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Motivation

Multi-shot Solving

Input Ground Solve Output

Traditional ASP systems were devised for one-shot solving

Modern ASP systems allow for multi-shot solving in a reactive way

New properties or objects must be integrated dynamically

Due to non-monotonicity, new information can invalidate conclusions

flies(X )← bird(X ),∼penguin(X )
bird(tweety)←

penguin(tweety)←

|= {bird(tweety),¬penguin(tweety), flies(tweety)}

General approach to integrate new information into reasoning process?
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Motivation

Basic Idea

View arrival of new objects as addition of new constants
å Successively expanding Herbrand universe

New constants induce new ground instances of rules
å Disjoint partition and modular composition of ground program

8 New ground instances defining older atoms invalidate completion!

Contribution

4 Translation approach guaranteeing modularity at level of completion
1 New ground instances of rules define new expansion atoms
2 Expansion atoms are interconnected to accumulate derivations
3 Accumulated derivations are propagated to original ground atoms

a1 a2 a3 a4 a5

r11 · · · r1n1 r21 · · · r2n2 r31 · · · r3n3 r41 · · · r4n4

a
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Expanding Logic Programs

Translation Approach

Given a set R of rules, defining intensional predicates PI , let:

Φ(R) = {pk(X1, . . . ,Xn)← B | (p(X1, . . . ,Xn)← B) ∈ R},
Π(PI ) = {p(X1, . . . ,Xn)← pk(X1, . . . ,Xn) | p/n ∈ PI},
∆(PI ) = {pk(X1, . . . ,Xn)← pk+1(X1, . . . ,Xn) | p/n ∈ PI}.

Example

R =

{
ok(C )← cs(C ), st(S), in(S ,C )
ko(C )← cs(C ),∼ok(C )

}
Φ(R) =

{
okk(C )← cs(C ), st(S), in(S ,C )

kok(C )← cs(C ),∼ok(C )

}
Π(PI ) =

{
ok(C )← okk(C )

ko(C )← kok(C )

}
∆(PI ) =

{
okk(C )← okk+1(C )

kok(C )← kok+1(C )

}
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Expanding Logic Programs

Expansible Instantiation

Given a set R of rules and a constant stream (c1, . . . , ci , . . . , cj , . . . ),

the expansible instantiation of R for j ≥ 0 is
⋃j

i=0 R i , where:

R i = {(r [i ])σ | r ∈ Φ(R) ∪ Π(PI ), σ is new ground substitution for i}
∪ {(r [i ])σ | r ∈ ∆(PI ), σ is ground substitution for i}.

Constant stream (c1, s1, . . .)

okk(C )← cs(C ), st(S), in(S ,C )

kok(C )← cs(C ),∼ok(C ) [Φ(R)]

ok(C )← okk(C ) ko(C )← kok(C ) [Π(PI )]

okk(C )← okk+1(C ) kok(C )← kok+1(C ) [∆(PI )]
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Expanding Logic Programs

Modularity Properties

4 Expansion atoms guarantee disjointness of constraints at ground level

1 Rules
2 Completion
3 Loop formulas

4 Union of local constraints for R i (1 ≤ i ≤ j) matches those of
⋃j

i=0 R i

Expansible instantiation can be produced in successive parts that are:

1 Sound
2 Complete
3 Cumulative

Non-monotone semantics is broken down into monotone constraints

å Reasoning process can integrate successive parts in multi-shot solving
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Expanding Logic Programs

Original Semantics

Associate interpretation I for rules R with extended interpretation I ∗,
augmenting I with expansion atoms ai (based on a predicate pi ) such
that I |= B for a ground instance a← B, where i is a stream position
in between the maximum of constants in a and those in a or B

Constant stream (c1, s1, . . . ) revisited

I = {cs(c1), st(s1), in(s1, c1), ok(c1)}
I ∗ = I ∪ {ok1(c1), ok2(c1)}

1 If I is a stable (or supported) model of R, given constants
{c1, . . . , cj} and facts over extensional predicates, then I ∗ is a stable
(or supported) model of the expansible instantiation of R for j ≥ 0

2 If I ′ is a stable (or supported) model of the expansible instantiation
of R for j ≥ 0, given facts over extensional predicates, then I ′ = I ∗ for
a stable (or supported) model I of R relative to constants {c1, . . . , cj}
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Conclusions

Partner Units

Problem domain and instances from ASP Competition 2014

Expansible instantiation encoded via predicates providing substitutions

clingo 4 control adding objects to be assigned or resources on demand

Single-shot solving Multi-shot solving

Instance #S ∅S #U ∅U #S ∅S #U ∅U

026 40 0.10 10 34.69 40 0.04 10 3.00
091 40 0.10 10 3.71 40 0.04 10 8.42
100 40 0.09 10 57.05 40 0.04 10 2.13
127 40 0.10 10 4.99 40 0.04 10 9.38
175 40 0.12 10 48.44 40 0.04 10 4.86
188 40 0.11 10 54.67 40 0.03 10 2.69

Multi-shot solving can significantly reduce #conflicts and runtime
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Conclusions

Discussion

Expansible instantiation induces monotone constraints, enabling
successive integration into reasoning process in multi-shot solving

Translation approach provides scheme for introducing expansion
atoms through which later additions take care of non-monotonicity

New substitutions or ground rules, respectively, must be distinguished
to guarantee modular composition of ground program parts

Future work includes automatic support for introducing expansion
atoms by need in multi-shot solving with ASP systems like clingo 4
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