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Preliminaries

Fuzzy Answer Set Programming

I Fuzzy ASP = Fuzzy logic + ASP

I Allows graded truth values of atoms (usually in [0, 1])

I Extends the operators ∧, ∨, not and ← to fuzzy
domain, e.g. using  Lukasiewicz semantics

I Interpretations are functions I : BP 7→ [0, 1] extended to
expressions as follows:

I I (a⊗ b) = max(I (a) + I (b)− 1, 0)
I I (a⊕ b) = min(I (a) + I (b), 1)
I I (not a) = 1− I (a)
I I (a← b) = 1 iff I (a) ≥ I (b)
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Preliminaries

FASP Semantics

I I is a model of P iff I (r) = 1, ∀r ∈ P

I I is an answer set of positive P iff it is a minimal model
of P

I [Extended Gelfond-Lifschitz reduct]: P I is a positive
program obtained by replacing every expression not a
with the constant I (not a)

I I is an answer set of P iff it is a minimal model of P I
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Preliminaries

Fuzzy graph coloring
FASP Encoding:

node(a). . . . node(d).

edge(a, b)← 0.6

edge(a, c)← 0.3

...

black(X )⊕ white(X )← node(X )

edge(X ,Y )← edge(Y ,X )

0← black(X )⊗ black(Y )⊗ edge(X ,Y )

0← white(X )⊗ white(Y )⊗ edge(X ,Y )

Answer set(s):

{black(a)[0.8], black(b)[0.6], . . .}
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Motivation

A solver for FASP
While many solvers exist for classical ASP, e.g.:

I clasp

I DLV

I LP2SAT

I WASP

not many prototype systems exist for FASP:

I (Alviano & Peñaloza, 2014) proposed a method for FASP
evaluation using answer set approximation operators

I (Mushthofa, Schockaert & De Cock, 2014) developed a
FASP solver using a translation to classical ASP

I Problem: cannot handle disjunctive programs correctly!
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Motivation

Disjunctive rules
Classical ASP:

a ∨ b ← c

c ←

Answer sets: {a, c}, {b, c}

Fuzzy ASP:

a ⊕ b ← c

c ← 0.8

Answer sets, e.g.:
{a[0.7], b[0.1], c[0.8]}
{a[0.5], b[0.3], c[0.8]}

Disjunction in (F)ASP can:
I increase the expressivity of the language (from

NP-Complete to ΣP
2 )

I allow for more intuitive encoding of many classes of
problems
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Motivation

Shifting method for classical ASP

The disjunctive classical ASP program:

a ∨ b ← c

c ←

can be rewritten into the non-disjunctive (normal) program:

a← c ∧ not b

b ← c ∧ not a

c ←

using the so-called shift operation
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Motivation

Head cycle free programs

Shifting only preserves semantics for head cycle free (HCF)
programs, i.e., programs where there are no cycle of positive
dependencies between head propositions. For example:

a ∨ b ← c

a← b

b ← a

c ←

has only one answer set {a, b, c} and is not equivalent to its
shifted version
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Motivation

How about Fuzzy ASP?

Some non-HCF FASP programs can be shifted to obtain an
equivalent normal program. For example:

a ⊕ b ← 1 a← b b ← a

is equivalent to

a← not b a← b

b ← not a b ← a

and both have one answer set, namely {a[0.5], b[0.5]}
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Motivation

Motivating questions

I How do we characterize the class of FASP programs that
can be shifted to obtain normal programs (and allow for a
more efficient evaluation)?

I How can we evaluate disjunctive FASP programs that
cannot be shifted?

M Mushthofa, S Schockaert, M De Cock

Solving disjunctive fuzzy answer set programs



Introduction Methods Implementation & Benchmark Conclusion

SRCF Programs

A simple example

I The following FASP program cannot be shifted to obtain
an equivalent normal program

a ⊕ b ← 1 a← a ⊕ a

a← b b ← a

I The rule a← a ⊕ a causes the truth value of a to
“saturate” (Booleanized)
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SRCF Programs

Self-Reinforcing Cycles

I Self-Reinforcing Cycles:
a cycle of positive
dependencies between
propositions s.t. there is a
rule involved in the cycle
containing a disjunction in
the body

I Potentially causing a
saturation to the
propositions involved

a← b ⊗ p b ← c

c ← d ⊕ q d ← a ⊗ r
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SRCF Programs

Self Reinforcing Cycle Free (SRCF) programs: no
self-reinforcing cycles involving propositions occurring in a
disjunction in the head of a rule.

Theorem
Let P1 = P ∪ {a ⊕ b ← c} be any SRCF program. Then, an
interpretation I is an answer set of P1 iff it is also an answer
set of P2 = P ∪ {a← c ⊗ not b, b ← c ⊗ not a}.

I All strict FASP (no disjunctions in the body) can be
shifted to normal programs

I HCF ⊂ SRCF : a large class of disjunctive FASP
programs can be rewritten into normal programs
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Non SRCF Programs

Non-SRCF programs need extra minimality checks

I The solver developed in [Mushthofa et al, ECAI2014] can
generate candidate/potential answer set(s) for disjunctive
FASP programs, e.g.:

a ⊕ b ← 1 a← b b ← a

I For k = 1, we get candidate answer set {a[1], b[1]}
I For k = 2, we get candidate answer set {a[0.5], b[0.5]}

I Only minimal models are considered as answer sets:
check minimality!
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Non SRCF Programs

Minimality check using Mixed Integer

Programming

I Problem: Given a program P and a possible answer set
I , check whether I is a minimal model of P I

I Express the problem as a Mixed Integer Programming
(MIP) optimization problem:

I Express the program P I as MIP constraints
I Set objective function = the sum of the truth values of

the propositions
I If the solution returned = I , then I is minimal
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Non SRCF Programs

Overall framework
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Implementation & Benchmark

Implementation

I Written on top of the previous solver [Mushthofa et al,
ECAI2014]

I Uses clasp as external ASP solver and Cbc+GLPK as
MIP solver

I Perform program modularity analysis and decomposition
to further increase efficiency

I Available at https://github.com/mushthofa/ffasp
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Implementation & Benchmark

Benchmark

I Compare the performance of the solver when SRCF
detection and shifting is applied vs not applied

I Benchmark problems: fuzzy graph coloring and fuzzy set
covering

I Generate random instances (with varying sizes), with and
without random saturation rules

I Measure running times
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Implementation & Benchmark
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Implementation & Benchmark
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Conclusion

Conclusions

I We identified a large class of disjunctive FASP programs
(called SRCF programs) that can be rewritten into normal
programs (for efficient evaluation) via shifting operation

I We devised a mechanism to handle evaluation non-SRCF
programs (via minimality checks using MIP)

I We implemented the method on top of our previous
solver to allow evaluation of disjunctive FASP programs

I We performed a benchmark of our
method/implementation on simple benchmark problems
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Conclusion
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