ALPEN-ADRIA
UNIVERSITAT

KLAGENFURT | WIEN GRAZ

"l UNIVERSITA DELLACALABRIA

4

Interactive debugging of non-ground ASP

programs

Carmine Dodaro’ Philip Gasteiger? Benjamin Musitsch?
Francesco Ricca' Kostyantyn Shchekotykhin?

"University of Calabria, ltaly
2Alpen-Adria-Universitat Klagenfurt, Austria

Lexington, Kentucky
LPNMR 2015

Introduction and contribution
Interactive debug and DWASP

Conclusion

2/23

Introduction and contribution

3/23

Answer Set Programming (ASP)
m declarative programming paradigm
m strong theoretical basis
m availability of efficient implementations
m ease in representing complex problems
Idea
logic programs represent computational problems

answer sets correspond to solutions

Answer Set Programming (ASP)
m declarative programming paradigm
m strong theoretical basis
m availability of efficient implementations
m ease in representing complex problems
Idea
logic programs represent computational problems
answer sets correspond to solutions

...and then the solution is not correct!

ASP encoding: graph coloring
coal

Goal

Input: A direct graph G =< V., E > and a set of three colors
Output: A color assignment for each node in V

3-Graph Coloring Problem

% Compute nodes from arcs
node(X) « arc(X,Y)
node(X) « arc(Y, X)

% Assign a color to each node
col(X, blue) | col(X, red) | col(X, yellow) < node(X)

% Different colors for adjacent nodes
« col(X,C1),col(Y,C2),arc(X,Y)

ASP encoding: graph coloring
coal

Goal

Input: A direct graph G =< V., E > and a set of three colors
Output: A color assignment for each node in V

3-Graph Coloring Problem

% Compute nodes from arcs
node(X) « arc(X,Y)
node(X) « arc(Y, X)

% Assign a color to each node
col(X, blue) | col(X, red) | col(X, yellow) < node(X)

% Different colors for adjacent nodes
« col(X,C1),col(Y,C2),arc(X,Y), C1 =C2

m ASP encodings are usually compact compared to C++ programs

m the encoding of Valves Location Problem from the 5th
competition is composed by ~100 lines of code

m the file clasp_options.cpp contains ~1000 lines of code
m However, faulty detection of ASP programs may be tedious

m finding errors in (even small) ASP programs requires a lot
of time

m debuggers make the development process faster and more
comfortable

Existing debuggers

m Algorithmic/native approaches
m DLV debugger, IDEAS, stepping framework
m Declarative approaches

B SPOCK, OUROBOROS
m ASP to debug ASP

m represents the input program in a reified form
m Limitations

m some of them work only for ground programs

m declarative approaches cause a blow up in the size of the
grounded program

m a novice might find it difficult to understand the output of
debuggers

Contribution

m A new debugging technique

m works on non-ground ASP programs
m no grounding blow up

m the output is the faulty rule(s)

m Implementation of the technique in DWASP

8/23

Interactive debug and DWASP

9/23

Introduction

m A bug in an ASP program is revealed when
one or more answer sets are incorrect
one or more answer sets are missing

m The definition of test cases

m is a good practice of software engineering

m two meanings: unit testing [De Vos et al., TPLP 2012; Febbraro
et al., INAP/WLP 2011] and coverage testing [Janhunen et al.,
ECAI 2010; Janhunen et al., LPNMR 2011]

m is supported by modern tools like ASPIDE and SEALION

10/23

Introduction

m A bug in an ASP program is revealed when
one or more answer sets are incorrect
one or more answer sets are missing

m The definition of test cases

m is a good practice of software engineering

m two meanings: unit testing [De Vos et al., TPLP 2012; Febbraro
et al., INAP/WLP 2011] and coverage testing [Janhunen et al.,
ECAI 2010; Janhunen et al., LPNMR 2011]

m is supported by modern tools like ASPIDE and SEALION

m In the following the faulty ASP program is assumed to be
Incoherent in presence of one or more test cases

10/23

Debug of an incoherent ASP program

m Input: an incoherent program Il
m Output: the faulty rule(s) causing the problem

m Debugging: based on the concept of unsatisfiable core

m a set of rules causing the incoherence of I

m it is computed by modern ASP solvers during the solving
process

11/23

Unsatisfiable core
Input program

rn: o alb«+ rLh: Cc+ a r3: ¢« b
rg: d|e«+ Is: e+ a re: d<«b

Execution

The program is coherent: {a, c, e} is an answer set

12/23

Unsatisfiable core
Input program

rn: alb« rn: c«a rs: c« b FALSE(C).
rg: d|e«+ Is: e+ a re: d<«b
r7: < C

Execution

The program is now incoherent

12/23

Unsatisfiable core
Input program

ri: oalb+« L: C+a ry: c« b FALSE(C).
ry: d|e«+ rs: e+ a re: d<b
r7: < C

Execution

The program is now incoherent: {ry, 2, r3, r7} is an
unsatisfiable core

12/23

DWASP: determine query

m An unsatisfiable core might contain a high number of rules
m minimize the core (e.g. using QUICKXPLAIN)
m the core might still be huge!

— is not informative in this case

13/23

DWASP: determine query

m An unsatisfiable core might contain a high number of rules
m minimize the core (e.g. using QUICKXPLAIN)
m the core might still be huge!

— is not informative in this case
m A query-based approach to obtain smaller cores
m ask the user whether an atom must be true or false

m too many queries may be tedious

m maximize the SPLIT-IN-HALF measure [Shchekotykhin and
Friedrich, ISWC 2010]

13/23

DWASP: determine query

Vs

!

unsat core C C N

#\‘ [all rules have been tried]

N

selectaruler e C

®

End
Gnvoke solver on M\ {r}]
[Coherent: answer set AS] J [Incoherent: unsat core C’]
__Jen(a)+1 ifac AS ;
[\1 a,en(a) := {en(a) 1 ifag AS} [ComputeEntropy(C)]
| J
ComputeEntropy

14/23

DWASP: determine query

Vs

|

!

unsat core C C N

#\‘ [all rules have been tried]

selectaruler e C

Gnvoke solver on M\ {r}]

[Coherent: answer set AS] J [Incoherent: unsat core C’]

|

__Jen(a)+1 ifac AS
[\7 2 en(a) := {en(a) —1 ifag AS}

®

End

[ComputeEntropy(C’)]

N

J

ComputeEntropy

The query atom q is the one whose en(q) is the closest to 0

14/23

DWASP: determine query €))

Input program

rn: alb+« rn: c«+a rs: c«b N2}
ry: d|e«+ rs: e+ a re: d<b
r7: < C

Entropy

en(a) =0
en(b) :=
en(c) =0
en(d) :=
en(e):=0

15/23

DWASP: determine query €))

Input program

Ir: Cc+ a r3: c<+ b {ri,r2, 13,17}
ry: d|e«+ rs: e+ a re: d<b
r7: < C

Entropy

M\r:{e} en(a) := -1

15/23

DWASP: determine query €))

Input program

rn: alb+« rn: c«+a rs: c«b N2}
ry: d|e«+ rs: e+ a re: d<b
r7: < C

MN\r:{e} en(a) =0

M \ r> : {a, e} en(

M\ rs:{b d} en(

N\r:{ac e} en(d) := -2
(

15/23

DWASP: determine query €))

Input program

rn: alb+« rn: c«+a rs: c«b N2}
ry: d|e«+ rs: e+ a re: d<b
r7: < C

MN\r:{e} en(a) =0

M \ r> : {a, e} en(

M\ rs:{b d} en(

N\r:{ac e} en(d) := -2
(

15/23

DWASP: debugging session

invoke solver

[minimize unsatisfiable core]

\ [no other queries]

determine quer
[nequeny 9) [stop debug] @
End
[q is false] [q is true]
(N:=nNu{-q}] (M:=NU{« not g}

16/23

Implementation details

B GRINGO-WRAPPER

m disables the simplifications of GRINGO
m wrong rules can lead to unintended simplifications

m adorns the program to label the rules
B WASP is used as internal solvers

m used as black box exploiting its incremental interface

m other ASP solvers might be used

17/23

Comparison of the grounding size

Instance GRINGO GRINGO-WRAPPER OUROBOROS
GraphCol1-125 6 145 8 031 19 020
GraphCol11-130 6 455 8416 19 845
GraphCol21-135 7 269 9 305 21174
GraphCol30-135 6 597 8 633 20 502
GraphCol31-140 7 467 9578 21887
GraphCol40-140 8 097 10 208 22517
GraphCol41-145 8 260 10 446 23195
GraphCol51-120 8773 11 034 24 223
Hanoi09-28 31748 94 166 1739 800
Hanoi11-30 34 056 100 942 1864 222
Hanoi15-34 38 672 114 524 2112986
Hanoi16-40 27137 80615 1491 281
Hanoi22-60 28 311 84 644 1678 483
Hanoi38-80 34 044 100 942 1 864 250
Hanoi41-100 31738 94 166 1739 830

Hanoi47-120 25968 77 227 1429 695

18/23

Comparison of the grounding size

Instance GRINGO GRINGO-WRAPPER OUROBOROS
KnightsTour01-8 1 384 3413 12 985 716
KnightsTour03-12 3 356 8652 >72244 034
KnightsTour05-16 6 192 16285 >69 494 641
KnightsTour06-20 9 892 26 321 >62 785 993
KnightsTour07-30 22 922 61911 >59 166 564
KnightsTour08-40 41 352 112501 >54 944 042
KnightsTour09-46 55002 150 055 >56 443 633
KnightsTour10-50 65 182 178094 >62 402 315
PartnerUnits176-24 12 563 14 218 102 023
PartnerUnits23-30 39 231 42 106 276 645
PartnerUnits29-40 59 979 64 413 629 639
PartnerUnits207-58 158 564 168 289 2726 182
PartnerUnits204-67 218 808 231 083 4 280 282
PartnerUnits175-75 682 015 699 472 8 604 415
PartnerUnits52-100 952 363 979 603 20 125 857

PartnerUnits115-100 952 369 979 759 20 317 011

19/23

Conclusion

20/23

Conclusion

Contribution
a new debugging technique for non-ground ASP programs
no blow up in the size of the grounding
the output of the debugger is the faulty rule(s)
Current status
m implementation of DWASP-GUI

m integration of DWASP with ASPIDE

21/23

m annotate the “trusty” rules

m support weak constraints

m integrate DWASP with SEALION

m disable the simplifications of GRINGO

m hybrid approach

22/23

Tools

DWASP: https://github.com/gaste/dwasp

GRINGO-WRAPPER:
https://github.com/gaste/gringo-wrapper

DWASP-GUI (BETA):
https://github.com/gaste/dwasp-gui

ASPIDE: http://www.mat .unical.it/ricca/aspide

GRINGO: http://sourceforge.net/projects/
potassco/files/gringo/

@ WASP: http://alviano.github.io/wasp/

23/23

https://github.com/gaste/dwasp
https://github.com/gaste/gringo-wrapper
https://github.com/gaste/dwasp-gui
http://www.mat.unical.it/ricca/aspide
http://sourceforge.net/projects/potassco/files/gringo/
http://sourceforge.net/projects/potassco/files/gringo/
http://alviano.github.io/wasp/

Tools

DWASP: https://github.com/gaste/dwasp

GRINGO-WRAPPER:
https://github.com/gaste/gringo-wrapper

DWASP-GUI (BETA):
https://github.com/gaste/dwasp-gui

ASPIDE: http://www.mat .unical.it/ricca/aspide

GRINGO: http://sourceforge.net/projects/
potassco/files/gringo/

@ WASP: http://alviano.github.io/wasp/

Thank you!

23/23

https://github.com/gaste/dwasp
https://github.com/gaste/gringo-wrapper
https://github.com/gaste/dwasp-gui
http://www.mat.unical.it/ricca/aspide
http://sourceforge.net/projects/potassco/files/gringo/
http://sourceforge.net/projects/potassco/files/gringo/
http://alviano.github.io/wasp/

	Introduction and contribution
	Interactive debug and dwasp
	Conclusion

