

UNIVERSITÀ DELLA CALABRIA

Interactive debugging of non-ground ASP programs

<u>Carmine Dodaro</u>¹ Philip Gasteiger² Benjamin Musitsch² Francesco Ricca¹ Kostyantyn Shchekotykhin²

¹University of Calabria, Italy ²Alpen-Adria-Universität Klagenfurt, Austria

> Lexington, Kentucky LPNMR 2015

1 Introduction and contribution

2 Interactive debug and DWASP

1 Introduction and contribution

2 Interactive debug and DWASP

3 Conclusion

Context

Answer Set Programming (ASP)

- declarative programming paradigm
- strong theoretical basis
- availability of efficient implementations
- ease in representing complex problems

Idea

- I logic programs represent computational problems
- 2 answer sets correspond to solutions

Context

Answer Set Programming (ASP)

- declarative programming paradigm
- strong theoretical basis
- availability of efficient implementations
- ease in representing complex problems

Idea

- I logic programs represent computational problems
- 2 answer sets correspond to solutions

...and then the solution is not correct!

ASP encoding: graph coloring

Goal

Input: A direct graph $G = \langle V, E \rangle$ and a set of three colors **Output**: A color assignment for each node in *V*

3-Graph Coloring Problem

% Compute nodes from arcs $node(X) \leftarrow arc(X, Y)$ $node(X) \leftarrow arc(Y, X)$

% Assign a color to each node $col(X, blue) | col(X, red) | col(X, yellow) \leftarrow node(X)$

% Different colors for adjacent nodes $\leftarrow col(X, C1), col(Y, C2), arc(X, Y)$

ASP encoding: graph coloring

Goal

Input: A direct graph $G = \langle V, E \rangle$ and a set of three colors **Output**: A color assignment for each node in *V*

3-Graph Coloring Problem

% Compute nodes from arcs $node(X) \leftarrow arc(X, Y)$ $node(X) \leftarrow arc(Y, X)$

% Assign a color to each node $col(X, blue) | col(X, red) | col(X, yellow) \leftarrow node(X)$

% Different colors for adjacent nodes $\leftarrow col(X, C1), col(Y, C2), arc(X, Y), C1 = C2$

Motivation

ASP encodings are usually compact compared to C++ programs

- the encoding of Valves Location Problem from the 5th competition is composed by ~100 lines of code
- the file *clasp_options.cpp* contains ~1000 lines of code
- However, faulty detection of ASP programs may be tedious
 - finding errors in (even small) ASP programs requires a lot of time
 - debuggers make the development process faster and more comfortable

Existing debuggers

- Algorithmic/native approaches
 - DLV debugger, IDEAS, stepping framework
- Declarative approaches
 - SPOCK, OUROBOROS
 - ASP to debug ASP
 - represents the input program in a reified form

Limitations

- some of them work only for ground programs
- declarative approaches cause a blow up in the size of the grounded program
- a novice might find it difficult to understand the output of debuggers

A new debugging technique

works on non-ground ASP programs

- no grounding blow up
- the output is the faulty rule(s)

Implementation of the technique in DWASP

1 Introduction and contribution

2 Interactive debug and DWASP

A bug in an ASP program is revealed when

- 1 one or more answer sets are incorrect
- 2 one or more answer sets are missing
- The definition of test cases
 - is a good practice of software engineering
 - two meanings: unit testing [De Vos et al., TPLP 2012; Febbraro et al., INAP/WLP 2011] and coverage testing [Janhunen et al., ECAI 2010; Janhunen et al., LPNMR 2011]
 - is supported by modern tools like ASPIDE and SEALION

A bug in an ASP program is revealed when

- 1 one or more answer sets are incorrect
- 2 one or more answer sets are missing
- The definition of test cases
 - is a good practice of software engineering
 - two meanings: unit testing [De Vos et al., TPLP 2012; Febbraro et al., INAP/WLP 2011] and coverage testing [Janhunen et al., ECAI 2010; Janhunen et al., LPNMR 2011]
 - is supported by modern tools like ASPIDE and SEALION
- In the following the faulty ASP program is assumed to be Incoherent in presence of one or more test cases

- **Input:** an incoherent program Π
- **Output:** the faulty rule(s) causing the problem
- **Debugging:** based on the concept of unsatisfiable core
 - a set of rules causing the incoherence of Π
 - it is computed by modern ASP solvers during the solving process

Unsatisfiable core

Input program			Test case
$r_1: a \mid b \leftarrow r_4: d \mid e \leftarrow$	$r_2: c \leftarrow a r_5: e \leftarrow a$	$r_3: c \leftarrow b$ $r_6: d \leftarrow b$	

Execution

The program is coherent: $\{a, c, e\}$ is an answer set

Unsatisfiable core

Input program			Test case
$r_1: a \mid b \leftarrow$	$r_2: c \leftarrow a$	$r_3: c \leftarrow b$	FALSE(C).
$r_4: d \mid e \leftarrow$	$r_5: e \leftarrow a$	$r_6: d \leftarrow b$	
$r_7: \leftarrow c$			

Execution

The program is now incoherent

Unsatisfiable core

Input program			Test case
$r_1: a \mid b \leftarrow$	<i>r</i> ₂: c ← a	$r_3: c \leftarrow b$	FALSE(C).
$r_4: d \mid e \leftarrow$	$r_5: e \leftarrow a$	$r_6: d \leftarrow b$	
$r_7: \leftarrow c$			

Execution

The program is now incoherent: $\{r_1, r_2, r_3, r_7\}$ is an unsatisfiable core

An unsatisfiable core might contain a high number of rules

- minimize the core (e.g. using QUICKXPLAIN)
- the core might still be huge!

 \rightarrow is not informative in this case

(1)

An unsatisfiable core might contain a high number of rules

- minimize the core (e.g. using QUICKXPLAIN)
- the core might still be huge!

 \rightarrow is not informative in this case

A query-based approach to obtain smaller cores

- ask the user whether an atom must be true or false
- too many queries may be tedious
- maximize the SPLIT-IN-HALF measure [Shchekotykhin and Friedrich, ISWC 2010]

ComputeEntropy

ComputeEntropy

The query atom q is the one whose en(q) is the closest to 0

Input program			Unsat core
$egin{array}{r_1:} a \mid b \leftarrow \ r_4: d \mid e \leftarrow \ r_7: \leftarrow c \end{array}$	$r_2: c \leftarrow a r_5: e \leftarrow a$	$r_3: c \leftarrow b$ $r_6: d \leftarrow b$	$\{r_1, r_2, r_3, r_7\}$

Execution	Entropy
	en(a) := 0 en(b) := 0 en(c) := 0 en(d) := 0
	<i>en</i> (<i>e</i>) := 0

Input program			Unsat core
$egin{array}{r_4:}&d \mid e \leftarrow \ r_7:&\leftarrow c \end{array}$	$egin{array}{r_2:} egin{array}{cc} egin{array} egin{array}{cc} egin{array}{cc} egin{$	$egin{array}{r_3:} & c \leftarrow b \ r_6: & d \leftarrow b \end{array}$	$\{r_1, r_2, r_3, r_7\}$

Execution	Entropy
$\Pi \setminus r_1 : \{e\}$	<i>en</i> (<i>a</i>) := -1
	<i>en</i> (<i>b</i>) := -1
	<i>en</i> (<i>c</i>) := -1
	<i>en</i> (<i>d</i>) := -1
	<i>en</i> (<i>e</i>) := 1

Input program			Unsat core
$\begin{array}{rrr} r_1 : & a \mid b \leftarrow \\ r_4 : & d \mid e \leftarrow \\ r_7 : & \leftarrow c \end{array}$	$egin{array}{ccc} r_2: & c \leftarrow a \ r_5: & e \leftarrow a \end{array}$	$egin{array}{r_3:} & c \leftarrow b \ r_6: & d \leftarrow b \end{array}$	$\{r_1, r_2, r_3, r_7\}$

Execution	Entropy
$\sqcap \setminus r_1 : \{e\}$	<i>en</i> (<i>a</i>) := 0
$\Pi \setminus \mathbf{r_2} : \{\mathbf{a}, \mathbf{e}\}$	<i>en</i> (<i>b</i>) := -2
$\Pi \setminus r_3 : \{b, d\}$	en(c) := -2
$\Pi \setminus \mathit{r_7} : \{\mathit{a}, \mathit{c}, \mathit{e}\}$	<i>en</i> (<i>d</i>) := -2
	en(e) := 2

Input program			Unsat core
$\begin{array}{rrr} r_1 : & a \mid b \leftarrow \\ r_4 : & d \mid e \leftarrow \\ r_7 : & \leftarrow c \end{array}$	$egin{array}{ccc} r_2: & c \leftarrow a \ r_5: & e \leftarrow a \end{array}$	$egin{array}{r_3:} & c \leftarrow b \ r_6: & d \leftarrow b \end{array}$	$\{r_1, r_2, r_3, r_7\}$

Execution	Entropy
$\sqcap \setminus r_1 : \{e\}$	en(a) := <mark>0</mark>
$\sqcap \setminus r_2 : \{a, e\}$	<i>en</i> (<i>b</i>) := -2
$\sqcap \setminus r_3: \{b, d\}$	<i>en</i> (<i>c</i>) := -2
$\sqcap \setminus r_7 : \{a, c, e\}$	en(d) := -2
	en(e) := 2

DWASP: debugging session

GRINGO-WRAPPER

- disables the simplifications of GRINGO
- wrong rules can lead to unintended simplifications
- adorns the program to label the rules
- WASP is used as internal solvers
 - used as black box exploiting its incremental interface
 - other ASP solvers might be used

Comparison of the grounding size

Instance	GRINGO	GRINGO-WRAPPER	OUROBOROS
GraphCol1-125	6 145	8 031	19 020
GraphCol11-130	6 455	8 416	19 845
GraphCol21-135	7 269	9 305	21 174
GraphCol30-135	6 597	8 633	20 502
GraphCol31-140	7 467	9 578	21 887
GraphCol40-140	8 097	10 208	22 517
GraphCol41-145	8 260	10 446	23 195
GraphCol51-120	8 773	11 034	24 223
Hanoi09-28	31 748	94 166	1 739 800
Hanoi11-30	34 056	100 942	1 864 222
Hanoi15-34	38 672	114 524	2 112 986
Hanoi16-40	27 137	80 615	1 491 281
Hanoi22-60	28 311	84 644	1 678 483
Hanoi38-80	34 044	100 942	1 864 250
Hanoi41-100	31 738	94 166	1 739 830
Hanoi47-120	25 968	77 227	1 429 695

Instance	GRINGO	GRINGO-WRAPPER	OUROBOROS
KnightsTour01-8	1 384	3 413	12 985 716
KnightsTour03-12	3 356	8 652	>72 244 034
KnightsTour05-16	6 192	16 285	>69 494 641
KnightsTour06-20	9 892	26 321	>62 785 993
KnightsTour07-30	22 922	61 911	>59 166 564
KnightsTour08-40	41 352	112 501	>54 944 042
KnightsTour09-46	55 002	150 055	>56 443 633
KnightsTour10-50	65 182	178 094	>62 402 315
PartnerUnits176-24	12 563	14 218	102 023
PartnerUnits23-30	39 231	42 106	276 645
PartnerUnits29-40	59 979	64 413	629 639
PartnerUnits207-58	158 564	168 289	2 726 182
PartnerUnits204-67	218 808	231 083	4 280 282
PartnerUnits175-75	682 015	699 472	8 604 415
PartnerUnits52-100	952 363	979 603	20 125 857
PartnerUnits115-100	952 369	979 759	20 317 011

1 Introduction and contribution

2 Interactive debug and DWASP

3 Conclusion

Contribution

- 1 a new debugging technique for non-ground ASP programs
- 2 no blow up in the size of the grounding
- 3 the output of the debugger is the faulty rule(s)

Current status

- implementation of DWASP-GUI
- integration of DWASP with ASPIDE

- annotate the "trusty" rules
- support weak constraints
- integrate DWASP with SEALION
- disable the simplifications of GRINGO
- hybrid approach

Tools

- 1 DWASP: https://github.com/gaste/dwasp
- 2 GRINGO-WRAPPER:
 - https://github.com/gaste/gringo-wrapper
- 3 DWASP-GUI (BETA):
 - https://github.com/gaste/dwasp-gui
- 4 ASPIDE: http://www.mat.unical.it/ricca/aspide
- 5 GRINGO: http://sourceforge.net/projects/ potassco/files/gringo/
- 6 WASP: http://alviano.github.io/wasp/

Tools

- 1 DWASP: https://github.com/gaste/dwasp
- 2 GRINGO-WRAPPER:
 - https://github.com/gaste/gringo-wrapper
- 3 DWASP-GUI (BETA):
 - https://github.com/gaste/dwasp-gui
- 4 ASPIDE: http://www.mat.unical.it/ricca/aspide
- 5 GRINGO: http://sourceforge.net/projects/ potassco/files/gringo/
- 6 WASP: http://alviano.github.io/wasp/

