

A New Computational Logic Approach to Reason with Conditionals

Emmanuelle-Anna Dietz and Steffen Hölldobler International Center for Computational Logic Technische Universität Dresden Germany

- Introduction
- Weak Completion Semantics
- Indicative Conditionals
- Minimal Revision Followed by Abduction
- Subjunctive Conditionals
- Future Work

"Logic is everywhere ..."

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead
Pearl 2000

Emmanuelle-Anna Dietz and Steffen Hölldobler A New Computational Logic Approach to Reason with Conditionals

If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead

Pearl 2000

We assume that

- the court's decision is unknown
- both riflemen are accurate, alert and law-abiding
- > the prisoner is unlikely to die from any other causes

If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead

Pearl 2000

We assume that

- the court's decision is unknown
- both riflemen are accurate, alert and law-abiding
- the prisoner is unlikely to die from any other causes
- Please evaluate the following conditionals (true, false, unknown)

4

If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead

Pearl 2000

We assume that

- the court's decision is unknown
- both riflemen are accurate, alert and law-abiding
- the prisoner is unlikely to die from any other causes
- Please evaluate the following conditionals (true, false, unknown)
 - ▶ If the prisoner is alive, then the captain did not signal

If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead

Pearl 2000

We assume that

- the court's decision is unknown
- both riflemen are accurate, alert and law-abiding
- the prisoner is unlikely to die from any other causes
- Please evaluate the following conditionals (true, false, unknown)

6

If rifleman A shot, then rifleman B shot as well

If the court orders an execution, then the captain will give the signal upon which rifleman A and B will shoot the prisoner; consequently, the prisoner will be dead

Pearl 2000

We assume that

- ▶ the court's decision is unknown
- both riflemen are accurate, alert and law-abiding
- the prisoner is unlikely to die from any other causes
- Please evaluate the following conditionals (true, false, unknown)

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

Introduction

The weak completion semantics (WCS)

- is a new cognitive theory
- ▶ is based on ideas presented in Stenning, van Lambalgen 2008
- ▶ is mathematically sound H., Kencana Ramli 2009
- has been successfully applied to model-among othersthe suppression task, the selection task, and the belief bias effect Dietz, H., Ragni 2012, Dietz, H., Ragni 2013, Pereira, Dietz, H. 2014

Introduction

The weak completion semantics (WCS)

- is a new cognitive theory
- ▶ is based on ideas presented in Stenning, van Lambalgen 2008
- is mathematically sound H., Kencana Ramli 2009
- has been successfully applied to model-among othersthe suppression task, the selection task, and the belief bias effect Dietz, H., Ragni 2012, Dietz, H., Ragni 2013, Pereira, Dietz, H. 2014

9

Now, we want to apply WCS to reason about conditionals

- ▶ Let *P* be a ground logic program
- ▶ Let *S* be a finite and consistent set of ground literals

- Let P be a ground logic program
- ▶ Let S be a finite and consistent set of ground literals
- ▶ $def(S, P) = \{A \leftarrow body \in P \mid A \in S \lor \neg A \in S\}$

- Let P be a ground logic program
- Let S be a finite and consistent set of ground literals
- ▶ $def(S, P) = \{A \leftarrow body \in P \mid A \in S \lor \neg A \in S\}$
- ▶ Weak completion $wc\mathcal{P}$ = completion of $\mathcal{P} \setminus \{A \leftrightarrow \bot \mid def(A, \mathcal{P}) = \emptyset\}$

- Let P be a ground logic program
- Let S be a finite and consistent set of ground literals
- ▶ $def(S, P) = \{A \leftarrow body \in P \mid A \in S \lor \neg A \in S\}$
- ▶ Weak completion wcP = completion of P \ { $A \leftrightarrow \bot \mid def(A, P) = \emptyset$ }

 $wc\{a \leftarrow b, a \leftarrow c, c \leftarrow \bot\} = \{a \leftrightarrow b \lor c, c \leftrightarrow \bot\}$

- Let P be a ground logic program
- Let S be a finite and consistent set of ground literals
- ▶ $def(S, P) = \{A \leftarrow body \in P \mid A \in S \lor \neg A \in S\}$
- ▶ Weak completion $wc\mathcal{P}$ = completion of $\mathcal{P} \setminus \{A \leftrightarrow \bot \mid def(A, \mathcal{P}) = \emptyset\}$

$$wc\{a \leftarrow b, a \leftarrow c, c \leftarrow \bot\} = \{a \leftrightarrow b \lor c, c \leftrightarrow \bot\}$$
$$wc\{c \leftarrow \top, c \leftarrow \bot\} = \{c \leftrightarrow \top \lor \bot\}$$

- H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009
- ► We consider the three-valued Łukasiewicz logic Łukasiewicz 1920

▷ $\mathbf{U} \leftarrow \mathbf{U} = \top$ (compared to $\mathbf{U} \leftarrow \mathbf{U} = \mathbf{U}$ under Kripke-Kleene logic)

- H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009
- ► We consider the three-valued Łukasiewicz logic Łukasiewicz 1920
 - ▷ $\mathbf{U} \leftarrow \mathbf{U} = \top$ (compared to $\mathbf{U} \leftarrow \mathbf{U} = \mathbf{U}$ under Kripke-Kleene logic)
- Each weakly completed program admits a least model M_P under Ł-logic

- H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009
- ► We consider the three-valued Łukasiewicz logic Łukasiewicz 1920
 - ▷ $\mathbf{U} \leftarrow \mathbf{U} = \top$ (compared to $\mathbf{U} \leftarrow \mathbf{U} = \mathbf{U}$ under Kripke-Kleene logic)
- Each weakly completed program admits a least model M_P under Ł-logic
- $\mathcal{M}_{\mathcal{P}}$ is the least fixed point of $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$, where

 $J^{\top} = \{A \mid A \leftarrow body \in \mathcal{P} \text{ and } I(body) = \top \}$ $J^{\perp} = \{A \mid def(A, \mathcal{P}) \neq \emptyset \text{ and } I(body) = \perp \text{ for all } A \leftarrow body \in def(A, \mathcal{P}) \}$

 $(\Phi_{\mathcal{P}}$ is due to Stenning, vanLambalgen 2008)

- H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009
- ► We consider the three-valued Łukasiewicz logic Łukasiewicz 1920
 - ▷ $\mathbf{U} \leftarrow \mathbf{U} = \top$ (compared to $\mathbf{U} \leftarrow \mathbf{U} = \mathbf{U}$ under Kripke-Kleene logic)
- Each weakly completed program admits a least model M_P under Ł-logic
- $\mathcal{M}_{\mathcal{P}}$ is the least fixed point of $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$, where

 $J^{\top} = \{A \mid A \leftarrow body \in \mathcal{P} \text{ and } I(body) = \top \}$ $J^{\perp} = \{A \mid def(A, \mathcal{P}) \neq \emptyset \text{ and } I(body) = \perp \text{ for all } A \leftarrow body \in def(A, \mathcal{P}) \}$

 $(\Phi_{\mathcal{P}}$ is due to Stenning, vanLambalgen 2008)

 $\blacktriangleright \mathcal{P} \models_{wcs} F \quad \text{iff} \quad \mathcal{M}_{\mathcal{P}}(F) = \top$

Emmanuelle-Anna Dietz and Steffen Hölldobler A New Computational Logic Approach to Reason with Conditionals 18

- H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009
- ► We consider the three-valued Łukasiewicz logic Łukasiewicz 1920
 - ▷ $\mathbf{U} \leftarrow \mathbf{U} = \top$ (compared to $\mathbf{U} \leftarrow \mathbf{U} = \mathbf{U}$ under Kripke-Kleene logic)
- Each weakly completed program admits a least model M_P under Ł-logic
- $\mathcal{M}_{\mathcal{P}}$ is the least fixed point of $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$, where

 $J^{\top} = \{A \mid A \leftarrow body \in \mathcal{P} \text{ and } I(body) = \top \}$ $J^{\perp} = \{A \mid def(A, \mathcal{P}) \neq \emptyset \text{ and } I(body) = \perp \text{ for all } A \leftarrow body \in def(A, \mathcal{P}) \}$

 $(\Phi_{\mathcal{P}}$ is due to Stenning, vanLambalgen 2008)

 $\blacktriangleright \mathcal{P} \models_{wcs} F \quad \text{iff} \quad \mathcal{M}_{\mathcal{P}}(F) = \top$

 $\{a \leftarrow b, a \leftarrow c, c \leftarrow \bot\} \not\models_{wcs} a \lor \neg a$

- H., Kencana Ramli: Logic Programs under Three-Valued Łukasiewicz's Semantics In: Hill, Warren (eds), Logic Programming, LNCS 5649, 464-478: 2009
- ► We consider the three-valued Łukasiewicz logic Łukasiewicz 1920
 - ▷ $\mathbf{U} \leftarrow \mathbf{U} = \top$ (compared to $\mathbf{U} \leftarrow \mathbf{U} = \mathbf{U}$ under Kripke-Kleene logic)
- Each weakly completed program admits a least model M_P under Ł-logic
- $\mathcal{M}_{\mathcal{P}}$ is the least fixed point of $\Phi_{\mathcal{P}}(I) = \langle J^{\top}, J^{\perp} \rangle$, where

 $J^{\top} = \{A \mid A \leftarrow body \in \mathcal{P} \text{ and } I(body) = \top \}$ $J^{\perp} = \{A \mid def(A, \mathcal{P}) \neq \emptyset \text{ and } I(body) = \perp \text{ for all } A \leftarrow body \in def(A, \mathcal{P}) \}$

 $(\Phi_{\mathcal{P}}$ is due to Stenning, vanLambalgen 2008)

 $\blacktriangleright \mathcal{P} \models_{wcs} F \quad \text{iff} \quad \mathcal{M}_{\mathcal{P}}(F) = \top$

$$\{a \leftarrow b, a \leftarrow c, c \leftarrow \bot\} \not\models_{wcs} a \lor \neg a \ \{c \leftarrow \top, c \leftarrow \bot\} \models_{wcs} c$$

Abduction

- ▶ Consider the abductive framework $\langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle$, where
 - $\triangleright \ \mathcal{A}_{\mathcal{P}} = \bigcup_{\{A | def(A, \mathcal{P}) = \emptyset\}} \{ A \leftarrow \top, \ A \leftarrow \bot \} \text{ is the set of abducibles}$
 - ▷ *IC* is a finite set of integrity constraints

Abduction

- ▶ Consider the abductive framework $\langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle$, where
 - $\triangleright \ \mathcal{A}_{\mathcal{P}} = \bigcup_{\{A | def(A, \mathcal{P}) = \emptyset\}} \{ A \leftarrow \top, \ A \leftarrow \bot \} \text{ is the set of abducibles}$
 - ▷ IC is a finite set of integrity constraints
- An observation O is a set of ground literals
 - $\begin{array}{l} \triangleright \ \, \mathcal{O} \ \, \text{is explainable in } \langle \mathcal{P}, \mathcal{A}_{\mathcal{P}}, \mathcal{IC}, \models_{wcs} \rangle \\ \text{iff there exists a minimal } \mathcal{E} \subseteq \mathcal{A}_{\mathcal{P}} \ \, \text{called explanation such that} \\ \mathcal{M}_{\mathcal{P} \cup \mathcal{E}} \ \, \text{satisfies } \mathcal{IC} \quad \text{and} \quad \mathcal{P} \cup \mathcal{E} \models_{wcs} \mathcal{O} \end{array}$

Revision

▶ $rev(\mathcal{P}, \mathcal{S}) = (\mathcal{P} \setminus def(\mathcal{S}, \mathcal{P})) \cup \{ \mathbf{A} \leftarrow \top \mid \mathbf{A} \in \mathcal{S} \} \cup \{ \mathbf{A} \leftarrow \bot \mid \neg \mathbf{A} \in \mathcal{S} \}$

Revision

 $\blacktriangleright rev(\mathcal{P}, \mathcal{S}) = (\mathcal{P} \setminus def(\mathcal{S}, \mathcal{P})) \cup \{ \mathbf{A} \leftarrow \top \mid \mathbf{A} \in \mathcal{S} \} \cup \{ \mathbf{A} \leftarrow \bot \mid \neg \mathbf{A} \in \mathcal{S} \}$

Properties

- rev is non-monotonic in general
- ▷ *rev* is monotonic, i.e., $M_{\mathcal{P}} \subseteq M_{rev(\mathcal{P},S)}$, if $M_{\mathcal{P}}(L) = U$ for all $L \in S$
- $\triangleright \ \mathcal{M}_{\mathit{rev}(\mathcal{P},\mathcal{S})}(\mathcal{S}) = \top$

Conditionals

▶ Conditionals are statements of the form *if condition then consequence*

Emmanuelle-Anna Dietz and Steffen Hölldobler A New Computational Logic Approach to Reason with Conditionals

Conditionals

- Conditionals are statements of the form if condition then consequence
- Indicative conditionals are conditionals
 - whose condition may or may not be true
 - whose consequence may or may not be true
 - but the consequence is asserted to be true if the condition is true

Conditionals

- Conditionals are statements of the form if condition then consequence
- Indicative conditionals are conditionals
 - whose condition may or may not be true
 - whose consequence may or may not be true
 - but the consequence is asserted to be true if the condition is true
- Subjunctive conditionals are conditionals
 - whose condition is false
 - whose consequence may or may not be true
 - but in the counterfactual circumstance of the condition being *true*, the consequence is asserted to be *true* as well

Indicative Conditionals

- ▶ In the sequel, let cond(C, D) be an indicative conditional, where
 - Condition C and consequence D are finite and consistent sets of ground literals

Indicative Conditionals

- ▶ In the sequel, let cond(C, D) be an indicative conditional, where
 - Condition C and consequence D are finite and consistent sets of ground literals
- Conditionals are evaluated wrt a given P and IC
 - $\triangleright \ \mbox{We assume that } \mathcal{M}_{\mathcal{P}} \ \mbox{satisfies } \mathcal{IC}$

• Given $\mathcal{P}, \mathcal{IC}, \text{ and } cond(\mathcal{C}, \mathcal{D})$

- Given $\mathcal{P}, \mathcal{IC}$, and $cond(\mathcal{C}, \mathcal{D})$
 - ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \top$ then $cond(\mathcal{C}, \mathcal{D})$ is true

• Given $\mathcal{P}, \mathcal{IC}$, and $cond(\mathcal{C}, \mathcal{D})$

- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \top$ then $cond(\mathcal{C}, \mathcal{D})$ is true
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is false

• Given $\mathcal{P}, \mathcal{IC}, \text{ and } cond(\mathcal{C}, \mathcal{D})$

- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \top$ then $cond(\mathcal{C}, \mathcal{D})$ is true
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is false
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = U$ then $cond(\mathcal{C}, \mathcal{D})$ is unknown

• Given $\mathcal{P}, \mathcal{IC}$, and $cond(\mathcal{C}, \mathcal{D})$

- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \top$ then $cond(\mathcal{C}, \mathcal{D})$ is true
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is false
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = U$ then $cond(\mathcal{C}, \mathcal{D})$ is unknown
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is vacuous

• Given $\mathcal{P}, \mathcal{IC}$, and $cond(\mathcal{C}, \mathcal{D})$

- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \top$ then $cond(\mathcal{C}, \mathcal{D})$ is true
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is false
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = U$ then $cond(\mathcal{C}, \mathcal{D})$ is unknown
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is vacuous
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = U$ then evaluate $cond(\mathcal{C}, \mathcal{D})$ with respect to $\mathcal{M}_{\mathcal{P}'}$, where

$$\blacktriangleright \mathcal{P}' = rev(\mathcal{P}, \mathcal{S}) \cup \mathcal{E},$$

 $\begin{array}{l} \blacktriangleright \quad \mathcal{S} \text{ is a smallest subset of } \mathcal{C} \quad \text{and} \\ \mathcal{E} \subseteq \mathcal{A}_{rev(\mathcal{P},\mathcal{S})} \text{ is an explanation for } \mathcal{C} \setminus \mathcal{S} \quad \text{such that} \\ \mathcal{P}' \models_{wcs} \mathcal{C} \quad \text{and} \quad \mathcal{M}_{\mathcal{P}'} \text{ satisfies } \mathcal{I}\mathcal{C} \end{array}$

• Given $\mathcal{P}, \mathcal{IC}$, and $cond(\mathcal{C}, \mathcal{D})$

- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \top$ then $cond(\mathcal{C}, \mathcal{D})$ is true
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is false
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \top$ and $\mathcal{M}_{\mathcal{P}}(\mathcal{D}) = U$ then $cond(\mathcal{C}, \mathcal{D})$ is unknown
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = \bot$ then $cond(\mathcal{C}, \mathcal{D})$ is vacuous
- ▷ If $\mathcal{M}_{\mathcal{P}}(\mathcal{C}) = U$ then evaluate $cond(\mathcal{C}, \mathcal{D})$ with respect to $\mathcal{M}_{\mathcal{P}'}$, where

$$\blacktriangleright \mathcal{P}' = rev(\mathcal{P}, \mathcal{S}) \cup \mathcal{E},$$

 $\begin{array}{l} \blacktriangleright \quad \mathcal{S} \text{ is a smallest subset of } \mathcal{C} \quad \text{and} \\ \mathcal{E} \subseteq \mathcal{A}_{rev(\mathcal{P},\mathcal{S})} \text{ is an explanation for } \mathcal{C} \setminus \mathcal{S} \quad \text{such that} \\ \mathcal{P}' \models_{wcs} \mathcal{C} \quad \text{and} \quad \mathcal{M}_{\mathcal{P}'} \text{ satisfies } \mathcal{I}\mathcal{C} \end{array}$

Minimal revision followed by abduction

► P

s	\leftarrow	е
ra	\leftarrow	s
rb	\leftarrow	s
d	\leftarrow	ra
d	\leftarrow	rb
а	\leftarrow	−d

\mathcal{P}	

s	\leftarrow	е
ra	\leftarrow	s
rb	\leftarrow	s
d	\leftarrow	ra
d	\leftarrow	rb
а	\leftarrow	¬d

 $\blacktriangleright \ \mathcal{M}_{\mathcal{P}}$

 $\langle \emptyset, \emptyset \rangle$

$\blacktriangleright \mathcal{P}$	
	$s \leftarrow e$
	ra ← s
	$rb \leftarrow s$
	d ← ra
	$d \leftarrow rb$
	$a \leftarrow \neg d$
$\blacktriangleright M_{\mathcal{P}}$	
	$\langle \emptyset, \emptyset angle$
$\blacktriangleright \mathcal{A}_{\mathcal{P}}$	
	$\{ \pmb{e} \leftarrow \top, \pmb{e} \leftarrow \bot \}$

Emmanuelle-Anna Dietz and Steffen Hölldobler A New Computational Logic Approach to Reason with Conditionals

39

$\blacktriangleright \mathcal{P}$			
	S	\leftarrow	е
	ra	\leftarrow	s
	rb	\leftarrow	s
	d	\leftarrow	ra
	d	\leftarrow	rb
	а	\leftarrow	¬ d
$\blacktriangleright \mathcal{M}_{\mathcal{P}}$			
·		$\langle \emptyset, \emptyset \rangle$	\rangle
$\blacktriangleright \mathcal{A}_{\mathcal{P}}$			

 $\{e \leftarrow \top, e \leftarrow \bot\}$

Observations

 $\triangleright \mathcal{E}_{\top} = \{ e \leftarrow \top \} \text{ explains } \{ s, ra, rb, d, \neg a \}$

► P

Modeling the Firing Squad Example

s	\leftarrow	е
ra	\leftarrow	s
rb	\leftarrow	s
d	\leftarrow	ra
d	\leftarrow	rb
а	\leftarrow	¬ d

 $\blacktriangleright \mathcal{M}_{\mathcal{P}}$

 $\langle \emptyset, \emptyset \rangle$

 $\blacktriangleright \mathcal{A}_{\mathcal{P}}$

 $\{ e \leftarrow \top, e \leftarrow \bot \}$

Observations

 $\triangleright \mathcal{E}_{\top} = \{ e \leftarrow \top \} \text{ explains } \{ s, ra, rb, d, \neg a \}$ $\triangleright \mathcal{E}_{\perp} = \{ e \leftarrow \bot \} \text{ explains } \{ \neg s, \neg ra, \neg rb, \neg d, a \}$

► P

Modeling the Firing Squad Example

s	\leftarrow	е
ra	\leftarrow	s
rb	\leftarrow	s
d	\leftarrow	ra
d	\leftarrow	rb
а	\leftarrow	¬ d

 $\blacktriangleright \mathcal{M}_{\mathcal{P}}$

 $\langle \emptyset, \emptyset \rangle$

 $\blacktriangleright \mathcal{A}_{\mathcal{P}}$

 $\{ e \leftarrow \top, e \leftarrow \bot \}$

Observations

▷ $\mathcal{E}_{\top} = \{e \leftarrow \top\}$ explains $\{s, ra, rb, d, \neg a\}$ ▷ $\mathcal{E}_{\perp} = \{e \leftarrow \bot\}$ explains $\{\neg s, \neg ra, \neg rb, \neg d, a\}$ ▷ $\{\neg s, ra\}$ cannot be explained

The Firing Squad Examples

- Observations
 - ▷ $\mathcal{E}_{\top} = \{ e \leftarrow \top \}$ explains $\{ s, ra, rb, d, \neg a \}$
 - $\triangleright \mathcal{E}_{\perp} = \{ e \leftarrow \perp \} \text{ explains } \{ \neg s, \neg ra, \neg rb, \neg d, a \}$
 - \triangleright { \neg *s*, *ra*} cannot be explained
- ▶ If the prisoner is alive, then the captain did not signal

 $\mathit{cond}(a, \neg s) : \mathcal{P} \Rightarrow \mathcal{P} \cup \mathcal{E}_{\perp} \Rightarrow \mathit{true}$

The Firing Squad Examples

- Observations
 - ▷ $\mathcal{E}_{\top} = \{ e \leftarrow \top \}$ explains $\{ s, ra, rb, d, \neg a \}$
 - $\triangleright \ \mathcal{E}_{\perp} = \{ e \leftarrow \perp \} \text{ explains } \{ \neg s, \neg ra, \neg rb, \neg d, a \}$
 - ▶ {¬*s*, *ra*} cannot be explained
- ▶ If the prisoner is alive, then the captain did not signal

 $\mathit{cond}(a, \neg s) : \mathcal{P} \Rightarrow \mathcal{P} \cup \mathcal{E}_{\perp} \Rightarrow \mathit{true}$

▶ If rifleman A shot, then rifleman B shot as well

 $cond(ra, rb) : \mathcal{P} \Rightarrow \mathcal{P} \cup \mathcal{E}_{\top} \Rightarrow true$

The Firing Squad Examples

- Observations
 - ▷ $\mathcal{E}_{\top} = \{ e \leftarrow \top \}$ explains $\{ s, ra, rb, d, \neg a \}$
 - $\triangleright \ \mathcal{E}_{\perp} = \{ e \leftarrow \perp \} \text{ explains } \{ \neg s, \neg ra, \neg rb, \neg d, a \}$
 - ▶ {¬*s*, *ra*} cannot be explained
- ▶ If the prisoner is alive, then the captain did not signal

 $cond(a, \neg s) : \mathcal{P} \Rightarrow \mathcal{P} \cup \mathcal{E}_{\perp} \Rightarrow true$

▶ If rifleman A shot, then rifleman B shot as well

$$cond(ra, rb) : \mathcal{P} \Rightarrow \mathcal{P} \cup \mathcal{E}_{\top} \Rightarrow true$$

► If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

$$cond(\{\neg s, ra\}, \neg e) : \mathcal{P} \Rightarrow rev(\mathcal{P}, ra) \cup \mathcal{E}_{\perp} \Rightarrow true$$

The Last Firing Squad Example Revisited

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

$$\mathcal{P} \Rightarrow \mathit{rev}(\mathcal{P}, \mathit{ra}) \cup \mathcal{E}_{\perp}$$

The Last Firing Squad Example Revisited

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

$$\mathcal{P} \Rightarrow \mathit{rev}(\mathcal{P}, \mathit{ra}) \cup \mathcal{E}_{\perp}$$

The Last Firing Squad Example Revisited

If the captain gave no signal and rifleman A decides to shoot, then the court did not order an execution

$$\mathcal{P} \Rightarrow \mathit{rev}(\mathcal{P}, \mathit{ra}) \cup \mathcal{E}_\perp$$

Emmanuelle-Anna Dietz and Steffen Hölldobler A New Computational Logic Approach to Reason with Conditionals 48 INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

An Alternative Approach

- Katrin Schulz: Minimal Models vs. Logic Programming: The Case of Counterfactual Conditionals. Journal of Applied Non-Classical Logics, 24, 153-168: 2014
- ▶ Lemma For all $n \in \mathbb{N}$, we find $\Phi_{rev(\mathcal{P},S)} \uparrow n \subseteq \Psi_{\mathcal{P},S} \uparrow n \subseteq \Phi_{rev(\mathcal{P},S)} \uparrow (n+1)$
- ► Theorem Ifp $\Phi_{rev(\mathcal{P},S)} =$ Ifp $\Psi_{\mathcal{P},S}$

Subjunctive Conditionals-The Forest Fire Example

If there had not been so many dry leaves on the forest floor, then the forest fire would not have occurred

Byrne 2007

$$\mathcal{P} = \{ ff \leftarrow I \land \neg ab, I \leftarrow \top, ab \leftarrow \neg dI, dI \leftarrow \top \}$$
$$\mathcal{M}_{\mathcal{P}} = \langle \{ dI, I, ff \}, \{ ab \} \rangle$$

.

Subjunctive Conditionals–The Forest Fire Example

If there had not been so many dry leaves on the forest floor, then the forest fire would not have occurred

$$\mathcal{P} = \{ ff \leftarrow I \land \neg ab, I \leftarrow \top, ab \leftarrow \neg dI, dI \leftarrow \top \}$$
$$\mathcal{M}_{\mathcal{P}} = \langle \{ dI, I, ff \}, \{ ab \} \rangle$$

► Subjunctive conditional *cond*(¬*dl*, ¬*ff*)

Byrne 2007

Subjunctive Conditionals-The Forest Fire Example

 If there had not been so many dry leaves on the forest floor, then the forest fire would not have occurred
 Byrne 2007

$$\mathcal{P} = \{ ff \leftarrow I \land \neg ab, I \leftarrow \top, ab \leftarrow \neg dI, dI \leftarrow \top \}$$
$$\mathcal{M}_{\mathcal{P}} = \langle \{ dI, I, ff \}, \{ ab \} \rangle$$

▶ Subjunctive conditional *cond*(¬*dI*, ¬*ff*)

 $rev(\mathcal{P},\neg dl) = \{ ff \leftarrow l \land \neg ab, \ l \leftarrow \top, \ ab \leftarrow \neg dl, \ dl \leftarrow \bot \}$

Subjunctive Conditionals–The Forest Fire Example

 If there had not been so many dry leaves on the forest floor, then the forest fire would not have occurred
 Byrne 2007

$$\mathcal{P} = \{ ff \leftarrow I \land \neg ab, I \leftarrow \top, ab \leftarrow \neg dI, dI \leftarrow \top \}$$
$$\mathcal{M}_{\mathcal{P}} = \langle \{ dI, I, ff \}, \{ ab \} \rangle$$

▶ Subjunctive conditional *cond*(¬*dl*, ¬*ff*)

$$rev(\mathcal{P},\neg dl) = \{ ff \leftarrow l \land \neg ab, \ l \leftarrow \top, \ ab \leftarrow \neg dl, \ dl \leftarrow \bot \}$$

$$\begin{array}{c|c|c|c|c|c|c|c|} \hline & \Phi_{rev(\mathcal{P},\neg dl)} \\ \hline \uparrow 0 & \langle \emptyset, \emptyset \rangle \\ \uparrow 1 & \langle \{I\}, \{dI\} \rangle \\ \uparrow 2 & \langle \{I, ab\}, \{dI\} \rangle \\ \uparrow 3 & \langle \{I, ab\}, \{dI, ff\} \rangle \end{array}$$

The Extended Forest Fire Example

If there had not been so many dry leaves on the forest floor, then the forest fire would not have occurred Pereira, Dietz, H. 2014

$$\mathcal{P} = \{ ff \leftarrow I \land \neg ab_1, ff \leftarrow a \land \neg ab_2, \\ I \leftarrow \top, ab_1 \leftarrow \neg dl, dl \leftarrow \top, ab_2 \leftarrow \bot \} \\ \mathcal{M}_{\mathcal{P}} = \langle \{ dl, l, ff \}, \{ ab_1, ab_2 \} \rangle \\ rev(\mathcal{P}, \neg dl) = \{ ff \leftarrow I \land \neg ab_1, ff \leftarrow a \land \neg ab_2, \\ I \leftarrow \top, ab_1 \leftarrow \neg dl, dl \leftarrow \bot, ab_2 \leftarrow \bot \} \\ \mathcal{M}_{rev(\mathcal{P}, \neg dl)} = \langle \{ l, ab_1 \}, \{ dl, ab_2 \} \rangle$$

Future Work

- Evaluating subjunctive conditionals
- Applying abduction before evaluating the consequent of a conditional
- Experiments

