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Overview

Strong equivalence of logic programs is an important concept in the
theory of answer set programming.

Equilibrium logic was used to show that propositional formulas are
strongly equivalent if and only if they are equivalent in the logic of
here-and-there (Pearce 1997; Lifschitz, Pearce, and Valverde, 2001;
Ferraris 2005).

Infinitary propositional formulas have been used to define a precise
semantics for a large subset of the ASP input language of gringo,
called AG (Gebser, H., Kaminski, Lifschitz, and Schaub, ICLP’15).

We extend equilibrium logic to infinitary propositional formulas,
define and axiomatize an infinitary counterpart to the logic of
here-and-there, and show that the theorem on strong equivalence
holds in the infinitary case as well.

2 / 27 Harrison, Lifschitz, Pearce, and Valverde Infinitary Equilibrium Logic



Motivation: Semantics of Aggregate Expressions

The aggregate expression is an example of a construct that has been
added to ASP input languages but is not covered by the original
semantics.

Example: The expression

#count{X:p(X)} = 0

intuitively says that the cardinality of the set of all X such that p(X)
holds is 0.

If there are infinitely many possible values for X the meaning of this
expression cannot be represented using a propositional formula.

In AG, the meaning of aggregate expressions is captured using an
infinitary propositional formula. The definition is based on the
semantics for propositional aggregates due to Ferraris (2005).
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Review:
Strong Equivalence and

Equilibrium Logic
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Strong Equivalence

About sets H1, H2 of formulas we say that they are strongly
equivalent to each other if, for every set H of formulas, the
sets H1 ∪H and H2 ∪H have the same stable models.

Example. The sets
H1 = {p∨ q}

H2 = {¬q→ p, ¬p→ q}

are not strongly equivalent. If we add the set {p→ q, q→ p} the
resulting sets will have different stable models.

If we add {¬(p∧ q)} to both H1 and H2, the resulting sets will be
strongly equivalent.
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Logic of Here-and-There

An interpretation is a subset of σ. An HT-interpretation is a pair
〈I, J〉 of subsets of σ such that I ⊆ J. Intuitively, each atom A is
assigned one of three possible “truth values” : either A ∈ I , or
A ∈ J \ I , or A 6∈ J .

The satisfaction relation between an HT-interpretation and a formula
is defined recursively, as follows:

For every atom A from σ, 〈I, J〉 |= A
if A ∈ I.
〈I, J〉 |= F∧G if 〈I, J〉 |= F and 〈I, J〉 |= G.
〈I, J〉 |= F∨G if 〈I, J〉 |= F or 〈I, J〉 |= G.
〈I, J〉 |= F→ G if
(i) 〈I, J〉 6|= F or 〈I, J〉 |= G, and
(ii) J |= F→ G.

Satisfying HT-interpretations are called
HT-models.

J

I

σ
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Axiomatizing the Logic of Here-and-There

The first axiomatization was given without proof by Jan Łukasiewicz
(1941): add the axiom schema

(¬F→ G) → (((G→ F) → G) → G))

to intuitionistic logic. This axiom schema was rediscovered and
proved correct by Ivo Thomas (1962).

Toshio Umezawa (1959) observed that formulas of the form

F∨ (F→ G)∨ ¬G

are sound in HT.

Tsutomu Hosoi (1966) proved that HT can be axiomatized by adding
this as an axiom schema to intuitionistic logic.
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Characterizing Strong Equivalence

Strong equivalence is characterized by the logic of here-and-there.

Theorem (Lifschitz, Pearce, and Valverde, 2001; Ferraris 2005)

For any sets H1, H2 of formulas,

H1 is strongly equivalent to H2

iff

sets H1 and H2 have the same HT-models.

The if-part allows us to establish strong equivalence by reasoning
about HT-models, that is, by reasoning in intuitionistic logic +
Hosoi’s axiom.

The only-if-part tells us that, in priniciple, strong equivalence can
always be proved using this method.
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Equilibrium Models (Pearce, 1997)

The proof of the theorem on strong equivalence uses equilibrium
models and the following result.

An HT-interpretation 〈I, J〉 is total if I = J.

An equilibrium model of a set H of formulas is a total HT-model 〈J, J〉
of H such that for every proper subset I of J, 〈I, J〉 is not an
HT-model of H.

Theorem
An interpretation J is a stable model of a set H of formulas iff
〈J, J〉 is an equilibrium model of H.
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Generalizing
to Infinitary Formulas
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Infinitary Formulas

For every nonnegative integer r, (infinitary propositional) formulas
(over signature σ) of rank r are defined recursively, as follows:

every atom from σ is a formula of rank 0,

if H is a set of formulas, and r is the smallest nonnegative integer
that is greater than the ranks of all elements of H, then H∧ and
H∨ are formulas of rank r,

if F and G are formulas, and r is the smallest nonnegative integer
that is greater than the ranks of F and G, then F→ G is a
formula of rank r.

We write {F,G}∧ as F∧G, and {F,G}∨ as F∨G. The symbols > and
⊥ are abbreviations for ∅∧ and ∅∨ respectively; ¬F stands for F→ ⊥,
and F↔ G stands for (F→ G)∧ (G→ F).
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Stable Models of Infinitary Formulas (Truszczynski)

The definition of satisfaction between an interpretation and infinitary
formula is a natural generalization of the finite case.

The reduct FI of a formula F w.r.t. an interpretation I is defined to be:

For A ∈ σ, AI = ⊥ if I 6|= p; otherwise AI = A;
(H∧)I = {GI | G ∈ H}∧;
(H∨)I = {GI | G ∈ H}∨;
(G→ H)I = ⊥ if I 6|= G→ H; otherwise (G→ H)I = GI → HI.

An interpretation I is a stable model of a set H of formulas if it is
minimal among the interpretations satisfying FI for all formulas F
from H.
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Strong Equivalence of Infinitary Formulas

In the definition of satisfaction between an HT-interpretation and an
infinitary formula, the clauses for conjunction and disjunction are:

〈I, J〉 |= H∧ if for every formula F in H, 〈I, J〉 |= F;
〈I, J〉 |= H∨ if there is a formula F in H such that 〈I, J〉 |= F.

The theorem on strong equivalence and its proof in terms of
equilibrium models generalizes naturally to the infinitary case.

Theorem
For any sets H1, H2 of infinitary formulas,

H1 is strongly equivalent to H2

iff

sets H1 and H2 have the same HT-models.
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Reasoning about Aggregates in AG

Ferraris (2005) showed how formulas representing propositional
monotone and antimonotone aggregates can be simplified using
strongly equivalent transformations.

Extending this result to aggregates with global and local variables
involves reasoning about strongly equivalent transformations of
infinitary formulas.

In addition to the theorem on strong equivalence, we need an
axiomatization of the infinitary logic of here-and-there.
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Axiomatizing
the Infinitary Logic of Here-and-There
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Axioms of HT∞

The set of axioms in HT∞ is a subset of the set of axioms introduced
in the extended system of natural deduction from (H., Lifschitz, and
Truszczynski, 2014):

F⇒ F,

F∨ (F→ G)∨ ¬G,

and ∧
α∈A

∨
F∈Hα

F→ ∨
(Fα)α∈A

∧
α∈A

Fα

for every non-empty family (Hα)α∈A of sets of formulas such that its
union is bounded; the disjunction in the consequent extends over all
elements (Fα)α∈A of the Cartesian product of the family (Hα)α∈A.
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Inference Rules of HT∞

Derivable objects are (infinitary) sequents—expressions of the form
Γ ⇒ F, where F is an infinitary formula, and Γ is a finite set of
infinitary formulas (“F under assumptions Γ ”).

(∧I) Γ ⇒ H for all H ∈ H
Γ ⇒ H∧ (∧E) Γ ⇒ H∧

Γ ⇒ H
(H ∈ H)

(∨I) Γ ⇒ H
Γ ⇒ H∨ (H ∈ H) (∨E) Γ ⇒ H∨ ∆,H⇒ F for all H ∈ H

Γ, ∆⇒ F

(→I) Γ, F⇒ G
Γ ⇒ F→ G

(→E) Γ ⇒ F ∆⇒ F→ G
Γ,∆⇒ G

(W) Γ ⇒ F
Γ, ∆⇒ F
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Proving Completeness of HT∞

The set of theorems of HT∞ is the smallest set that includes the
axioms and is closed under the inference rules.

Theorem (Soundness and Completeness of HT∞)

A formula is satisfied by all HT-interpretations iff it is a theorem
of HT∞.

Our proof of completeness is a generalization of a new proof of
Hosoi’s theorem.

The new proof is based on Kalmár’s completeness proof for classical
propositional logic.

18 / 27 Harrison, Lifschitz, Pearce, and Valverde Infinitary Equilibrium Logic



Kalmár’s Completeness Proof for Classical Logic

For any interpretation I, let MI be the set I ∪ {¬A | A ∈ σ \ I}.

Lemma (Kalmár 1935)

For any formula F and interpretation I,

(i) if I satisfies F then F is derivable from MI;

(ii) if I does not satisfy F then ¬F is derivable from MI.

Let F be a tautology containing atoms p, q only. By the lemma, F is
derivable from each of the following formulas:

p∧ q, p∧ ¬q, ¬p∧ q, ¬p∧ ¬q.

It remains to observe that by applying distributivity to

(p∨ ¬p)∧ (q∨ ¬q)

we obtain the disjunction of these formulas.
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Formulas Characterizing an HT-Interpretation

Recall that MI stands for

I ∪ {¬A | A ∈ σ \ I}.

For any HT-interpretation 〈I, J〉, let MIJ be the set

I ∪ {¬A | A ∈ σ \ J} ∪ {¬¬A | A ∈ J \ I} ∪ {A→ B | A,B ∈ J \ I} .

q, r

p

sExample: If 〈I, J〉 = 〈{p}, {p, q, r}〉 and
σ = {p, q, r, s} then

MIJ = { p ,

¬s ,

¬¬q,¬¬r ,

q→ r, r→ q, q→ q, r→ r} .
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Main Lemma

In the statement of the lemma, derivability refers to derivability in
Hosoi’s deductive system.

Lemma

For any formula F and HT-interpretation 〈I, J〉,
(i) if 〈I, J〉 satisfies F then F is derivable from MIJ;

(ii) if 〈I, J〉 does not satisfy F but J satisfies F then for every atom
q in J \ I, F↔ q is derivable from MIJ;

(iii) if J does not satisfy F then ¬F is derivable from MIJ.
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Deriving Hosoi’s Theorem

If F is HT-tautological then by part (i) of the main lemma it is
derivable from MIJ for any HT-interpretation 〈I, J〉.

By applying distributivity to the conjunction of the formulas
F∨ (F→ G)∨ ¬G for all literals F,G, we can prove:

Lemma
The disjunction of the formulas∧

F∈MIJ

F

over all HT-interpretations 〈I, J〉 is provable in Hosoi’s system.

It follows that F is provable.

This proof can be generalized to the infinitary case.
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Conclusions

We have

defined the infinitary version of the logic of here-and-there,

defined its nonmonotonic counterpart—the infinitary version of
equilibrium logic,

verified that stable models of infinitary formulas can be
characterized in terms of infinitary equilibrium logic,

verified that infinitary propositional formulas are strongly
equivalent to each other iff they are equivalent in the infinitary
logic of here-and-there,

found an axiomatization of that logic.

New work: (H., Lifschitz, and Michael, Finite Proofs for Infinitary
Formulas, ASPOCP’15.)
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The End

Questions?
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