
Introduction Methods Implementation & Benchmark Conclusion

Solving disjunctive fuzzy answer set

programs
LPNMR 2015

M Mushthofa, S Schockaert, M De Cock

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Preliminaries

Fuzzy Answer Set Programming

I Fuzzy ASP = Fuzzy logic + ASP

I Allows graded truth values of atoms (usually in [0, 1])

I Extends the operators ∧, ∨, not and ← to fuzzy
domain, e.g. using Lukasiewicz semantics

I Interpretations are functions I : BP 7→ [0, 1] extended to
expressions as follows:

I I (a⊗ b) = max(I (a) + I (b)− 1, 0)
I I (a⊕ b) = min(I (a) + I (b), 1)
I I (not a) = 1− I (a)
I I (a← b) = 1 iff I (a) ≥ I (b)

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Preliminaries

FASP Semantics

I I is a model of P iff I (r) = 1, ∀r ∈ P

I I is an answer set of positive P iff it is a minimal model
of P

I [Extended Gelfond-Lifschitz reduct]: P I is a positive
program obtained by replacing every expression not a
with the constant I (not a)

I I is an answer set of P iff it is a minimal model of P I

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Preliminaries

Fuzzy graph coloring
FASP Encoding:

node(a). . . . node(d).

edge(a, b)← 0.6

edge(a, c)← 0.3

...

black(X)⊕ white(X)← node(X)

edge(X ,Y)← edge(Y ,X)

0← black(X)⊗ black(Y)⊗ edge(X ,Y)

0← white(X)⊗ white(Y)⊗ edge(X ,Y)

Answer set(s):

{black(a)[0.8], black(b)[0.6], . . .}

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Motivation

A solver for FASP
While many solvers exist for classical ASP, e.g.:

I clasp

I DLV

I LP2SAT

I WASP

not many prototype systems exist for FASP:

I (Alviano & Peñaloza, 2014) proposed a method for FASP
evaluation using answer set approximation operators

I (Mushthofa, Schockaert & De Cock, 2014) developed a
FASP solver using a translation to classical ASP

I Problem: cannot handle disjunctive programs correctly!

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Motivation

Disjunctive rules
Classical ASP:

a ∨ b ← c

c ←

Answer sets: {a, c}, {b, c}

Fuzzy ASP:

a ⊕ b ← c

c ← 0.8

Answer sets, e.g.:
{a[0.7], b[0.1], c[0.8]}
{a[0.5], b[0.3], c[0.8]}

Disjunction in (F)ASP can:
I increase the expressivity of the language (from

NP-Complete to ΣP
2)

I allow for more intuitive encoding of many classes of
problems

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Motivation

Shifting method for classical ASP

The disjunctive classical ASP program:

a ∨ b ← c

c ←

can be rewritten into the non-disjunctive (normal) program:

a← c ∧ not b

b ← c ∧ not a

c ←

using the so-called shift operation

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Motivation

Head cycle free programs

Shifting only preserves semantics for head cycle free (HCF)
programs, i.e., programs where there are no cycle of positive
dependencies between head propositions. For example:

a ∨ b ← c

a← b

b ← a

c ←

has only one answer set {a, b, c} and is not equivalent to its
shifted version

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Motivation

How about Fuzzy ASP?

Some non-HCF FASP programs can be shifted to obtain an
equivalent normal program. For example:

a ⊕ b ← 1 a← b b ← a

is equivalent to

a← not b a← b

b ← not a b ← a

and both have one answer set, namely {a[0.5], b[0.5]}

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Motivation

Motivating questions

I How do we characterize the class of FASP programs that
can be shifted to obtain normal programs (and allow for a
more efficient evaluation)?

I How can we evaluate disjunctive FASP programs that
cannot be shifted?

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

SRCF Programs

A simple example

I The following FASP program cannot be shifted to obtain
an equivalent normal program

a ⊕ b ← 1 a← a ⊕ a

a← b b ← a

I The rule a← a ⊕ a causes the truth value of a to
“saturate” (Booleanized)

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

SRCF Programs

Self-Reinforcing Cycles

I Self-Reinforcing Cycles:
a cycle of positive
dependencies between
propositions s.t. there is a
rule involved in the cycle
containing a disjunction in
the body

I Potentially causing a
saturation to the
propositions involved

a← b ⊗ p b ← c

c ← d ⊕ q d ← a ⊗ r

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

SRCF Programs

Self Reinforcing Cycle Free (SRCF) programs: no
self-reinforcing cycles involving propositions occurring in a
disjunction in the head of a rule.

Theorem
Let P1 = P ∪ {a ⊕ b ← c} be any SRCF program. Then, an
interpretation I is an answer set of P1 iff it is also an answer
set of P2 = P ∪ {a← c ⊗ not b, b ← c ⊗ not a}.

I All strict FASP (no disjunctions in the body) can be
shifted to normal programs

I HCF ⊂ SRCF : a large class of disjunctive FASP
programs can be rewritten into normal programs

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Non SRCF Programs

Non-SRCF programs need extra minimality checks

I The solver developed in [Mushthofa et al, ECAI2014] can
generate candidate/potential answer set(s) for disjunctive
FASP programs, e.g.:

a ⊕ b ← 1 a← b b ← a

I For k = 1, we get candidate answer set {a[1], b[1]}
I For k = 2, we get candidate answer set {a[0.5], b[0.5]}

I Only minimal models are considered as answer sets:
check minimality!

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Non SRCF Programs

Minimality check using Mixed Integer

Programming

I Problem: Given a program P and a possible answer set
I , check whether I is a minimal model of P I

I Express the problem as a Mixed Integer Programming
(MIP) optimization problem:

I Express the program P I as MIP constraints
I Set objective function = the sum of the truth values of

the propositions
I If the solution returned = I , then I is minimal

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Non SRCF Programs

Overall framework

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Implementation & Benchmark

Implementation

I Written on top of the previous solver [Mushthofa et al,
ECAI2014]

I Uses clasp as external ASP solver and Cbc+GLPK as
MIP solver

I Perform program modularity analysis and decomposition
to further increase efficiency

I Available at https://github.com/mushthofa/ffasp

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Implementation & Benchmark

Benchmark

I Compare the performance of the solver when SRCF
detection and shifting is applied vs not applied

I Benchmark problems: fuzzy graph coloring and fuzzy set
covering

I Generate random instances (with varying sizes), with and
without random saturation rules

I Measure running times

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Implementation & Benchmark

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Implementation & Benchmark

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Conclusion

Conclusions

I We identified a large class of disjunctive FASP programs
(called SRCF programs) that can be rewritten into normal
programs (for efficient evaluation) via shifting operation

I We devised a mechanism to handle evaluation non-SRCF
programs (via minimality checks using MIP)

I We implemented the method on top of our previous
solver to allow evaluation of disjunctive FASP programs

I We performed a benchmark of our
method/implementation on simple benchmark problems

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

Introduction Methods Implementation & Benchmark Conclusion

Conclusion

Thank you

Mushthofa
Computational Web Intelligence

Dept. of Applied Mathematics, Statistics and Informatics
Ghent University, Belgium

Supported by: UGent MRP project Nucleotides2Network

Mushthofa.Mushthofa@UGent.be

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs

	Introduction
	Preliminaries
	Motivation

	Methods
	SRCF Programs
	Non SRCF Programs

	Implementation & Benchmark
	Implementation & Benchmark

	Conclusion
	Conclusion

