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Overview



➢ In legal reasoning, we use written rules to make judgements
➢ Cases are very important since they can sometimes reveal 

exceptional situations not considered in written rules
➢ And these cases might have exceptions revealed by future 

cases

 The purpose of this research is to: 

➢ Formalise case rules in terms of general rules/exceptions.

➢ Investigate how to infer case-rules from previously judged 
cases

Introduction
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Should judgement of case 4 be 
DepriveBuyerOfEntitlement

because case 2?
or

Should the judgement of case 4 be 
¬DepriveBuyerOfEntitlement

because case 3?



● A case is  a subset of a set of factors F.
● A case with judgement is cj = <c, j>, where j ∈ {+,–}

case(cj) = c and judgement(cj)= j
● A case base CB is a set of cases with judgements

All casebases include <∅, j
0
> 

●  ∅ is the empty case and
●  j

0
 is the default judgement, assumed in the absence of 

any factor

For all cases cj1 and cj2 in CB, 
if case(cj1)=case(cj2) then judgement(cj1)=judgement(cj2)

Case Base



The raw attack relation 

RA = {< cj1,  cj2 > | case(cj1) ⊃ case(cj2) and 

                         judgement(cj1) ≠ judgement(cj2) }

     cj1  raw attacks  cj2  is denoted as cj1 →r cj2 

Example
  F  = {a,b,c,d,e,f} 
CB = { cj

0
= <∅, – >,        cj

1
= <{a}, + >,        cj

2
= <{c}, + >,

           cj
3
= <{a,b}, – >,   cj

4
= <{a,b,c}, + >,   cj

5
= <{a,b,c,d}, – >}

RA = { cj
1
 →r cj

0
, cj

2
 →r cj

0
, cj

4
 →r cj

0
, cj

3
 →r cj

1
, cj

5
 →r cj

1
, 

           cj
4
 →r cj

3
, cj

5
 →r cj

2
, cj

5
 →r cj

4
} 

Raw Attack Relation (RA)



RA= {< cj1,  cj2 > | case(cj1) ⊃ case(cj2) and 

                   judgement(cj1) ≠ judgement(cj2)}

Example: Raw Attack Relation



Attack Relation

The  Attack relation AT  ⊆RA is defined by:

 cj1  attacks  cj2  is denoted cj1 → cj2

• < cj1,  cj2 > ∈ AT if case(cj2) =  ∅and  
     there is no cj3 → r cj2 ∈ RA such that case(cj1)  ⊃case(cj3)

• < cj1,  cj2 > ∈ AT if there exists < cj2,  cj4 > ∈ AT and 
no cj5 → r cj2 ∈ RA such that case(cj1) ⊃ case(cj5 ) 

• nothing else is in AT



Example: Attack Relation



cj
4
 → cj

0
 since case(cj

4
) = {a,b,c} is not minimal factors to 

overturn the judgement of cj
0

Example: Attack Relation



cj
5
 → cj

1
 since there is an intermediate overturning a 

judgement between cj
5
 and cj

1

Example: Attack Relation
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Argument

The set of factors responsible for overturning a judgement
is called an argument.

For each pair < cj1, cj2 > in the set of attacks AT
α(cj1, cj2 )  = case(cj

1
) – case(cj

2
) 

is the argument of the attack from cj1 to cj2

α(cj
1
, cj

0
) = {a},  α(cj

2
, cj

0
) = {c},   α(cj

3
, cj

1
) = {b},   

α(cj
4
, cj

3
) = {c},  α(cj

5
, cj

2
) = {a,b,d}, α(cj

5
, cj

4
) = {d}

CB = { cj
0
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1
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2
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3
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           cj
4
= <{ a,b,c}, + >,   cj

5
= <{a,b,c,d}, – >}

AT = {cj
1
 → cj

0
, cj

2
 → cj

0
, cj

3
  → cj

1
, cj

4
 → cj

3
, cj

5
 → cj

2
, cj

5
 → cj

4
} 



Active Case with Judgement
To predict the judgement of a new case, we look at judgements 
of similar past cases that have not been overturned.

 Let cnew= {a,b,d} be a new case. 

 The active cases with judgment w.r.t. cnew are cj
3
, cj

0
. 

  Note: cj
1
 is not active w.r.t. cnew since <cj

3
,cj

1
> ∈ AT and case(cj

3
)  c  ⊆
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3
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 → cj
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1
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 → cj

2
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5
 → cj

4
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Given CB,  corresponding AT,  and a new case c, 
A cj ∈ CB is active w.r.t. c iff case(cj)  c and for all⊆

 <cjn, cj> ∈  AT, either cjn is not active w.r.t.  c or  case(cj) ⊈ c. 



Predicted Judgement

For case cnew = {a,b,d}, cj
0
 is active w.r.t. cnew  

                 pj(c) = default judgement 

Given a CB and corresponding AT and unseen case c, 
The unique predicted judgement of c is defined as
            pj(c) = default j0  iff <∅, j0> is active w.r.t. c

CB = { cj
0
= <∅, – >, cj

1
= <{a}, + >, cj
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4
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3
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5
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2
, cj

5
 → cj

4
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Judgement Theory

Our aim is to generate a judgement theory from given CB and 
default j

0
 to enable us to infer judgements of new cases c.

For the working example the judgement theory is:

def_j0 :- not ab0, not ab1.
ab0 :- a, not ab2.
ab1 :- c, not ab5.
ab2 :- b, not ab3.
ab3 :- c, not ab4.
ab4 :- d.

The predicted judgement of cnew = {a,b,d} is j
0
.



ASP Workflow

The judgement theory is computed using 3 ASP programs



Example

Factors Factors Judgement

cj
0

¬dwe

cj
1

dot ¬dwe

cj
2

dot, ooo dwe

cj
3

dot, ooo rpl, far, ria ¬dwe

Past cases with judgement can 
be  seen as “defeasible” rules: 
● ¬dwe.
● ¬dwe ←dot.
●   dwe ←dot, ooo.
● ¬dwe ←dot, ooo, rpl, far, ria.

Each rule can be encoded in a program as a a set of meta-level 
information. For example, for ¬dwe ←dot, ooo, rpl, far, ria:

cb_id(cj3).                                       in_rule(cj3,neg_dwe,rpl).
is_rule(cj3,neg_dwe).                     in_rule(cj3,neg_dwe,far).
in_rule(cj3,neg_dwe,dot).               in_rule(cj3,neg_dwe,ria).
in_rule(cj3,neg_dwe,ooo).



Example

The first program use the casebase to compute the answer set 
containing all attacks and raw attacks:
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The second program finds the answer set with all arguments:

{ argument(cj2,cj0,dot),      argument(cj2,cj0,ooo),
  argument(cj3,cj2,rpl),       argument(cj3,cj2,far),
  argument(cj3,cj2, ria) }



Example

The final program generates the meta-level representation of 
the case rules:

{ is_rule(r0,neg_dwe),   in_rule(r0,neg_dwe,not_ab0),
  in_rule(r1,ab0),            in_rule(r1,ab0,dot),
  in_rule(r1,ab0,ooo),     in_rule(r1,ab0,not_ab1),
  is_rule(r2,ab1),            in_rule(r2,ab1,rpl),
  in_rule(r2,ab1,far),       in_rule(r2,ab1,ria) }
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Example

The meta-level representation of the judgement 
theory:

{ is_rule(r0,neg_dwe),   in_rule(r0,neg_dwe,not_ab0),
  in_rule(r1,ab0),            in_rule(r1,ab0,dot),
  in_rule(r1,ab0,ooo),     in_rule(r1,ab0,not_ab1),
  is_rule(r2,ab1),            in_rule(r2,ab1,rpl),
  in_rule(r2,ab1,far),       in_rule(r2,ab1,ria) }

Corresponds to the judgement theory:

¬dwe ← not ab0.
  ab0  ← dot, ooo, not ab1.
  ab1  ← rpl, far, ria.

The predicted judgement of {dot, ooo, rpl, far} is dwe.



Evaluation

Time taken to generate the attacks 
and arguments

Time taken to generate meta-level 
representation of judgement theory



Correctness Theorem

Given a casebase CB, and associated judgement theory T,
and a new case c. Let A = AS(T  c).∪  

 j
0
 ∈ A if and only if pj(c) = j

0
.



Conclusion and Future Work

• We presented a method for reasoning about, and extracting 
information from, past cases in a casebase to infer the arguments 
and attacks present in the casebase

• We defined notion of attack to identify factors relevant to 
judgement of cases and used ASP to infer rules for modelling 
judgements that can be applied to new cases.

For future work we would like to consider 
       - how to revise an existing judgement theory
       - how to deal with inconsistency among cases
       - other possible representations of a casebase
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