
Automated inference of rules with exception
from past legal cases using ASP

Duangtida Athakravi, Mark Law,
Krysia Broda, Alessandra Russo

Imperial College London, UK

Ken Satoh
National Institute of Informatics, Japan

 Introduction and Motivation

 Formalisation

 ASP Workflow

 Evaluation

 Summary and Future Work

Overview

➢ In legal reasoning, we use written rules to make judgements
➢ Cases are very important since they can sometimes reveal

exceptional situations not considered in written rules
➢ And these cases might have exceptions revealed by future

cases

 The purpose of this research is to:

➢ Formalise case rules in terms of general rules/exceptions.

➢ Investigate how to infer case-rules from previously judged
cases

Introduction

Motivation

Factors Factors Judgement

¬DepriveBuyerOfEntit
 lement (default)

Motivation

Factors Factors Judgement

¬DepriveBuyerOfEntit
 lement (default)

1 DeliveredOnTime (dot) ¬DepriveBuyerOfEntit
 lement

Motivation

Factors Factors Judgement

¬DepriveBuyerOfEntit
 lement (default)

1 DeliveredOnTime (dot) ¬DepriveBuyerOfEntit
 lement

2 DeliveredOnTime (dot)
ItemsWereDamanged (ooo)

 DepriveBuyerOfEntit
 lement

Motivation

Factors Factors Judgement

¬DepriveBuyerOfEntit
 lement (default)

1 DeliveredOnTime (dot) ¬DepriveBuyerOfEntit
 lement

2 DeliveredOnTime (dot)
ItemsWereDamanged (ooo)

 DepriveBuyerOfEntit
 lement

3 DeliveredOnTime (dot)
ItemsWereDamaged (ooo)

DamageIsRepairable (rpl)
BuyerFixedRepairTime (far)
ItemsRepairedInTime (ria)

¬DepriveBuyerOfEntit
 lement

Motivation

Factors Factors Judgement

¬DepriveBuyerOfEntit
 lement (default)

1 DeliveredOnTime (dot) ¬DepriveBuyerOfEntit
 lement

2 DeliveredOnTime (dot)
ItemsWereDamanged (ooo)

 DepriveBuyerOfEntit
 lement

3 DeliveredOnTime (dot)
ItemsWereDamaged (ooo)

DamageIsRepairable (rpl)
BuyerFixedRepairTime (far)
ItemsRepairedInTime (ria)

¬DepriveBuyerOfEntit
 lement

4 DeliveredOnTime (dot)
ItemsWereDamaged (ooo)

DamageIsRepairable (rpl)
BuyerFixedRepairTime (far)

?

Motivation

Factors Factors Judgement

¬DepriveBuyerOfEntit
 lement (default)

1 DeliveredOnTime (dot) ¬DepriveBuyerOfEntit
 lement

2 DeliveredOnTime (dot)
ItemsWereDamanged (ooo)

 DepriveBuyerOfEntit
 lement

3 DeliveredOnTime (dot)
ItemsWereDamaged (ooo)

DamageIsRepairable (rpl)
BuyerFixedRepairTime (far)
ItemsRepairedInTime (ria)

¬DepriveBuyerOfEntit
 lement

4 DeliveredOnTime (dot)
ItemsWereDamaged (ooo)

DamageIsRepairable (rpl)
BuyerFixedRepairTime (far)

?

Should judgement of case 4 be
DepriveBuyerOfEntitlement

because case 2?
or

Should the judgement of case 4 be
¬DepriveBuyerOfEntitlement

because case 3?

● A case is a subset of a set of factors F.
● A case with judgement is cj = <c, j>, where j ∈ {+,–}

case(cj) = c and judgement(cj)= j
● A case base CB is a set of cases with judgements

All casebases include <∅, j
0
>

● ∅ is the empty case and
● j

0
 is the default judgement, assumed in the absence of

any factor

For all cases cj1 and cj2 in CB,
if case(cj1)=case(cj2) then judgement(cj1)=judgement(cj2)

Case Base

The raw attack relation

RA = {< cj1, cj2 > | case(cj1) ⊃ case(cj2) and

 judgement(cj1) ≠ judgement(cj2) }

 cj1 raw attacks cj2 is denoted as cj1 →r cj2

Example
 F = {a,b,c,d,e,f}
CB = { cj

0
= <∅, – >, cj

1
= <{a}, + >, cj

2
= <{c}, + >,

 cj
3
= <{a,b}, – >, cj

4
= <{a,b,c}, + >, cj

5
= <{a,b,c,d}, – >}

RA = { cj
1
 →r cj

0
, cj

2
 →r cj

0
, cj

4
 →r cj

0
, cj

3
 →r cj

1
, cj

5
 →r cj

1
,

 cj
4
 →r cj

3
, cj

5
 →r cj

2
, cj

5
 →r cj

4
}

Raw Attack Relation (RA)

RA= {< cj1, cj2 > | case(cj1) ⊃ case(cj2) and

 judgement(cj1) ≠ judgement(cj2)}

Example: Raw Attack Relation

Attack Relation

The Attack relation AT ⊆RA is defined by:

 cj1 attacks cj2 is denoted cj1 → cj2

• < cj1, cj2 > ∈ AT if case(cj2) = ∅and
 there is no cj3 → r cj2 ∈ RA such that case(cj1) ⊃case(cj3)

• < cj1, cj2 > ∈ AT if there exists < cj2, cj4 > ∈ AT and
no cj5 → r cj2 ∈ RA such that case(cj1) ⊃ case(cj5)

• nothing else is in AT

Example: Attack Relation

cj
4
 → cj

0
 since case(cj

4
) = {a,b,c} is not minimal factors to

overturn the judgement of cj
0

Example: Attack Relation

cj
5
 → cj

1
 since there is an intermediate overturning a

judgement between cj
5
 and cj

1

Example: Attack Relation

Example: Attack Relation

Example: Attack Relation

Argument

The set of factors responsible for overturning a judgement
is called an argument.

For each pair < cj1, cj2 > in the set of attacks AT
α(cj1, cj2) = case(cj

1
) – case(cj

2
)

is the argument of the attack from cj1 to cj2

α(cj
1
, cj

0
) = {a}, α(cj

2
, cj

0
) = {c}, α(cj

3
, cj

1
) = {b},

α(cj
4
, cj

3
) = {c}, α(cj

5
, cj

2
) = {a,b,d}, α(cj

5
, cj

4
) = {d}

CB = { cj
0
= <∅, – >, cj

1
= <{a}, + >, cj

2
 = <{c}, + >, cj

3
: <{a,b}, – >,

 cj
4
= <{ a,b,c}, + >, cj

5
= <{a,b,c,d}, – >}

AT = {cj
1
 → cj

0
, cj

2
 → cj

0
, cj

3
 → cj

1
, cj

4
 → cj

3
, cj

5
 → cj

2
, cj

5
 → cj

4
}

Active Case with Judgement
To predict the judgement of a new case, we look at judgements
of similar past cases that have not been overturned.

 Let cnew= {a,b,d} be a new case.

 The active cases with judgment w.r.t. cnew are cj
3
, cj

0
.

 Note: cj
1
 is not active w.r.t. cnew since <cj

3
,cj

1
> ∈ AT and case(cj

3
) c ⊆

CB = { cj
0
= <∅, – >, cj

1
= <{a}, + >, cj

2
 = <{c}, + >, cj

3
: <{a,b}, – >,

 cj
4
= <{ a,b,c}, + >, cj

5
= <{a,b,c,d}, – >}

AT = {cj
1
 → cj

0
, cj

2
 → cj

0
, cj

3
 → cj

1
, cj

4
 → cj

3
, cj

5
 → cj

2
, cj

5
 → cj

4
}

Given CB, corresponding AT, and a new case c,
A cj ∈ CB is active w.r.t. c iff case(cj) c and for all⊆

 <cjn, cj> ∈ AT, either cjn is not active w.r.t. c or case(cj) ⊈ c.

Predicted Judgement

For case cnew = {a,b,d}, cj
0
 is active w.r.t. cnew

 pj(c) = default judgement

Given a CB and corresponding AT and unseen case c,
The unique predicted judgement of c is defined as
 pj(c) = default j0 iff <∅, j0> is active w.r.t. c

CB = { cj
0
= <∅, – >, cj

1
= <{a}, + >, cj

2
 = <{c}, + >, cj

3
: <{a,b}, – >,

 cj
4
= <{ a,b,c}, + >, cj

5
= <{a,b,c,d}, – >}

AT = {cj
1
 → cj

0
, cj

2
 → cj

0
, cj

3
 → cj

1
, cj

4
 → cj

3
, cj

5
 → cj

2
, cj

5
 → cj

4
}

Judgement Theory

Our aim is to generate a judgement theory from given CB and
default j

0
 to enable us to infer judgements of new cases c.

For the working example the judgement theory is:

def_j0 :- not ab0, not ab1.
ab0 :- a, not ab2.
ab1 :- c, not ab5.
ab2 :- b, not ab3.
ab3 :- c, not ab4.
ab4 :- d.

The predicted judgement of cnew = {a,b,d} is j
0
.

ASP Workflow

The judgement theory is computed using 3 ASP programs

Example

Factors Factors Judgement

cj
0

¬dwe

cj
1

dot ¬dwe

cj
2

dot, ooo dwe

cj
3

dot, ooo rpl, far, ria ¬dwe

Past cases with judgement can
be seen as “defeasible” rules:
● ¬dwe.
● ¬dwe ←dot.
● dwe ←dot, ooo.
● ¬dwe ←dot, ooo, rpl, far, ria.

Each rule can be encoded in a program as a a set of meta-level
information. For example, for ¬dwe ←dot, ooo, rpl, far, ria:

cb_id(cj3). in_rule(cj3,neg_dwe,rpl).
is_rule(cj3,neg_dwe). in_rule(cj3,neg_dwe,far).
in_rule(cj3,neg_dwe,dot). in_rule(cj3,neg_dwe,ria).
in_rule(cj3,neg_dwe,ooo).

Example

The first program use the casebase to compute the answer set
containing all attacks and raw attacks:

{ raw_attack(cj2,c0), raw_attack(cj2,cj1),
 raw_attack(cj3,c2), attack(cj2,cj0),
 attack(cj3,cj2) }

Factors Factors Judgement

cj
0

¬dwe

cj
1

dot ¬dwe

cj
2

dot, ooo dwe

cj
3

dot, ooo rpl, far, ria ¬dwe

Example

Factors Factors Judgement

cj
0

¬dwe

cj
1

dot ¬dwe

cj
2

dot, ooo dwe

cj
3

dot, ooo rpl, far, ria ¬dwe

The second program finds the answer set with all arguments:

{ argument(cj2,cj0,dot), argument(cj2,cj0,ooo),
 argument(cj3,cj2,rpl), argument(cj3,cj2,far),
 argument(cj3,cj2, ria) }

Example

The final program generates the meta-level representation of
the case rules:

{ is_rule(r0,neg_dwe), in_rule(r0,neg_dwe,not_ab0),
 in_rule(r1,ab0), in_rule(r1,ab0,dot),
 in_rule(r1,ab0,ooo), in_rule(r1,ab0,not_ab1),
 is_rule(r2,ab1), in_rule(r2,ab1,rpl),
 in_rule(r2,ab1,far), in_rule(r2,ab1,ria) }

Factors Factors Judgement

cj
0

¬dwe

cj
1

dot ¬dwe

cj
2

dot, ooo dwe

cj
3

dot, ooo rpl, far, ria ¬dwe

Example

The meta-level representation of the judgement
theory:

{ is_rule(r0,neg_dwe), in_rule(r0,neg_dwe,not_ab0),
 in_rule(r1,ab0), in_rule(r1,ab0,dot),
 in_rule(r1,ab0,ooo), in_rule(r1,ab0,not_ab1),
 is_rule(r2,ab1), in_rule(r2,ab1,rpl),
 in_rule(r2,ab1,far), in_rule(r2,ab1,ria) }

Corresponds to the judgement theory:

¬dwe ← not ab0.
 ab0 ← dot, ooo, not ab1.
 ab1 ← rpl, far, ria.

The predicted judgement of {dot, ooo, rpl, far} is dwe.

Evaluation

Time taken to generate the attacks
and arguments

Time taken to generate meta-level
representation of judgement theory

Correctness Theorem

Given a casebase CB, and associated judgement theory T,
and a new case c. Let A = AS(T c).∪

 j
0
 ∈ A if and only if pj(c) = j

0
.

Conclusion and Future Work

• We presented a method for reasoning about, and extracting
information from, past cases in a casebase to infer the arguments
and attacks present in the casebase

• We defined notion of attack to identify factors relevant to
judgement of cases and used ASP to infer rules for modelling
judgements that can be applied to new cases.

For future work we would like to consider
 - how to revise an existing judgement theory
 - how to deal with inconsistency among cases
 - other possible representations of a casebase

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 22
	Slide 23
	Slide 29

