
OOASP: Connecting Object-oriented 

and Logic Programming

Andreas Falkner and Gottfried Schenner,

Siemens AG Österreich, Austria

Anna Ryabokon and Kostyantyn Shchekotykhin,

Alpen-Adria-Universität Klagenfurt, Austria

funded by FFG and KWF (grants 840242 and 3520/26767/38701)



Outline

2

• Motivation

• ASP and development of object-oriented software

• Object-oriented ASP

• OOASP Domain Description Language

• Overview of reasoning tasks

• Summary & future work



Motivation

3

• Success of many companies depends on software 

systems solving complex combinatorial problems

• Development and maintenance of such software is a 

tedious and error-prone process

• ASP can often solve small and medium sized problems 

in acceptable time

• Goal: use ASP to reason about correctness of object-

oriented models and their instantiations



Development of configurators

4

• Configuration is an important problem of designing an 

artifact from a set of given components

• Siemens CSL-Studio is designed to simplify modeling 

and implementation of configurators 



Development of configurators

5

Model a problem

CSL Studio

Deployment

IDE

Implementation

Software
developer

Production system

Export model

Instantiations



Development of configurators

6

How can we support the software developer during design 

and testing of configurators? 

Model a problem

CSL Studio

Deployment

IDE

Implementation

Software
developer

Production system

Export model

Instantiations



ASP & configuration

• ASP solves small and medium-size problems well: 

─ Partner Units Problem [Aschinger et al. 2011] 

─ House (Rack) problem [Friedrich et al. 2011, Aschinger et al. 

2012]

• Specific methods are required for large industrial 

problem instances [Teppan et al. 2012], [Ryabokon et al. 2013]

• Development and testing is often done on small 

examples and ASP can be used to validate the 

software [Schanda and Brain 2012, Falkner et al. 2012]

7



Model a problem

CSL Studio

Deployment

IDE

Implementation

Software
developer

Production system

Export model

Instantiations

OOASP integration

8

OOASP

ASP Solver

Export/import 
model/instantiation

Add constraints,
execute reasoning 

tasks



OOASP-DDL

• Domain Description Language allows encoding of 

models and instances of configuration problems 
[Dhungana et al. 2013]

– Multiple configuration models in one workspace

– “Is a” hierarchy of classes within each model

– Definition of attributes

– Association relations with cardinality restrictions

• Experimental OOASP integration

– Models can be exported from CSL Studio

– CSL Studio can import problem instances encoded in 

OOASP-DDL 

9



Configurator – CSL Studio

10



Exported model (fragment)

ooasp_class("v1","HwObject"). 

ooasp_class("v1",“Frame").

ooasp_class("v1","Module").

ooasp_class("v1","ModuleA").

ooasp_subclass("v1","Module","HwObject").

ooasp_subclass("v1","ModuleA","Module").

ooasp_assoc("v1","Frame_modules","Frame",1,1,
"Module",0,5).

ooasp_attribute("v1","Module","position",
"integer").

11



Model instantiations

• Instances of models are used to 

– save inputs to configuration problems

– represent test cases for a developed configurator

– show configuration solutions

• Instantiations saved in CSL Studio can be 

represented in OOASP-DDL

ooasp_instantiation("v1","c1").
ooasp_isa("c1", “FrameA", f10).
ooasp_isa("c1", "ModuleA", m11).
ooasp_associated("c1", "Frame_module", f10, m11).
ooasp_attribute_value("c1", “position", m11, 1).

12



Integrity constraints

• Integrity constraints are implemented in OOASP-DDL 

and Configurator software separately

• Diverse Redundancy – constraints are implemented 

manually

• Sample integrity constraint:

– Elements of type ElementA require a module of type 

ModuleA

ooasp_cv(I,module_element_violated(M1,E1)) :-
ooasp_instantiation(M,I),
ooasp_associated(I,"Element_module",M1,E1),
ooasp_isa(I,"ElementA",E1),
not ooasp_isa(I,"ModuleA", M1).

13



OOASP framework

14

• OOASP uses ASP to reason about models and their 

instantiations

• Reasoning tasks supported by current implementation:

– Validation of an object-oriented model and its instantiations

– Completion of instantiations

– Reconciliation of legacy models and their instances

• Implementation is done using meta-programming 

approach

• Some of the reasoning tasks, like reconciliation, can be 

implemented using modern ASP debuggers



Validation of a configuration

15

• Allows a developer to verify whether a CSL model 

and/or its instantiation is valid

• CSL Studio communicates with OOASP and shows the 

violated constraints

• Example:

ooasp_instantiation("v1","c1").
ooasp_isa("c1", “FrameA", f10).
ooasp_isa("c1", "ModuleA", m11).
ooasp_associated("c1", "Frame_module", f10, m11).
ooasp_attribute_value("c1", “position", m11, 1).

• OOASP returns:

ooasp cv("c1",mincardviolated(m11,“frame_module"))



Completion of an instantiation

16

• Solves two types of problems:

1. invalid partial instantiation

– model designed in the CSL Studio is inconsistent

– system returned a partial instantiation that is faulty

2. incomplete partial instantiation

• Example:

ooasp_instantiation("v1","c1").
ooasp_isa("c1", “FrameA", f10).
ooasp_isa("c1", "ModuleA", m11).
ooasp_associated("c1", "Frame_module", f10, m11).
ooasp_attribute_value("c1", “position", m11, 1).



Reconciliation I 

17

• Goal is to restore consistency of an inconsistent (partial) 

instantiation given as an input

• Application scenarios: 

– an instantiation is inconsistent; 

– a model is consistent, but the given partial instantiation cannot 

be extended; and 

– the model is changed due to new requirements to a configurable 

product

• Convert OOASP-DDL into a reified form:

fact(ooasp(t)) :- ooasp(t).



Reconciliation II

• Guess the set of changes required to obtain a 

consistent instance

1{reuse(ooasp(t)), delete(ooasp(t))}1 :-
fact(ooasp(t)).

ooasp(t) :- reuse(ooasp(t))

• A preferred solution can be found if the costs of 

reuse/delete actions are known

18



Summary

• OOASP simplifies development of the object-oriented 

configurators

• Three reasoning tasks are sufficient to cover most of 

the developer’s needs

• OOASP can be easily extended for further tasks and 

model types

• Experimental integration with CSL Studio showed a 

number of encouraging results

19



Future work

20

The main points to be solved prior to commercial use:

• Manual maintenance of object ids too complicated, must 

be generated on demand [Stumptner et al. 1998]

• No automated support for computation on a lower/upper 

bounds of objects for an instantiation [Feinerer 2013]

• Currently no support for the integration of heuristics and 

symmetry breaking approaches [Gebser et al. 2013, 

Drescher et al. 2011]

• Performance of the meta-programming approach is 

limited



Thank you! Questions?

21

Corporate Technology 

Research Group 

Configuration Technologies
andreas.a.falkner@siemens.com

gottfried.schenner@siemens.com

Applied Informatics

Intelligent Systems and 

Business Informatics Group
anna.ryabokon@aau.at

konstantin.schekotihin@aau.at

© Juha Tiihonen © Teesaa

mailto:andreas.a.falkner@siemens.com
mailto:gottfried.schenner@siemens.com
mailto:anna.ryabokon@aau.at
mailto:gottfried.schenner@siemens.com

