A Formal Theory of Justifications

Marc Denecker, Gerhard Brewka, Hannes Strass KU Leuven and U. Leipzig

September 28, 2015

Motivation and Context

Goal in KR:

- Build rich logics
- by integrating useful and expressive language constructs
- in a meaning preserving way

One motivating example

To add a nested cardinality aggregate Card to classical logic:

- Plug new inductive rule in definition of term:
 - Card({x : φ}) is a term if φ is a formula
- Plug new inductive rule in definition of term evaluation:

•
$$(Card(\{x:\varphi\})^{\mathfrak{A}} = \#(\{d \mid \mathfrak{A}[x:d] \models \varphi\})$$

One motivating example

To add a nested cardinality aggregate Card to classical logic:

Plug new inductive rule in definition of term:

Card({x : φ}) is a term if φ is a formula

Plug new inductive rule in definition of term evaluation:

•
$$(Card(\{x:\varphi\})^{\mathfrak{A}} = \#(\{d \mid \mathfrak{A}[x:d] \models \varphi\})$$

We are ready.

To add aggregate expressions to logic programming and ASP: many effort years, several PhD's and many papers.

Towards one solution

At ICLP 2015, Dasseville, Van der Hallen, Janssens, D

- Framework to add rule sets under well-founded or stable semantics to arbitrary logics with a three-valued semantics.
- Infinitely many logics can be built, including with rule sets nested in bodies.
- We used it to define a higher order logic of template definitions.

Goal of this paper

- Building generic framework for construction of logics
- Based on the basic notion of

justification

 \rightarrow a reason, a cause

Goal of this paper

- Building generic framework for construction of logics
- Based on the basic notion of

justification

 \rightarrow a reason, a cause

- An old idea: (early 90ties)
 - (Fages,91), (Pereira et al.,92), (D,Deschreye, 93)
- Recently revived:
 - (Schultz, Toni, 2013) (Cabalar, Fandinno, Fink, 2014), (Pontelli, Son, Elkhatib, 2009), (Damasio, Analyti, Antoniou, 2013)

Contributions

- A new (language independent) framework:
 - Within the same formalism: classifying different semantical principles
 - Amongst different formalisms: abstracting common semantical principles
 - e.g. logic programs vs. argumentation frameworks
 - New semantics that nobody thought of yet
 - Another form of nesting for meaning preserving integration of language constructs

Contributions

- A new (language independent) framework:
 - Within the same formalism: classifying different semantical principles
 - Amongst different formalisms: abstracting common semantical principles
 - e.g. logic programs vs. argumentation frameworks
 - New semantics that nobody thought of yet
 - Another form of nesting for meaning preserving integration of language constructs
- Applied here to argumentation theory and logic programming extensions (including coinductive logic programming (Gupta Bansal, Min, Simon, Mallya,2007))

Fact spaces

- $\blacktriangleright \ A \ fact \ space \ \mathcal{F}$
 - \blacktriangleright \cong set of literals
 - positive facts *F^p*, negative facts *Fⁿ* negation operator ~: *F^p* → *Fⁿ*, *Fⁿ* → *F^p*.

Fact spaces

► A fact space *F*

- $\blacktriangleright \cong \mathsf{set} \ \mathsf{of} \ \mathsf{literals}$
- positive facts *F^p*, negative facts *Fⁿ* negation operator ~: *F^p* → *Fⁿ*, *Fⁿ* → *F^p*.

• An interpretation $\mathfrak{A} \subseteq \mathcal{F}$

- \cong a four-valued interpretation
 - e.g., $x \in \mathfrak{A}, \sim x \notin \mathfrak{A}$: x is true
 - e.g., $x \in \mathfrak{A}, \sim x \in \mathfrak{A}$: x is inconsistent

Justification frames

- A justification frame \mathcal{JF} :
 - partitions \mathcal{F} in two
 - ► \mathcal{F}_d : defined facts
 - ► \mathcal{F}_o : parameter facts
 - consists of a set of rules

$$x \leftarrow S$$

- $x \in \mathcal{F}_d, S \subseteq \mathcal{F}, S \neq \emptyset$
- atomic facts are represented as $x \leftarrow \{$ **true** $\}$
- negative facts in head allowed

Justifications, branches

- A justification J of justification frame \mathcal{JF} :
 - ▶ per defined fact $x \in \mathcal{F}_d$, choice of one rule $(x \leftarrow S) \in \mathcal{JF}$
 - defines a graph:

arc $x \to y$ if $y \in S$ where $(x \leftarrow S) \in J$.

Leafs of J are parameter facts in \mathcal{F}_o .

Justifications, branches

- A justification J of justification frame \mathcal{JF} :
 - ▶ per defined fact $x \in \mathcal{F}_d$, choice of one rule $(x \leftarrow S) \in \mathcal{JF}$
 - defines a graph:

arc $x \to y$ if $y \in S$ where $(x \leftarrow S) \in J$.

Leafs of J are parameter facts in \mathcal{F}_o .

- A branch of J at x: a maximally long path $x \to x_1 \to \dots$ in J
 - either terminates in a parameter fact, or is infinite.

A branch evaluation maps branches to ${\mathcal F}$

 $\mathcal{B}:\textit{Branches} \rightarrow \mathcal{F}$

A branch evaluation maps branches to ${\mathcal F}$

 $\mathcal{B}:\textit{Branches} \rightarrow \mathcal{F}$

Examples:

•
$$\mathcal{B}_{sp}(x \to x_1 \to \dots) = x_1$$
 (for supported semantics)

A branch evaluation maps branches to ${\cal F}$

 $\mathcal{B}:\textit{Branches} \rightarrow \mathcal{F}$

Examples:

• $\mathcal{B}_{sp}(x \to x_1 \to \dots) = x_1$ (for supported semantics)

•
$$\mathcal{B}_{wf}(x \to x_1 \to \dots) =$$

- *x_n* if the branch terminates in *x_n*
- t if the branch has a tail of negative facts
- f if the branch has a tail of positive facts
- **u** if only mixed tails and $x \in \mathcal{F}^p$
- \sim **u** if only mixed tails and $x \in \mathcal{F}^n$

(for well-founded semantics)

A branch evaluation maps branches to ${\cal F}$

 $\mathcal{B}:\textit{Branches} \rightarrow \mathcal{F}$

Examples:

. . .

• $\mathcal{B}_{sp}(x \to x_1 \to \dots) = x_1$ (for supported semantics)

•
$$\mathcal{B}_{wf}(x \to x_1 \to \dots) =$$

- x_n if the branch terminates in x_n
- t if the branch has a tail of negative facts
- f if the branch has a tail of positive facts
- **u** if only mixed tails and $x \in \mathcal{F}^p$
- \sim **u** if only mixed tails and $x \in \mathcal{F}^n$

(for well-founded semantics)

Others for stable semantics, Kripke-Kleene, coinductive wfs,

The branch evaluation is the generic parameter in the framework. By varying it, we get different semantics for the same justification frame.

Facts supported by justification in ${\mathfrak A}$

Given justification frame \mathcal{JF} , branch evaluation $\mathcal B$

• A justification J supports fact x in interpretation \mathfrak{A} if:

• $\mathcal{B}(B) \in \mathfrak{A}$, for every branch $B = (x \to ...)$ in J Explanation:

- ▶ for every branch *B* starting at *x* in *J*
- apply branch evaluation \mathcal{B} on B: this returns a fact
- Check if $\mathcal{B}(B) \in \mathfrak{A}$.

Models of \mathcal{JF} under $\mathcal B$

Given \mathcal{JF} , \mathcal{B} .

► A fact x is supported in 𝔄 if some justification J supports x in 𝔄.

Models of \mathcal{JF} under $\mathcal B$

Given \mathcal{JF} , \mathcal{B} .

- ► A fact x is supported in 𝔄 if some justification J supports x in 𝔄.
- An interpretation \mathfrak{A} is a model of \mathcal{JF} under \mathcal{B} if the set $\mathfrak{A} \cap \mathcal{F}_d$ of its defined elements is the set of supported facts in \mathfrak{A} .

Further more:

 Assigning an operator T_{JF} to justification framework (and branch evaluation B) Further more:

- Assigning an operator T_{JF} to justification framework (and branch evaluation B)
- Easy transformations:
 - ▶ of an argumentation framework F to a justification frame \mathcal{JF}_F
 - \blacktriangleright of a logic program Π to a justification frame \mathcal{JF}_{Π}

Further more:

- Assigning an operator T_{JF} to justification framework (and branch evaluation B)
- Easy transformations:
 - ▶ of an argumentation framework F to a justification frame \mathcal{JF}_F
 - of a logic program Π to a justification frame \mathcal{JF}_{Π}
- Complement Closure: deriving rules for negative facts from those of positive facts.

Theorem

Let F = (A, X) be an argumentation framework and \mathcal{JF}_F^c be the complement closure of its associated justification frame \mathcal{JF}_F . A consistent interpretation \mathfrak{A}

- is stable for F iff it is an exact fixpoint of $T_{\mathcal{JF}_{F}^{c}}$
- is complete for F iff it is a fixpoint of $T_{\mathcal{JF}_{F}^{c}}$;
- ▶ is preferred for F iff it is a \subseteq -maximal fixpoint of $T_{\mathcal{JF}_{F}^{c}}$;
- ▶ is grounded for F iff it is the \subseteq -least fixpoint of $T_{\mathcal{JF}_{F}^{c}}$;
- is admissible for F iff it satisfies $\mathfrak{A} \subseteq T_{\mathcal{JF}_{F}^{c}}(\mathfrak{A})$.

Theorem

Let Π be a logic program and \mathcal{JF} be the complement closure of \mathcal{JF}_{Π} . A (4-valued) interpretation \mathfrak{A}

- a supported model of Π iff \mathfrak{A} is an exact model of \mathcal{JF} under \mathcal{B}_{sp}
- the Kripke Kleene model of Π iff \mathfrak{A} is the model of \mathcal{JF} under \mathcal{B}_{KK}
- ► a stable model of Π iff 𝔄 is an exact model of JF under B_{st}
- ▶ the well-founded model of Π iff \mathfrak{A} is the model of \mathcal{JF} under \mathcal{B}_{wf}

Nested justification systems

- $\cong \mu$ -calculus, FO(LFP)
- A nested definition = a finite tree of pairs $(\mathcal{JF}, \mathcal{B})$
- Compression to reduce to unnested justification frame
- Useful to add complex language constructs to bodies

Example over finite and infinite lists

$$\begin{cases} P(s) \leftarrow Q(s) \} - \mathcal{B}_{cowf} \\ \begin{cases} Q([A|s]) \leftarrow \{P(s)\} \\ Q([B|s]) \leftarrow \{Q(s)\} \end{cases} \\ \end{cases} - \mathcal{B}_{wf} \\ \downarrow \\ \text{compression} \\ \downarrow \end{cases}$$

$$\{P([\underbrace{B,\ldots,B}_{\geq 0},A|s])\leftarrow P(s)\}-\mathcal{B}_{cowf}$$

P = the set of $\{A, B\}$ -strings with infinitely many occurrences of A

Applications

Illustrated in the paper:

- nested inductive and coinductive rule sets,
 - co-inductive logic programming + nesting
- aggregate expressions

Also done:

complex bodies

Future work

- Application to
 - logic of causality (Bogaerts, Vennekens, D, Van den Bussche, 2014)
 - abstract dialectical frameworks (Brewka, Woltran, 2010)
 - autoepistemic and default logic
- link with Approximation Fixpoint Theory