NTER FOR DATA SCIENCE

UNIVERSITY of WASHINGTON | TACOMA

Institute of Technology

Solving disjunctive fuzzy answer set programs LPNMR 2015

M Mushthofa, S Schockaert, M De Cock

э

(日) (同) (三) (三)

M Mushthofa, S Schockaert, M De Cock

Fuzzy Answer Set Programming

- Fuzzy ASP = Fuzzy logic + ASP
- Allows graded truth values of atoms (usually in [0, 1])
- ► Extends the operators ∧, ∨, not and ← to fuzzy domain, e.g. using Łukasiewicz semantics
- Interpretations are functions *I* : B_P → [0, 1] extended to expressions as follows:

3

$$I(a \otimes b) = \max(I(a) + I(b) - 1, 0)$$

 $I(a \oplus b) = \min(I(a) + I(b), 1)$

•
$$I(not a) = 1 - I(a)$$

•
$$I(a \leftarrow b) = 1$$
 iff $I(a) \ge I(b)$

FASP Semantics

- *I* is a model of *P* iff I(r) = 1, $\forall r \in P$
- I is an answer set of positive P iff it is a minimal model of P
- [Extended Gelfond-Lifschitz reduct]: P¹ is a positive program obtained by replacing every expression not a with the constant I(not a)
- I is an answer set of P iff it is a minimal model of P^I

M Mushthofa, S Schockaert, M De Cock

Introduction		
00 000000	000 000	
Preliminaries		

Fuzzy graph coloring

 $\{black(a)[0.8], black(b)[0.6], ...\}$

э

M Mushthofa, S Schockaert, M De Cock

Introduction		
000 000000	000 000	
Motivation		

A solver for FASP

While many solvers exist for classical ASP, e.g.:

- clasp
- DLV
- LP2SAT
- WASP

not many prototype systems exist for FASP:

- (Alviano & Peñaloza, 2014) proposed a method for FASP evaluation using answer set approximation operators
- (Mushthofa, Schockaert & De Cock, 2014) developed a FASP solver using a translation to classical ASP
- Problem: cannot handle disjunctive programs correctly!

Introduction		
000 0 00000	000 000	
Motivation		

Disjunctive rules

Classical ASP. Fuzzy ASP: $a \oplus b \leftarrow c$ $a \lor b \leftarrow c$ $c \leftarrow \overline{0.8}$ $c \leftarrow$ Answer sets: $\{a, c\}, \{b, c\}$ | Answer sets, e.g.: a[0.7], b[0.1], c[0.8]a[0.5], b[0.3], c[0.8]

Disjunction in (F)ASP can:

- increase the expressivity of the language (from NP-Complete to Σ_2^P)
- allow for more intuitive encoding of many classes of problems A (1) > A (2) > A

Introduction		
000 000000	000 000	
Motivation		

Shifting method for classical ASP

The disjunctive classical ASP program:

 $a \lor b \leftarrow c$ $c \leftarrow$

can be rewritten into the **non-disjunctive** (normal) program:

 $a \leftarrow c \land \operatorname{not} b$ $b \leftarrow c \land \operatorname{not} a$ $c \leftarrow$

э

using the so-called shift operation

M Mushthofa, S Schockaert, M De Cock

Introduction		
000 000000	000 000	
Motivation		

Head cycle free programs

Shifting only preserves semantics for head cycle free (HCF) programs, i.e., programs where there are no cycle of positive dependencies between head propositions. For example:

$$\begin{array}{c} \mathsf{a} \lor \mathsf{b} \leftarrow \mathsf{c} \\ \mathsf{a} \leftarrow \mathsf{b} \\ \mathsf{b} \leftarrow \mathsf{a} \\ \mathsf{c} \leftarrow \end{array}$$

has only one answer set $\{a, b, c\}$ and is **not** equivalent to its shifted version

- 4 回 ト - 4 回 ト

Introduction		
000 000000	000 000	
Motivation		

How about Fuzzy ASP?

Some non-HCF FASP programs **can** be shifted to obtain an equivalent normal program. For example:

$$a \oplus b \leftarrow \overline{1}$$
 $a \leftarrow b$ $b \leftarrow a$

is equivalent to

$a \leftarrow not \ b$	$a \leftarrow b$
$b \leftarrow not \ a$	$b \leftarrow a$

・ 同 ト ・ ヨ ト ・ ヨ ト

and both have one answer set, namely $\{a[0.5], b[0.5]\}$

Introduction		
000	000 000	
Motivation		

Motivating questions

How do we characterize the class of FASP programs that can be shifted to obtain normal programs (and allow for a more efficient evaluation)?

How can we evaluate disjunctive FASP programs that cannot be shifted?

	Methods	
000 000000	• 00 000	
SRCF Programs		

A simple example

 The following FASP program cannot be shifted to obtain an equivalent normal program

$$egin{array}{ccc} egin{array}{ccc} eta \leftarrow eta & eta \leftarrow eta \oplus eta & eba &$$

► The rule a ← a ⊕ a causes the truth value of a to "saturate" (Booleanized)

< 🗇 > < 🖃 > <

Introduction 000 000000 Methods 000 Implementation & Benchmark

Conclusion

Self-Reinforcing Cycles

Self-Reinforcing Cycles:

a cycle of positive dependencies between propositions s.t. there is a rule involved in the cycle containing a disjunction in the body

 Potentially causing a saturation to the propositions involved

 $\begin{array}{ll} \mathbf{a} \leftarrow \mathbf{b} \otimes \mathbf{p} & \mathbf{b} \leftarrow \mathbf{c} \\ \mathbf{c} \leftarrow \mathbf{d} \oplus \mathbf{q} & \mathbf{d} \leftarrow \mathbf{a} \otimes \mathbf{r} \end{array}$

	Methods	
000 000000	000 000	
SRCF Programs		

Self Reinforcing Cycle Free (SRCF) programs: no self-reinforcing cycles involving propositions occurring in a disjunction in the head of a rule.

Theorem

Let $\mathcal{P}_1 = \mathcal{P} \cup \{a \oplus b \leftarrow c\}$ be any SRCF program. Then, an interpretation I is an answer set of \mathcal{P}_1 iff it is also an answer set of $\mathcal{P}_2 = \mathcal{P} \cup \{a \leftarrow c \otimes \text{not } b, b \leftarrow c \otimes \text{not } a\}.$

- All strict FASP (no disjunctions in the body) can be shifted to normal programs
- ► HCF ⊂ SRCF: a large class of disjunctive FASP programs can be rewritten into normal programs

	Methods	
000000	000	
Non SRCF Programs		

Non-SRCF programs need extra minimality checks

The solver developed in [Mushthofa et al, ECAI2014] can generate candidate/potential answer set(s) for disjunctive FASP programs, e.g.:

$$a \oplus b \leftarrow \overline{1}$$
 $a \leftarrow b$ $b \leftarrow a$

- For k = 1, we get candidate answer set $\{a[1], b[1]\}$
- For k = 2, we get candidate answer set $\{a[0.5], b[0.5]\}$
- Only minimal models are considered as answer sets: check minimality!

	Methods	
000 000000	000 000	
Non SRCF Programs		

Minimality check using Mixed Integer Programming

- Problem: Given a program *P* and a possible answer set *I*, check whether *I* is a minimal model of *P*^I
- Express the problem as a Mixed Integer Programming (MIP) optimization problem:
 - Express the program \mathcal{P}^{I} as MIP constraints
 - Set objective function = the sum of the truth values of the propositions
 - If the solution returned = I, then I is minimal

M Mushthofa, S Schockaert, M De Cock

	Methods	
	000	
000000	000	
Non SRCF Programs		

Overall framework

M Mushthofa, S Schockaert, M De Cock

		Implementation & Benchmark	
000000	000	0000	

Implementation

- Written on top of the previous solver [Mushthofa et al, ECAI2014]
- Uses clasp as external ASP solver and Cbc+GLPK as MIP solver
- Perform program modularity analysis and decomposition to further increase efficiency
- Available at https://github.com/mushthofa/ffasp

		Implementation & Benchmark	
		0000	
000000	000		
Implementation & Benchmark			

Benchmark

- Compare the performance of the solver when SRCF detection and shifting is applied vs not applied
- Benchmark problems: fuzzy graph coloring and fuzzy set covering
- Generate random instances (with varying sizes), with and without random saturation rules
- Measure running times

Introduction 000 000000	Methods 000 000	Implementation & Benchmark 0000
Implementation & Reach		

M Mushthofa, S Schockaert, M De Cock

		Implementation & Benchmark
000 000000	000 000	0000
Implementation & Benc	hmark	

M Mushthofa, S Schockaert, M De Cock

Introduction 000 000000	Methods 000 000	Conclusion ●0
Conclusion		

Conclusions

- We identified a large class of disjunctive FASP programs (called SRCF programs) that can be rewritten into normal programs (for efficient evaluation) via shifting operation
- We devised a mechanism to handle evaluation non-SRCF programs (via minimality checks using MIP)
- We implemented the method on top of our previous solver to allow evaluation of disjunctive FASP programs
- We performed a benchmark of our method/implementation on simple benchmark problems

		Conclusion
000 000000	000 000	00
Conclusion		

Thank you

Mushthofa Computational Web Intelligence Dept. of Applied Mathematics, Statistics and Informatics Ghent University, Belgium Supported by: UGent MRP project Nucleotides2Network Mushthofa.Mushthofa@UGent.be

M Mushthofa, S Schockaert, M De Cock