BDDs support

I Standard logical operators (∧, ∨, ¬, ↔, . . .)

I Existential quantification (∃VB)

I Restriction and renaming (B[v/·] where · ∈ {>,⊥, v ′})

Size of ROBDDs

I Bounded by O(2|VB|)

I Heavily depends on variable ordering

I Finding optimal ordering is NP-complete [Bollig and Wegener, 1996]

I But there are good heuristics (e.g., [Rudell, 1993])

In practice often only polynomially large! [Friedman and Supowit, 1987]

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 9

Dynamic Programming using BDDs
Concept comparison

Table-based Dynamic Programming

>

> ⊥

> ⊥

> ⊥

> ⊥

>

> ⊥

>

BDD-based Dynamic Programming

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 10

Dynamic Programming using BDDs
Concept comparison

Table-based Dynamic Programming

>

> ⊥

> ⊥

> ⊥

> ⊥

>

> ⊥

>

BDD-based Dynamic Programming

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 10

Dynamic Programming using BDDs
Approach

Preparation

I Specify problem-dependent BDD manipulation operations B∗

I Distinguish between node types, here: ∗ ∈ {l , i , r , j} (leaf,
introduction, removal, join)

Solve problem

1. Decompose instance to obtain tree decomposition T
2. Traverse T in post-order and for each node n in T , compute B∗n

based on node type ∗
3. In root node r of T , either Br = > or Br = ⊥ holds

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 11

Dynamic Programming using BDDs
Approach

Preparation

I Specify problem-dependent BDD manipulation operations B∗

I Distinguish between node types, here: ∗ ∈ {l , i , r , j} (leaf,
introduction, removal, join)

Solve problem

1. Decompose instance to obtain tree decomposition T
2. Traverse T in post-order and for each node n in T , compute B∗n

based on node type ∗
3. In root node r of T , either Br = > or Br = ⊥ holds

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 11

3-Colorability

Problem

Given a graph G = (V ,E), is G 3-colorable, i.e.:

I each vertex gets assigned exactly one color, and

I neighboring vertices have different colors?

Variables

Color assignment: cx for all c ∈ C = {r , g , b}, x ∈ V

a b c

d e

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 12

3-Colorability

Bln =
∧
c∈C

∧
{x ,y}∈En

¬(cx ∧ cy) ∧
∧
x∈Xn

(rx ∨ gx ∨ bx)∧

∧
x∈Xn

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)

Bin =Bn′ ∧
∧
c∈C

∧
{x ,u}∈En

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Brn =∃rugubu[Bn′]

Bjn =Bn′ ∧ Bn′′

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 13

3-Colorability

Bln =
∧
c∈C

∧
{x ,y}∈En

¬(cx ∧ cy) ∧
∧
x∈Xn

(rx ∨ gx ∨ bx)∧

∧
x∈Xn

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)
Bin =Bn′ ∧

∧
c∈C

∧
{x ,u}∈En

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Brn =∃rugubu[Bn′]

Bjn =Bn′ ∧ Bn′′

(Here, u is the introduced vertex.)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 13

3-Colorability

Bln =
∧
c∈C

∧
{x ,y}∈En

¬(cx ∧ cy) ∧
∧
x∈Xn

(rx ∨ gx ∨ bx)∧

∧
x∈Xn

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)
Bin =Bn′ ∧

∧
c∈C

∧
{x ,u}∈En

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Brn =∃rugubu[Bn′]

Bjn =Bn′ ∧ Bn′′

(Here, u is the removed vertex.)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 13

3-Colorability

Bln =
∧
c∈C

∧
{x ,y}∈En

¬(cx ∧ cy) ∧
∧
x∈Xn

(rx ∨ gx ∨ bx)∧

∧
x∈Xn

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)
Bin =Bn′ ∧

∧
c∈C

∧
{x ,u}∈En

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Brn =∃rugubu[Bn′]

Bjn =Bn′ ∧ Bn′′

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 13

Dynamic Programming using BDDs
Algorithm design choices

Early Decision Method (EDM)

I Information is incorporated in introduction nodes

I Comparable to “classical” table-based implementations

I Unsatisfiable instances: Conflicts are detected earlier

Late Decision Method (LDM)

I BDD manipulation is delayed until removal of vertices

I Typically yields smaller BDDs and less computational effort

I Particularly useful for “complicated” algorithms

I Usually more concise algorithm specification

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 14

Dynamic Programming using BDDs
Algorithm design choices

Early Decision Method (EDM)

I Information is incorporated in introduction nodes

I Comparable to “classical” table-based implementations

I Unsatisfiable instances: Conflicts are detected earlier

Late Decision Method (LDM)

I BDD manipulation is delayed until removal of vertices

I Typically yields smaller BDDs and less computational effort

I Particularly useful for “complicated” algorithms

I Usually more concise algorithm specification

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 14

3-Colorability
Late Decision Method

Bln =>

Bin = Bn′ Bjn = Bn′ ∧ Bn′′

Brn =
(
Bn′ [ru/>, gu/⊥, bu/⊥] ∧

∧
{x ,u}∈En′

¬rx
)
∨

(
Bn′ [ru/⊥, gu/>, bu/⊥] ∧

∧
{x ,u}∈En′

¬gx
)
∨

(
Bn′ [ru/⊥, gu/⊥, bu/>] ∧

∧
{x ,u}∈En′

¬bx
)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 15

3-Colorability
Late Decision Method

Bln => Bin = Bn′

Bjn = Bn′ ∧ Bn′′

Brn =
(
Bn′ [ru/>, gu/⊥, bu/⊥] ∧

∧
{x ,u}∈En′

¬rx
)
∨

(
Bn′ [ru/⊥, gu/>, bu/⊥] ∧

∧
{x ,u}∈En′

¬gx
)
∨

(
Bn′ [ru/⊥, gu/⊥, bu/>] ∧

∧
{x ,u}∈En′

¬bx
)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 15

3-Colorability
Late Decision Method

Bln => Bin = Bn′ Bjn = Bn′ ∧ Bn′′

Brn =
(
Bn′ [ru/>, gu/⊥, bu/⊥] ∧

∧
{x ,u}∈En′

¬rx
)
∨

(
Bn′ [ru/⊥, gu/>, bu/⊥] ∧

∧
{x ,u}∈En′

¬gx
)
∨

(
Bn′ [ru/⊥, gu/⊥, bu/>] ∧

∧
{x ,u}∈En′

¬bx
)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 15

3-Colorability
Late Decision Method

Bln => Bin = Bn′ Bjn = Bn′ ∧ Bn′′

Brn =
(
Bn′ [ru/>, gu/⊥, bu/⊥] ∧

∧
{x ,u}∈En′

¬rx
)
∨

(
Bn′ [ru/⊥, gu/>, bu/⊥] ∧

∧
{x ,u}∈En′

¬gx
)
∨

(
Bn′ [ru/⊥, gu/⊥, bu/>] ∧

∧
{x ,u}∈En′

¬bx
)

(Here, u is the removed vertex.)

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 15

3-Colorability
Preliminary experimental results

dynBDDsEDM D-FLATsEDM dynBDDsLDM SEQUOIA D-FLATsLDM

Solved
Timeout
Memout
Error

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
In

s
ta

n
c
e

s

0

1000

2000

3000

4000

5000

0 20 40 60 80 100 130 160

0

2

4

6

8

10

Instances solved

Ti
m

e
(s

ec
)

M
em

or
y

(G
B)

Memory
Time

D-FLAT EDM
dynBDD EDM

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 16

Related work

Practical realizations for DP on TDs

I Some problem-specific implementations (e.g. graph optimization,
argumentation, . . .)

I SEQUOIA (2011): Takes MSO formula and does DP internally

I D-FLAT (2012): Specify algorithm for particular problem in ASP

Further related approaches

I Branch and Bound on TDs [Allouche et al., 2015]

I Trees-of-BDDs [Fargier and Marquis, 2009]

I Optimization with decision diagrams [Bergman et al., 2015]

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 17

Related work

Practical realizations for DP on TDs

I Some problem-specific implementations (e.g. graph optimization,
argumentation, . . .)

I SEQUOIA (2011): Takes MSO formula and does DP internally

I D-FLAT (2012): Specify algorithm for particular problem in ASP

Further related approaches

I Branch and Bound on TDs [Allouche et al., 2015]

I Trees-of-BDDs [Fargier and Marquis, 2009]

I Optimization with decision diagrams [Bergman et al., 2015]

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 17

Conclusion

Current results
I Feasible for problems that are fpt w.r.t. tree-width w

I Size of BDDs bounded by O(2w ·c)

I So far, NP-complete problems were considered:
I 3-Colorability: only variables with fixed truth value
I Dominating Set variant: variables with changing truth value
I Hamiltonian Cycle: handle connectedness in DP algorithm

I Development and study of design patterns EDM and LDM

Future work

I Consider problems harder than NP (via sets of BDDs)

I Optimization problems (use alternatives to BDDs)

I Support for high-level algorithm specification

I Visualization and debugging support for algorithm development

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 18

Conclusion

Current results
I Feasible for problems that are fpt w.r.t. tree-width w

I Size of BDDs bounded by O(2w ·c)

I So far, NP-complete problems were considered:
I 3-Colorability: only variables with fixed truth value
I Dominating Set variant: variables with changing truth value
I Hamiltonian Cycle: handle connectedness in DP algorithm

I Development and study of design patterns EDM and LDM

Future work

I Consider problems harder than NP (via sets of BDDs)

I Optimization problems (use alternatives to BDDs)

I Support for high-level algorithm specification

I Visualization and debugging support for algorithm development

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 18

http://dbai.tuwien.ac.at/proj/decodyn/dynbdd

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 19

http://dbai.tuwien.ac.at/proj/decodyn/dynbdd

http://dbai.tuwien.ac.at/proj/decodyn/dynbdd

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 19

http://dbai.tuwien.ac.at/proj/decodyn/dynbdd

References I

Allouche, D., De Givry, S., Katsirelos, G., Schiex, T., and Zytnicki,
M. (2015).
Anytime hybrid best-first search with tree decomposition for
weighted CSP.
In Principles and Practice of Constraint Programming, pages 12–29.
Springer.

Bergman, D., Cire, A. A., van Hoeve, W.-J., and Hooker, J. (2015).
Discrete optimization with decision diagrams.
To appear in INFORMS Journal on Computing.

Bollig, B. and Wegener, I. (1996).
Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comp., 45(9):993–1002.

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 20

References II

Bryant, R. E. (1986).
Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 100(8):677–691.

Fargier, H. and Marquis, P. (2009).
Knowledge compilation properties of Trees-of-BDDs, revisited.
In Proc. IJCAI, pages 772–777.

Friedman, S. J. and Supowit, K. J. (1987).
Finding the optimal variable ordering for binary decision diagrams.
In Proc. IEEE Design Automation Conference, pages 348–356. ACM.

Rudell, R. (1993).
Dynamic variable ordering for ordered binary decision diagrams.
In Proc. ICCAD, pages 42–47. IEEE CSP.

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 21

	Motivation
	Motivation
	Background
	Dynamic Programming using BDDs
	Related work
	Conclusion
	Conclusion
	References

