
Interactive debugging of non-ground ASP
programs

Carmine Dodaro1 Philip Gasteiger2 Benjamin Musitsch2

Francesco Ricca1 Kostyantyn Shchekotykhin2

1University of Calabria, Italy
2Alpen-Adria-Universität Klagenfurt, Austria

Lexington, Kentucky
LPNMR 2015

Outline

1 Introduction and contribution

2 Interactive debug and DWASP

3 Conclusion

2 / 23

Outline

1 Introduction and contribution

2 Interactive debug and DWASP

3 Conclusion

3 / 23

Context

Answer Set Programming (ASP)

declarative programming paradigm

strong theoretical basis

availability of efficient implementations

ease in representing complex problems

Idea

1 logic programs represent computational problems

2 answer sets correspond to solutions

...and then the solution is not correct!

4 / 23

Context

Answer Set Programming (ASP)

declarative programming paradigm

strong theoretical basis

availability of efficient implementations

ease in representing complex problems

Idea

1 logic programs represent computational problems

2 answer sets correspond to solutions

...and then the solution is not correct!

4 / 23

ASP encoding: graph coloring

5 / 23

Goal

Input: A direct graph G =< V ,E > and a set of three colors
Output: A color assignment for each node in V

3-Graph Coloring Problem

% Compute nodes from arcs
node(X)← arc(X ,Y)
node(X)← arc(Y ,X)

% Assign a color to each node
col(X ,blue) | col(X , red) | col(X , yellow)← node(X)

% Different colors for adjacent nodes
← col(X ,C1), col(Y ,C2),arc(X ,Y)

ASP encoding: graph coloring

5 / 23

Goal

Input: A direct graph G =< V ,E > and a set of three colors
Output: A color assignment for each node in V

3-Graph Coloring Problem

% Compute nodes from arcs
node(X)← arc(X ,Y)
node(X)← arc(Y ,X)

% Assign a color to each node
col(X ,blue) | col(X , red) | col(X , yellow)← node(X)

% Different colors for adjacent nodes
← col(X ,C1), col(Y ,C2),arc(X ,Y), C1 = C2

Motivation

ASP encodings are usually compact compared to C++ programs

the encoding of Valves Location Problem from the 5th
competition is composed by ~100 lines of code

the file clasp_options.cpp contains ~1000 lines of code

However, faulty detection of ASP programs may be tedious

finding errors in (even small) ASP programs requires a lot
of time

debuggers make the development process faster and more
comfortable

6 / 23

Existing debuggers

Algorithmic/native approaches

DLV debugger, IDEAS, stepping framework

Declarative approaches

SPOCK, OUROBOROS

ASP to debug ASP

represents the input program in a reified form

Limitations

some of them work only for ground programs

declarative approaches cause a blow up in the size of the
grounded program

a novice might find it difficult to understand the output of
debuggers

7 / 23

Contribution

A new debugging technique

works on non-ground ASP programs

no grounding blow up

the output is the faulty rule(s)

Implementation of the technique in DWASP

8 / 23

Outline

1 Introduction and contribution

2 Interactive debug and DWASP

3 Conclusion

9 / 23

Introduction

A bug in an ASP program is revealed when

1 one or more answer sets are incorrect

2 one or more answer sets are missing

The definition of test cases

is a good practice of software engineering

two meanings: unit testing [De Vos et al., TPLP 2012; Febbraro
et al., INAP/WLP 2011] and coverage testing [Janhunen et al.,
ECAI 2010; Janhunen et al., LPNMR 2011]

is supported by modern tools like ASPIDE and SEALION

In the following the faulty ASP program is assumed to be
Incoherent in presence of one or more test cases

10 / 23

Introduction

A bug in an ASP program is revealed when

1 one or more answer sets are incorrect

2 one or more answer sets are missing

The definition of test cases

is a good practice of software engineering

two meanings: unit testing [De Vos et al., TPLP 2012; Febbraro
et al., INAP/WLP 2011] and coverage testing [Janhunen et al.,
ECAI 2010; Janhunen et al., LPNMR 2011]

is supported by modern tools like ASPIDE and SEALION

In the following the faulty ASP program is assumed to be
Incoherent in presence of one or more test cases

10 / 23

Debug of an incoherent ASP program

Input: an incoherent program Π

Output: the faulty rule(s) causing the problem

Debugging: based on the concept of unsatisfiable core

a set of rules causing the incoherence of Π

it is computed by modern ASP solvers during the solving
process

11 / 23

Unsatisfiable core

12 / 23

Input program

r1 : a | b ← r2 : c ← a r3 : c ← b
r4 : d | e← r5 : e← a r6 : d ← b

Test case

Execution

The program is coherent: {a, c,e} is an answer set

Unsatisfiable core

12 / 23

Input program

r1 : a | b ← r2 : c ← a r3 : c ← b
r4 : d | e← r5 : e← a r6 : d ← b
r7 : ← c

Test case

FALSE(C).

Execution

The program is now incoherent

Unsatisfiable core

12 / 23

Input program

r1 : a | b ← r2 : c ← a r3 : c ← b
r4 : d | e← r5 : e← a r6 : d ← b
r7 : ← c

Test case

FALSE(C).

Execution

The program is now incoherent: {r1, r2, r3, r7} is an
unsatisfiable core

DWASP: determine query (1)

An unsatisfiable core might contain a high number of rules

minimize the core (e.g. using QUICKXPLAIN)

the core might still be huge!

→ is not informative in this case

A query-based approach to obtain smaller cores

ask the user whether an atom must be true or false

too many queries may be tedious

maximize the SPLIT-IN-HALF measure [Shchekotykhin and
Friedrich, ISWC 2010]

13 / 23

DWASP: determine query (1)

An unsatisfiable core might contain a high number of rules

minimize the core (e.g. using QUICKXPLAIN)

the core might still be huge!

→ is not informative in this case

A query-based approach to obtain smaller cores

ask the user whether an atom must be true or false

too many queries may be tedious

maximize the SPLIT-IN-HALF measure [Shchekotykhin and
Friedrich, ISWC 2010]

13 / 23

DWASP: determine query (2)

unsat core C ⊆ Π

select a rule r ∈ C

invoke solver on Π \ {r}

ComputeEntropy(C′)∀ a, en(a) :=

{
en(a) + 1 if a ∈ AS
en(a)− 1 if a /∈ AS

End

ComputeEntropy

[all rules have been tried]

[Incoherent : unsat core C′][Coherent : answer set AS]

The query atom q is the one whose en(q) is the closest to 0

14 / 23

DWASP: determine query (2)

unsat core C ⊆ Π

select a rule r ∈ C

invoke solver on Π \ {r}

ComputeEntropy(C′)∀ a, en(a) :=

{
en(a) + 1 if a ∈ AS
en(a)− 1 if a /∈ AS

End

ComputeEntropy

[all rules have been tried]

[Incoherent : unsat core C′][Coherent : answer set AS]

The query atom q is the one whose en(q) is the closest to 0

14 / 23

DWASP: determine query (3)

15 / 23

Input program

r1 : a | b ← r2 : c ← a r3 : c ← b
r4 : d | e← r5 : e← a r6 : d ← b
r7 : ← c

Unsat core

{r1, r2, r3, r7}

Entropy

en(a) := 0
en(b) := 0
en(c) := 0
en(d) := 0
en(e) := 0

Execution

DWASP: determine query (3)

15 / 23

Input program

r2 : c ← a r3 : c ← b
r4 : d | e← r5 : e← a r6 : d ← b
r7 : ← c

Unsat core

{r1, r2, r3, r7}

Entropy

en(a) := -1
en(b) := -1
en(c) := -1
en(d) := -1
en(e) := 1

Execution

Π \ r1 : {e}

DWASP: determine query (3)

15 / 23

Input program

r1 : a | b ← r2 : c ← a r3 : c ← b
r4 : d | e← r5 : e← a r6 : d ← b
r7 : ← c

Unsat core

{r1, r2, r3, r7}

Entropy

en(a) := 0
en(b) := -2
en(c) := -2
en(d) := -2
en(e) := 2

Execution

Π \ r1 : {e}
Π \ r2 : {a,e}
Π \ r3 : {b,d}
Π \ r7 : {a, c,e}

DWASP: determine query (3)

15 / 23

Input program

r1 : a | b ← r2 : c ← a r3 : c ← b
r4 : d | e← r5 : e← a r6 : d ← b
r7 : ← c

Unsat core

{r1, r2, r3, r7}

Entropy

en(a) := 0
en(b) := -2
en(c) := -2
en(d) := -2
en(e) := 2

Execution

Π \ r1 : {e}
Π \ r2 : {a,e}
Π \ r3 : {b,d}
Π \ r7 : {a, c,e}

DWASP: debugging session

invoke solver

minimize unsatisfiable core

determine query q

Π := Π ∪ {← not q}Π := Π ∪ {← q}

End

[no other queries]

[stop debug]

[q is true][q is false]

16 / 23

Implementation details

GRINGO-WRAPPER

disables the simplifications of GRINGO

wrong rules can lead to unintended simplifications

adorns the program to label the rules

WASP is used as internal solvers

used as black box exploiting its incremental interface

other ASP solvers might be used

17 / 23

Comparison of the grounding size (1)

Instance GRINGO GRINGO-WRAPPER OUROBOROS

GraphCol1-125 6 145 8 031 19 020
GraphCol11-130 6 455 8 416 19 845
GraphCol21-135 7 269 9 305 21 174
GraphCol30-135 6 597 8 633 20 502
GraphCol31-140 7 467 9 578 21 887
GraphCol40-140 8 097 10 208 22 517
GraphCol41-145 8 260 10 446 23 195
GraphCol51-120 8 773 11 034 24 223
Hanoi09-28 31 748 94 166 1 739 800
Hanoi11-30 34 056 100 942 1 864 222
Hanoi15-34 38 672 114 524 2 112 986
Hanoi16-40 27 137 80 615 1 491 281
Hanoi22-60 28 311 84 644 1 678 483
Hanoi38-80 34 044 100 942 1 864 250
Hanoi41-100 31 738 94 166 1 739 830
Hanoi47-120 25 968 77 227 1 429 695

18 / 23

Comparison of the grounding size (2)

Instance GRINGO GRINGO-WRAPPER OUROBOROS

KnightsTour01-8 1 384 3 413 12 985 716
KnightsTour03-12 3 356 8 652 >72 244 034
KnightsTour05-16 6 192 16 285 >69 494 641
KnightsTour06-20 9 892 26 321 >62 785 993
KnightsTour07-30 22 922 61 911 >59 166 564
KnightsTour08-40 41 352 112 501 >54 944 042
KnightsTour09-46 55 002 150 055 >56 443 633
KnightsTour10-50 65 182 178 094 >62 402 315
PartnerUnits176-24 12 563 14 218 102 023
PartnerUnits23-30 39 231 42 106 276 645
PartnerUnits29-40 59 979 64 413 629 639
PartnerUnits207-58 158 564 168 289 2 726 182
PartnerUnits204-67 218 808 231 083 4 280 282
PartnerUnits175-75 682 015 699 472 8 604 415
PartnerUnits52-100 952 363 979 603 20 125 857
PartnerUnits115-100 952 369 979 759 20 317 011

19 / 23

Outline

1 Introduction and contribution

2 Interactive debug and DWASP

3 Conclusion

20 / 23

Conclusion

Contribution

1 a new debugging technique for non-ground ASP programs

2 no blow up in the size of the grounding

3 the output of the debugger is the faulty rule(s)

Current status

implementation of DWASP-GUI

integration of DWASP with ASPIDE

21 / 23

Future work

annotate the “trusty” rules

support weak constraints

integrate DWASP with SEALION

disable the simplifications of GRINGO

hybrid approach

22 / 23

Tools

1 DWASP: https://github.com/gaste/dwasp
2 GRINGO-WRAPPER:
https://github.com/gaste/gringo-wrapper

3 DWASP-GUI (BETA):
https://github.com/gaste/dwasp-gui

4 ASPIDE: http://www.mat.unical.it/ricca/aspide
5 GRINGO: http://sourceforge.net/projects/
potassco/files/gringo/

6 WASP: http://alviano.github.io/wasp/

23 / 23

https://github.com/gaste/dwasp
https://github.com/gaste/gringo-wrapper
https://github.com/gaste/dwasp-gui
http://www.mat.unical.it/ricca/aspide
http://sourceforge.net/projects/potassco/files/gringo/
http://sourceforge.net/projects/potassco/files/gringo/
http://alviano.github.io/wasp/

Tools

1 DWASP: https://github.com/gaste/dwasp
2 GRINGO-WRAPPER:
https://github.com/gaste/gringo-wrapper

3 DWASP-GUI (BETA):
https://github.com/gaste/dwasp-gui

4 ASPIDE: http://www.mat.unical.it/ricca/aspide
5 GRINGO: http://sourceforge.net/projects/
potassco/files/gringo/

6 WASP: http://alviano.github.io/wasp/

23 / 23

Thank you!

https://github.com/gaste/dwasp
https://github.com/gaste/gringo-wrapper
https://github.com/gaste/dwasp-gui
http://www.mat.unical.it/ricca/aspide
http://sourceforge.net/projects/potassco/files/gringo/
http://sourceforge.net/projects/potassco/files/gringo/
http://alviano.github.io/wasp/

	Introduction and contribution
	Interactive debug and dwasp
	Conclusion

