Multi-Level Algorithm Selection for ASP

Marco Maratea¹, Luca Pulina², and Francesco Ricca³

¹ DIBRIS, University of Genova
 ² POLCOMING, University of Sassari
 ³ DeMaCS, University of Calabria

13th International Conference on Logic Programming and Non-monotonic Reasoning

Lexington, KY, USA September 27-30, 2015

Context

Answer Set Programming (ASP)

- Declarative logic programming paradigm
- Applications in several fields
 - \rightarrow Artificial Intelligence, Knowledge Representation & Reasoning
 - \rightarrow Information Integration, Bioinformatics... industrial ones!

Context

Answer Set Programming (ASP)

- Declarative logic programming paradigm
- Applications in several fields
 - \rightarrow Artificial Intelligence, Knowledge Representation & Reasoning
 - \rightarrow Information Integration, Bioinformatics... industrial ones!

Robust and efficient implementations

- CLASP, CMODELS, DLV,
- LP2SAT, IDP, WASP, etc.

Continuous improvement in ASP competitions

Goal: a robust ASP system

Goal: a robust ASP system

Goal: a robust ASP system

Contribution

Goal

Obtain robust performances from state-of-the-art ASP solvers

Contribution

Goal

Obtain robust performances from state-of-the-art ASP solvers

ME-ASP^{ML}: Extension of the multi-engine ASP system ME-ASP

- Exploits problem information before each level of computation.
 - Leverages features related to both non-ground and ground input.
 - Identifies different classes of non-ground programs.
 - (Possibly) identifies a class of programs where a specific grounder is the most promising.
- Improve solver "prediction" using non-ground features.
- Satisfies robustness requirements
 - It is always more effective than each single engine.
 - Its engine selection policy is always more accurated than a random policy.

Two approaches to yield a robust solver

Brute force

Given *m* ASP instances and *n* solvers (engines)

- Run each engine on a separate machine
- Stop all the engines as soon as one solves the instance, or all the engines exhaust resources
- Continue with the next instance (if any)

Two approaches to yield a robust solver

Brute force

Given *m* ASP instances and *n* solvers (engines)

- Run each engine on a separate machine
- Stop all the engines as soon as one solves the instance, or all the engines exhaust resources
- Continue with the next instance (if any)

Intelligence

Understand which engine is best for which instance

- Fairly old idea: asset allocation in economics
- "The Algorithm Selection Problem Abstract Models", Rice 1974
- Algorithm portfolios: SATzilla (SAT), AQME (QBF), Claspfolio (ASP), ...

Algorithm Selection Framework at Work Rice, 1974

Algorithm Selection Framework at Work Rice, 1974

Key ingredients of the recipe:

- P: input programs
- F: cheap-to-compute syntactic features
- A: pool of solvers
- Y: computation of the solution within a CPU time limit
- S is determined leveraging machine learning algorithms

Luca Pulina (University of Sassari)

Multi-Level AS for ASP

Algorithm Selection in ASP

Applied successfully to ASP Solving

- Claspfolio
 - Based on regression and dynamic features
 - White box: Combines variants of clasp
 - Winner of several ASP competitions
- ME-ASP
 - Based on classification
 - Cheap to compute static features
 - Black Box: Combines several solvers

Algorithm Selection in ASP

Applied successfully to ASP Solving

- Claspfolio
 - Based on regression and dynamic features
 - White box: Combines variants of clasp
 - Winner of several ASP competitions
- ME-ASP
 - Based on classification
 - Cheap to compute static features
 - Black Box: Combines several solvers

Application limited to Solving Step!

Architecture of ME-ASP

Architecture of ME-ASP^{ML}

Multi-level approach

- Classify programs w.r.t. non-ground features
 - Can be combined with selection of grounder
- Apply solver selection on each sub-class

Architecture of ME-ASP^{*ML*} – Non-Ground Feature Extraction

It computes features from the input (non-ground) program

• e.g., Head-Cycle Free components, presence of queries, stratification property, ...

Architecture of ME-ASP^{ML} – Non-Ground Manager

- Identifies the "class" of the input ASP program.
- Can choose the most promising grounder.

 \rightarrow see (Maratea, Pulina & Ricca, 2013)

Architecture of ME-ASP^{ML} – Grounder

- Takes as input the non-ground ASP program.
- Returns the related grounded instance.

Architecture of ME-ASP^{ML} – Ground Feature Extractor

Aims at computing the syntactic features of the input ground program.

- Features detailed in (Maratea, Pulina & Ricca, 2014).
- ASPCore 2.0 specific features (e.g., number of choice rules, number of aggregates, number of weak constraints, ...).

Architecture of ME-ASP^{ML} – Ground Manager

Predicts the solver to run.

- Given the input received by NON-GROUND MANAGER, it selects the proper inductive model (related to the class found in NGM).
- Given the features computed in GFE, it outputs to SOLVER MANAGER the name of the predicted solver.

Architecture of ME-ASP^{ML} – Solver Manager

- It manages the interaction with the solvers.
- It returns the result obtained using the chosen solver.

Current Implementation (1/2)

- Instances and encodings involved in the Fifth ASP Competition
 - 8572 instances (50% for training purpose, the remaining ones for testing).
 - \rightarrow the full list is available at

www.mat.unical.it/ricca/downloads/measpmlts.tar.gz

- NON-GROUND MANAGER
 - Inductive model: list of if-then-else rules obtained running the PART decision list generator on the training instances.
 - Five program classes: C_i , $i \in \{1, \ldots, 4\}$ and Q.
- GROUNDER: GRINGO ver. 4

Current Implementation (2/2)

GROUND MANAGER

- Multinomial classification with k-Nearest Neighbors.
- Four different inductive models (C₁,..., C₄) related to the program classes + Queries (Q)
 - Training sets composed of the values related to the features computed in GFE
 - Labels correspond to the best solver in terms of CPU time on the given instance.

Current Implementation – Solvers involved

Solver	C ₁	<i>C</i> ₂	<i>C</i> ₃	C_4	Q
CLASP (Drescher et al., 2008)	\checkmark	\checkmark	\checkmark	\checkmark	-
LP2BV2+BOOLECTOR (Nguyen et al., 2011)		\checkmark	-	_	-
LP2GRAPH (Gebser et al., 2014)	 ✓ 		-	-	-
LP2MAXSAT+CLASP (Bomanson & Janhunen, 2013)		\checkmark		-	-
LP2NORMAL2+CLASP (Bomanson & Janhunen, 2013)	\checkmark	\checkmark	\checkmark	\checkmark	-
WASP1 (Alviano et al., 2013)			\checkmark		
WASP1.5 (Alviano et al., 2013)					\checkmark
WASP2 (Alviano et al., 2013)	\checkmark	\checkmark		I	-

Experiments

- More than 4000 instances
- Time limit: 600 CPU seconds; Memory limit: 2 GB

Conclusion & Future Work

- A multiengine solver is a robust alternative to current state-of-the-art ASP solvers.
- Exploiting a set of inexpensive syntactic features related to non-ground programs can improve the choice of the best engine to run on a given ASP program.

ME-ASP^{ML} is available for download at www.mat.unical.it/ricca/downloads/measpml.tar.gz

Conclusion & Future Work

- A multiengine solver is a robust alternative to current state-of-the-art ASP solvers.
- Exploiting a set of inexpensive syntactic features related to non-ground programs can improve the choice of the best engine to run on a given ASP program.

ME-ASP^{ML} is available for download at

www.mat.unical.it/ricca/downloads/measpml.tar.gz

Future Work

- Deeper study of crucial features
- Dynamic adaptive mechanisms
- Implementation of grounder selection
- Inductive models for the choice of grounder+model generator

Thank you!