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Motivation
Solve your favorite intractable (graph) problem...

O(2n)

O(2w · n)
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Motivation
Dynamic programming on tree decompositions in a nutshell

Basic idea

I For hard problems exploit structural properties of instance

I Confine complexity to a parameter

I Many problems are fixed-parameter tractable (fpt) w.r.t. tree-width
w , i.e. solvable in time

f (w) · nO(1)

General Approach

1. Decompose instance

2. Solve partial problems

3. Get result at final node
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Motivation

Practical realization

I Intermediate results stored in tables

I Computation via manipulation of rows

Problem: Large memory footprint

Our paradigm

I Native support for efficient storage

I Logic-based algorithm specifications

I Algorithms define how sets of partial solutions are computed

We use Binary Decision Diagrams as data structure
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Background
Tree decompositions

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.

1. Each vertex must occur in some bag.

2. For each edge, there is a bag containing both endpoints.

3. If vertex v appears in bags of nodes n0 and n1, then v is also in the
bag of each node on the path between n0 and n1.

Example

a b c

d e

b, cn4

a, bn1 b, c, d n3

c, d , e n2

I Width: Size of largest bag minus 1

I Tree-width: Minimum width over all possible tree decompositions

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 5



Background
Tree decompositions

Definition

A tree decomposition is a tree obtained from an arbitrary graph s.t.

1. Each vertex must occur in some bag.

2. For each edge, there is a bag containing both endpoints.

3. If vertex v appears in bags of nodes n0 and n1, then v is also in the
bag of each node on the path between n0 and n1.

Example

a b c

d e

b, cn4

a, bn1 b, c, d n3

c, d , e n2

I Width: Size of largest bag minus 1

I Tree-width: Minimum width over all possible tree decompositions

G. Charwat and S. Woltran Problem Solving on TDs usings BDDs 5



Background
Tree decompositions

Definition

Each node in a normalized tree decomposition is of one of the following
types: leaf, introduction, removal, or join node.

a b c

d e

Input instance

b, c

a, b b, c, d

c, d , e

Tree decomposition

∅

c

b, c

b, c

b

a, b

b, c

b, c, d

c, d

c, d , e

Normalized tree decomposition
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Background
Binary Decision Diagrams (BDDs)

I Data structure for storing Boolean functions

I Representation as rooted DAG

I Reduced Ordered BDDs [Bryant, 1986] particularly space efficient

Example (BDD and ROBDD)

Let formula φ = (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

a

b1 b2

c1 c2 c3 c4

> ⊥

OBBD of φ.

a

b

c

> ⊥

ROBBD of φ.
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Background
Binary Decision Diagrams (BDDs)

Advantages of BDDs

I Well-studied concept (applied to model checking, planning, software
verification, . . . )

I Efficient implementations available

I Memory-efficient storage handled directly by data structure

I Logic-based algorithm specification
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Background
Binary Decision Diagrams (BDDs)

BDDs support

I Standard logical operators (∧, ∨, ¬, ↔, . . . )

I Existential quantification (∃VB)

I Restriction and renaming (B[v/·] where · ∈ {>,⊥, v ′})

Size of ROBDDs

I Bounded by O(2|VB|)

I Heavily depends on variable ordering

I Finding optimal ordering is NP-complete [Bollig and Wegener, 1996]

I But there are good heuristics (e.g., [Rudell, 1993])

In practice often only polynomially large! [Friedman and Supowit, 1987]
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Dynamic Programming using BDDs
Concept comparison

Table-based Dynamic Programming

>

> ⊥

> ⊥

> ⊥

> ⊥

>

> ⊥

>

BDD-based Dynamic Programming
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Dynamic Programming using BDDs
Approach

Preparation

I Specify problem-dependent BDD manipulation operations B∗

I Distinguish between node types, here: ∗ ∈ {l , i , r , j} (leaf,
introduction, removal, join)

Solve problem

1. Decompose instance to obtain tree decomposition T
2. Traverse T in post-order and for each node n in T , compute B∗n

based on node type ∗
3. In root node r of T , either Br = > or Br = ⊥ holds
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3-Colorability

Problem

Given a graph G = (V ,E ), is G 3-colorable, i.e.:

I each vertex gets assigned exactly one color, and

I neighboring vertices have different colors?

Variables

Color assignment: cx for all c ∈ C = {r , g , b}, x ∈ V

a b c

d e
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3-Colorability

Bln =
∧
c∈C

∧
{x ,y}∈En

¬(cx ∧ cy ) ∧
∧
x∈Xn

(rx ∨ gx ∨ bx)∧

∧
x∈Xn

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)

Bin =Bn′ ∧
∧
c∈C

∧
{x ,u}∈En

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Brn =∃rugubu[Bn′ ]

Bjn =Bn′ ∧ Bn′′
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Dynamic Programming using BDDs
Algorithm design choices

Early Decision Method (EDM)

I Information is incorporated in introduction nodes

I Comparable to “classical” table-based implementations

I Unsatisfiable instances: Conflicts are detected earlier

Late Decision Method (LDM)

I BDD manipulation is delayed until removal of vertices

I Typically yields smaller BDDs and less computational effort

I Particularly useful for “complicated” algorithms

I Usually more concise algorithm specification
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3-Colorability
Late Decision Method

Bln =>

Bin = Bn′ Bjn = Bn′ ∧ Bn′′

Brn =
(
Bn′ [ru/>, gu/⊥, bu/⊥] ∧

∧
{x ,u}∈En′

¬rx
)
∨

(
Bn′ [ru/⊥, gu/>, bu/⊥] ∧

∧
{x ,u}∈En′

¬gx
)
∨

(
Bn′ [ru/⊥, gu/⊥, bu/>] ∧

∧
{x ,u}∈En′

¬bx
)
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3-Colorability
Preliminary experimental results
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Related work

Practical realizations for DP on TDs

I Some problem-specific implementations (e.g. graph optimization,
argumentation, . . . )

I SEQUOIA (2011): Takes MSO formula and does DP internally

I D-FLAT (2012): Specify algorithm for particular problem in ASP

Further related approaches

I Branch and Bound on TDs [Allouche et al., 2015]

I Trees-of-BDDs [Fargier and Marquis, 2009]

I Optimization with decision diagrams [Bergman et al., 2015]
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Conclusion

Current results
I Feasible for problems that are fpt w.r.t. tree-width w

I Size of BDDs bounded by O(2w ·c)

I So far, NP-complete problems were considered:
I 3-Colorability: only variables with fixed truth value
I Dominating Set variant: variables with changing truth value
I Hamiltonian Cycle: handle connectedness in DP algorithm

I Development and study of design patterns EDM and LDM

Future work

I Consider problems harder than NP (via sets of BDDs)

I Optimization problems (use alternatives to BDDs)

I Support for high-level algorithm specification

I Visualization and debugging support for algorithm development
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http://dbai.tuwien.ac.at/proj/decodyn/dynbdd
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