
Online Action Language oBC+

Joseph Babb Joohyung Lee

Automated Reasoning Group
Arizona State University, USA

LPNMR 2015

1

Motivation

While Answer Set Programming (ASP) is being widely applied to
many challenging problems, most ASP applications are limited to
offline usages.

There is a need for online answer set solving in many real-time
dynamic systems : robotics, policies, sensors, stream reasoning.
(“How do I call ASP solvers?”)

Continuous grounding and solving in view of possible yet unknown
future events is one of the main challenges in applying ASP to
real-time dynamic systems.

2

Online Answer Set Programming [Gebser et al.,
LPNMR’11]

Incrementally ground and compose program slices taking into account
external knowledge acquired asynchronously.

Thereby avoiding multiple unnecessary restarts of the
grounding/solving process for each arrival of external inputs.

oclingo is an online ASP solver that processes external inputs
provided at runtime by a controller.

However, checking the syntactic requirement for sound execution of
online answer set solving is quite a complex task for the user, which
significantly limits the usability of online answer set programming.

3

Online Action Language BC+

We address this challenge by introducing an online extension of high
level action language BC+, which we call oBC+.

oBC+ is implemented in cplus2asp. In addition to the static and
the incremental mode already available, newly introduced is the
reactive mode, which invokes oclingo v3.0.92.

(Cannot work with clingo v4.X yet due to the incompatibility of the
input languages in the component software f2lp: #domain directive
was gone)
Another high level language for oclingo ensuring the modularity
condition of oclingo is Online Agent Logic Programming language
from [Cerexhe, Gebser & Thielscher, 2014]. However, Agent Logic
Programs are less expressive than action languages (e.g., no negation).

4

Some Examples in oBC+ (Tested on Cplus2ASP)

Tower of Hanoi: an antagonistic entity is able to move pegs in order
to attempt to thwart the agent’s efforts.

Blocks World: An external antagonist has the ability to ’rain’ more
blocks on the table at any given time.

Warehouse Management: The agent is set to controlling multiple
robots within an automated warehouse. The agent must plan the
path of each robot in order to retrieve items requested by external
customers while simultaneously avoiding collisions.

Online Scheduling: The agent is placed in charge of a number of
machines specialized to perform a specific set of jobs. The agent
must allocate the resources provided by each machine in order to
finish each request job. Meanwhile, machines may fail or be repaired.

Elevator Control: The agent is to service a number of elevator
requests made by individuals.

5

(Offline) Action Language BC+

Successor of BC [Lee, Lifschitz and Yang, IJCAI 2013]. Generalizes
both B and C+.

The main idea is to define the semantics of BC+ in terms of
propositional formulas under the stable model semantics [Ferraris,
2005].

Modern ASP language constructs, such as choice rules and
aggregates, can be viewed as an abbreviation of formulas under the
stable model semantics.

Enhancements in ASP are readily applied in the setting of action
languages: online answer set solving.

6

Syntax of BC+

We consider propositional formulas whose signature consists of atoms of
the form c =v , where c is called a constant and is associated with a finite
set called the domain. Constants are either fluents or actions.

{c =v}ch stands for (c =v) ∨ ¬(c =v).

Intuitive reading: “by default, c has the value v .”

Static law: caused F if G (F , G are fluent formulas)

“The light is usually on while the switch is on”:
caused {Light=On}ch if Switch=On

Alternatively: default Light=On if Switch=On

Action dynamic law: caused F if G (F is an action formula)

”The agent may move to arbitrary locations”:
caused {Move = l}ch if > (for all l ∈ Locations)

Alternatively: exogenous Move

7

Syntax of BC+

We consider propositional formulas whose signature consists of atoms of
the form c =v , where c is called a constant and is associated with a finite
set called the domain. Constants are either fluents or actions.

{c =v}ch stands for (c =v) ∨ ¬(c =v).

Intuitive reading: “by default, c has the value v .”

Static law: caused F if G (F , G are fluent formulas)

“The light is usually on while the switch is on”:
caused {Light=On}ch if Switch=On

Alternatively: default Light=On if Switch=On

Action dynamic law: caused F if G (F is an action formula)

”The agent may move to arbitrary locations”:
caused {Move = l}ch if > (for all l ∈ Locations)

Alternatively: exogenous Move

8

Syntax of BC+

Fluent dynamic law: caused F if G after H (F , G : fluent formulas)

The effect of Move:
caused Loc = l if > after Move=t

Alternatively: Move causes Loc = l

“The agent’s location is inertial”:
caused {Loc = l}ch if > after Loc = l (for all l ∈ Locations)

Alternatively:
inertial Loc

9

Semantics

The semantics of BC+ description D is given in terms of a sequence
of propositional formulas PF0(D),PF1(D), . . . under the stable model
semantics.

D PFm(D)

caused F if G i :F ← i :G (i = 0, 1, . . .)
caused F if G after H i+1:F ← (i+1:G) ∧ (i :H) (i = 0, 1, . . .)

{0:c =v}ch for every regular fluent c and every v
Uniq. and exist. of value constraints for i : c

The states of the transition system described by D correspond to the
stable models of PF0(D).

The transitions correspond to the stable models of PF1(D).

Theorem The stable models of PFm(D) are in a 1-1 correspondence
with the paths of length m in the transition system D.

10

Online BC+

The signature hierarchy of oBC+ is extended from that of (offline) BC+.

The domain of each external fluent and action constant contains a special
element u, which represents an unknown value.

The syntax of causal laws is defined the same as in BC+ except that
external constants are allowed in the bodies but not in the heads.

11

joolee
Oval

joolee
Oval

Observation / Observational Constraint

An observation is an expression of the form

observed c =v at m (1)

where c is an external constant, v is a value other than u, and m is a
nonnegative integer.

An observational constraint is an expression of the form

constraint F at m (2)

where F is a propositional formula containing no external constants and m
is a nonnegative integer.

An observation stream is a set of observations and observational
constraints.

12

Faulty Switch in oBC+

inertial Sw inertial Fault after ReplaceBulb=f

exogenous Flip exogenous ReplaceBulb

Flip causes Sw =on if Sw =off nonexecutable ReplaceBulb if Flip=t

Flip causes Sw =off if Sw =on caused Fault=v if ExtFault=v
default Light=s if Sw =s caused Light=off if Fault=t

default Fault=u after ReplaceBulb

13

Normal History

It is more meaningful to assume that the external input is “abnormal” to
the system dynamics, and we want to “minimize” their effects.

Intuitively, in a normal history, the external constants are mapped to an
unknown value unless the external observation asserts otherwise.

We say that history H observes an observation stream O if,

for each observation observed c =v at m in O, history H satisfies
m :c =v , and

for each observational constraint constraint F at m in O, history H
satisfies m :F .

We say that H is normal with respect to O, if it observes O, and, for each
external constant c and each i , H satisfies i :c =u when there is no
observation in O telling the value of c at i .

14

Example: Faulty Switch

The minimum length history from

S0 = {Switch=off, Light=off, Fault=u, ExtFault=u}

to a state S such that S |= Light=on are 〈S0, E0,S1〉, and 〈S0, E0,S2〉
where

E0 = {Flip=t, ReplaceBulb=f},
S1 = {Switch=on, Light=on, Fault=u, ExtFault=u}, and
S2 = {Switch=on, Light=on, Fault=f, ExtFault=f}.

Of the two, only 〈S0, E0,S1〉 is normal with respect to the online
progression O = [].

15

Example: Faulty Switch

If, following the execution of Flip, the agent observes that a fault did occur:

O = [{observed ExtFault=t at 1, constraint Flip=t at 0}].

The new minimum length history from S0 to a state S such that S |= Light=on

and is normal w.r.t. O is 〈S0, E0,S3, E1,S1〉.

16

Incremental Composition with Online Progression

The semantics of oBC+ is defined by translation into incremental theory
and online progression, which is extended from [Gebser et al., 2011] to
propositional formulas.

An incremental theory is a triple 〈B,P[t],Q[t]〉, where

B is the base component.

P[t] is the cumulative component.

Q[t] is the volatile component.

An online progression 〈Ei [ei],Fi [fi]〉j is a sequence of pairs of formulas
(Ei [ei],Fi [fi]) for i = 1, . . . , j , each Ei [ei] and Fi [fi] corresponds to stable
and volatile knowledge acquired during execution, respectively.
(For example, E4[3] is the fourth piece of online input and contains
information relevant to step 3.)

17

(Simple) Expansion vs. Incremental Composition

Given an incremental theory 〈B,P[t],Q[t]〉, a positive integer k, and an online
progression 〈Ei [ei],Fi [fi]〉j , the incremental components are

{B,P[t/1],P[t/2], . . . ,P[t/k],Q[t/k],E1[e1],E2[e2], . . . ,Ej [ej],Fj [fj]}.

The k-expanded propositional formula Rj,k of 〈B,P[t],Q[t]〉 w.r.t. 〈Ei [ei],Fi [fi]〉j
is the conjunction of all these formulas.

On the other hand, the incremental composition Rj,k “simplifies” each
component first and “joins” incrementally, obeying some precedence order.

Based on input/output stable models and the module theorem.

Each component formula is associated with some designated set of external
atoms, which are exempt from simplification.

18

(Simple) Expansion vs. Incremental Composition

Given an incremental theory 〈B,P[t],Q[t]〉, a positive integer k, and an online
progression 〈Ei [ei],Fi [fi]〉j , the incremental components are

{B,P[t/1],P[t/2], . . . ,P[t/k],Q[t/k],E1[e1],E2[e2], . . . ,Ej [ej],Fj [fj]}.

The k-expanded propositional formula Rj,k of 〈B,P[t],Q[t]〉 w.r.t. 〈Ei [ei],Fi [fi]〉j
is the conjunction of all these formulas.

On the other hand, the incremental composition Rj,k “simplifies” each
component first and “joins” incrementally, obeying some precedence order.

Based on input/output stable models and the module theorem.

Each component formula is associated with some designated set of external
atoms, which are exempt from simplification.

19

Theorem 2 in the paper asserts that for an incremental theory and an
online progression that are “modular” and “mutually revisable,”

Rj ,k has the same stable models as Rj ,k .

N.B. These conditions are highly complex and difficult to check manually.
(See the paper.)

20

oBC+ into Incremental Theory

Given an oBC+ action description D, an observation stream O, and some
formula Q[t], we define 〈B,P[t],Q[t]〉D,Q[t] and 〈E ,F 〉O as follows.

B =
∧

0:F ← 0:G for each static law in D
0:{f =v}ch for each regular fluent f

and each v ∈ Dom(f)
0 :{f =u}ch for each external fluent f
0:UECσfl

P[t] =
∧

t :F ← t :G for each static law in D
(t−1) :F ← (t−1) :G for each action dynamic law in D
t :F ← t :G ∧ (t−1) :H for each fluent dynamic law in D
t :{f =u}ch for each external fluent f
(t−1) :{a=u}ch for each external action a
t :UECσfl

(t−1) :UECσact

Q[t] = ¬¬Q[t]

Ei [mi] =
∧{

mi :c =v for each observation
¬¬mi :F for each observational constraint

Fi [mi] = >

21

Possible External Inputs

These atoms represent possible external inputs that may be introduced
later by an online progression, and thus should be exempted from the
current program simplification.

Atu(σ) denotes the set of all atoms c =v such that v 6= u.
We define the sets of explicit external inputs as follows:

I (B) = Atu(0 :σef),

I (P[t/i]) = Atu(i :σef ∪ (i−1) :σea),

I (Q[t/i]) = Atu(
⋃

0≤j<i (j :σef ∪ j :σea) ∪ i :σef), and

I (Ei) = I (Fi) = ∅.

22

oBC+ Ensures Modularity and Mutual Revisability

The translation of an oBC+ description into propositional formulas
ensures modularity and mutual revisability.

Theorem (Modular and Mutually Revisable Construction)

Given an oBC+ action description D and an observation stream O, and a
step-parameterized formula Q[t], the corresponding incremental theory
〈B,P[t],Q[t]〉D,Q[t] and the corresponding online progression 〈E ,F 〉O are
modular and mutually revisable.

23

Correctness of Incremental Composition

The stable models of the incremental composition represents the histories
in the transition system that are normal with respect to the online stream.

Theorem (Correctness of Incremental Composition)

Given an oBC+ action description D, an observation stream O, a
step-parameterized Q[t], and some k ≥ m̂, let Rm̂,k = 〈H, I,O〉 be the

incremental composition of 〈B,P[t],Q[t]〉D,Q[t] w.r.t. 〈E ,F 〉O. The stable
models of H represents the histories of length k in the transition system
described by D which (i) observe O, (ii) are normal with respect to O, and
(iii) satisfy Q[t/k].

24

cplus2asp

The “reactive bridge” is a new software component, and acts as an
intermediary between oclingo and a user-provided agent controller
system. It allows the agent controller system to provide an oBC+
observation stream during execution and receive updated solutions in the
form of transition system histories.

25

Experiments

In an elaboration of the Tower of Hanoi problem, an antagonistic entity
moves pegs in order to attempt to thwart the agent’s efforts.

% abnormality

ext_move(P,P1) causes ab_ext(P).

ext_move(P,P1) causes ab_ext(P1).

% effect and precondition of moving

loc(D)=L if -ab_ext(P) & -ab_ext(P1)

after move(P,P1) & base(D)=P & clear(D)

& base(L)=P1 & clear(L).

ext_move(P,P1) causes loc(D)=L if base(D)=P & clear(D)

& base(L)=P1 & clear(L).

“ab ext(P)” is a regular fluent constant, which is asserted false by
default.
In the presence of both agent’s move(P,P1) and the antagonistic entity’s
ext move(P,P1) leading to conflicting effects, ext move overrides.

26

Given this program as input, cplus2asp operates under the reactive
mode listening to external observations. To find a solution for the original
problem (assuming no external input), one may insert

#step.

#endstep.

cplus2asp turns it into the input language of oclingo, runs oclingo
and then again goes to the listening mode. One can then insert

#step.

observed ext_move(p2,p3) at 2.

#endstep.

and so on. In each observation of external actions, cplus2asp does
re-planning, but without grounding from scratch; only the new ground
modules are added.

27

Experiments

Highly effective in comparison with the offline execution, where grounding
has to be done from scratch each time the external move is observed.

28

Conclusion

We extended the concept of online answer set solving to propositional
formulas under the stable model semantics, and based on this,
designed a high level online action language oBC+, whose structure
ensures the syntactic conditions that are required for the correctness
of online answer set solving.

We implemented the new language in cplus2asp, which turns oBC+
descriptions into the language of online answer set solver oclingo,
and invokes oclingo for online computation.

29

