
On the Relationship between

Two Modular Action Languages:
A Translation from MAD into ALM

Daniela Inclezan
Miami University

Introduction

Action languages are high-level declarative
languages dedicated to the concise and elegant
representation of dynamic systems.

Dynamic system – system that can be represented by a
transition diagram whose nodes correspond to possible states
and arcs are labeled by actions.

Action languages like ℬ (𝒜ℒ), 𝒞, 𝒞 + etc. were
introduced to address important problems in the field
of RAC.

2

Introduction (cont.)

A next challenge: the creation of libraries of
commonsense knowledge and large knowledge bases
about dynamic domains.

• Traditional action languages lack the means for the
reuse and structuring of knowledge needed to
address this problem.

• Modular action languages
▫ MAD (Lifschitz and Ren 2006; Erdogan and Lifschitz, 2006) and
▫ ALM (Gelfond and Inclezan 2009; Inclezan and Gelfond 2015)

were introduced to address this problem.

3

Introduction (cont.)

MAD and ALM have common goals

▫ How to represent actions, especially in terms of
previously defined actions? (e.g., carry is defined in
terms of move as to move while holding).

They use different mechanisms for the reuse of
knowledge:

▫ MAD: import statements and renaming clauses

▫ ALM: objects, including actions, are organized in a
sort hierarchy defined using the specialization
construct.

4

Goal of This Work

Study the relationship between MAD and ALM,
and especially that between their mechanisms
for the reuse of knowledge.

In this paper:

1. Provide a translation from MAD into ALM.

2. Determine a class of MAD action descriptions
for which the translation produces transition
diagrams isomorphic to the original ones,
modulo the common vocabulary.

5

Language ALM

6

Language ALM

• Dynamic system described by a system description:

▫ Theory – one or more modules on a common theme
organized in hierarchy

▫ Structure – interpretation of symbols in the theory.

• Module:

▫ a collection of declarations of sorts and functions,
together with a set of axioms.

▫ organizes knowledge into smaller reusable pieces of code.

• Actions are defined in terms of previously defined
actions via the specialization construct.

7

ALM: Theory/ Module Example

𝐬𝐨𝐫𝐭 𝐝𝐞𝐜𝐥𝐚𝐫𝐚𝐭𝐢𝐨𝐧𝐬
𝑝𝑜𝑖𝑛𝑡𝑠, 𝑡ℎ𝑖𝑛𝑔𝑠 ∷ 𝐮𝐧𝐢𝐯𝐞𝐫𝐬𝐞
𝑎𝑔𝑒𝑛𝑡𝑠, 𝑐𝑎𝑟𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ∷ 𝑡ℎ𝑖𝑛𝑔𝑠

𝑚𝑜𝑣𝑒 ∷ 𝐚𝐜𝐭𝐢𝐨𝐧𝐬
𝐚𝐭𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐬

𝑎𝑐𝑡𝑜𝑟 ∶ 𝑎𝑔𝑒𝑛𝑡𝑠
𝑜𝑟𝑖𝑔𝑖𝑛 , 𝑑𝑒𝑠𝑡 ∶ 𝑝𝑜𝑖𝑛𝑡𝑠

𝑐𝑎𝑟𝑟𝑦 ∷ 𝑚𝑜𝑣𝑒
𝐚𝐭𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐬

𝑐𝑎𝑟𝑟𝑖𝑒𝑑_𝑡ℎ𝑖𝑛𝑔 ∶ 𝑐𝑎𝑟𝑟𝑖𝑎𝑏𝑙𝑒𝑠

8

ALM: Module Example (cont.)

𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝐝𝐞𝐜𝐥𝐚𝐫𝐚𝐭𝐢𝐨𝐧𝐬

𝐟𝐥𝐮𝐞𝐧𝐭𝐬 𝐛𝐚𝐬𝐢𝐜

𝐭𝐨𝐭𝐚𝐥 𝑙𝑜𝑐_𝑖𝑛 ∶ 𝑡ℎ𝑖𝑛𝑔𝑠 → 𝑝𝑜𝑖𝑛𝑡𝑠

𝐚𝐱𝐢𝐨𝐦𝐬
𝑜𝑐𝑐𝑢𝑟𝑠 𝑋 𝐜𝐚𝐮𝐬𝐞𝐬 𝑙𝑜𝑐_𝑖𝑛 𝐴 = 𝐷 𝐢𝐟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑋,𝑚𝑜𝑣𝑒 ,

𝑎𝑐𝑡𝑜𝑟 𝑋 = 𝐴,
𝑑𝑒𝑠𝑡 𝑋 = 𝐷.

. . .

9

ALM: Structure Example

𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞
𝐢𝐧𝐬𝐭𝐚𝐧𝐜𝐞𝐬

𝑗𝑜ℎ𝑛, 𝑏𝑜𝑏 𝐢𝐧 𝑎𝑔𝑒𝑛𝑡𝑠

𝑙𝑜𝑛𝑑𝑜𝑛, 𝑝𝑎𝑟𝑖𝑠 𝐢𝐧 𝑝𝑜𝑖𝑛𝑡𝑠

𝑔𝑜 𝐴, 𝑃 𝐢𝐧 𝑚𝑜𝑣𝑒
𝑎𝑐𝑡𝑜𝑟 = 𝐴
𝑑𝑒𝑠𝑡 = 𝑃

10

ALM: Informal Semantics

• Translate system descriptions of ALM into programs of
ASP{f} (Balduccini 2013).

• Answers sets of such programs define the states and
transitions of transition diagrams.

• Translation example:
𝑜𝑐𝑐𝑢𝑟𝑠 𝑋 𝐜𝐚𝐮𝐬𝐞𝐬 𝑙𝑜𝑐_𝑖𝑛 𝐴 = 𝐷 𝐢𝐟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑋,𝑚𝑜𝑣𝑒 ,

𝑎𝑐𝑡𝑜𝑟 𝑋 = 𝐴,
𝑑𝑒𝑠𝑡 𝑋 = 𝐷.

becomes
𝑙𝑜𝑐_𝑖𝑛 𝐴, 𝐼 + 1 = 𝐷 ← 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑋,𝑚𝑜𝑣𝑒 ,

𝑜𝑐𝑐𝑢𝑟𝑠 𝑋, 𝐼 ,
𝑎𝑐𝑡𝑜𝑟 𝑋 = 𝐴, 𝑑𝑒𝑠𝑡 𝑋 = 𝐷.

11

Language MAD

12

Language MAD

• Dynamic system described by an action
description:

▫ Declarations of sorts and subsort relations

▫ One or more modules

• A module consists of:

▫ declarations of objects, actions, fluents, and variables;
▫ import statements; and
▫ axioms.

• Actions are represented using terms, not sorts.

• Import statements allow the renaming of sorts,
fluents, and actions (and thus defining special case actions).

13

MAD: Action Description Example

Encoding extracted from (Erdogan 2008).

𝐬𝐨𝐫𝐭𝐬
𝐷𝑜𝑚𝑎𝑖𝑛; 𝑅𝑎𝑛𝑔𝑒; 𝑇ℎ𝑖𝑛𝑔; 𝑃𝑙𝑎𝑐𝑒;

𝐦𝐨𝐝𝐮𝐥𝐞 𝐴𝑆𝑆𝐼𝐺𝑁;
𝐚𝐜𝐭𝐢𝐨𝐧𝐬 𝐴𝑠𝑠𝑖𝑔𝑛 𝐷𝑜𝑚𝑎𝑖𝑛, 𝑅𝑎𝑛𝑔𝑒 ;
𝐟𝐥𝐮𝐞𝐧𝐭𝐬 𝑉𝑎𝑙𝑢𝑒 𝐷𝑜𝑚𝑎𝑖𝑛 ∶ 𝑠𝑖𝑚𝑝𝑙𝑒 𝑅𝑎𝑛𝑔𝑒 ;
𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 𝑥 ∶ 𝐷𝑜𝑚𝑎𝑖𝑛; 𝑦 ∶ 𝑅𝑎𝑛𝑔𝑒;
𝐚𝐱𝐢𝐨𝐦𝐬
𝐢𝐧𝐞𝐫𝐭𝐢𝐚𝐥 𝑉𝑎𝑙𝑢𝑒 𝑥 ;
𝐞𝐱𝐨𝐠𝐞𝐧𝐨𝐮𝐬 𝐴𝑠𝑠𝑖𝑔𝑛 𝑥, 𝑦 ;
𝐴𝑠𝑠𝑖𝑔𝑛 𝑥, 𝑦 𝐜𝐚𝐮𝐬𝐞𝐬 𝑉𝑎𝑙𝑢𝑒 𝑥 = 𝑦;

14

MAD: Action Description (cont.)

𝐦𝐨𝐝𝐮𝐥𝐞 𝑀𝑂𝑉𝐸;

𝐚𝐜𝐭𝐢𝐨𝐧𝐬 𝑀𝑜𝑣𝑒 𝑇ℎ𝑖𝑛𝑔, 𝑃𝑙𝑎𝑐𝑒 ;
𝐟𝐥𝐮𝐞𝐧𝐭𝐬 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑖𝑛𝑔 ∶ 𝑠𝑖𝑚𝑝𝑙𝑒 𝑃𝑙𝑎𝑐𝑒 ;

𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 𝑥 ∶ 𝑇ℎ𝑖𝑛𝑔; 𝑦 ∶ 𝑃𝑙𝑎𝑐𝑒;

𝐢𝐦𝐩𝐨𝐫𝐭 𝐴𝑆𝑆𝐼𝐺𝑁;
𝐷𝑜𝑚𝑎𝑖𝑛 𝐢𝐬 𝑇ℎ𝑖𝑛𝑔;
𝑅𝑎𝑛𝑔𝑒 𝐢𝐬 𝑃𝑙𝑎𝑐𝑒;
𝑉𝑎𝑙𝑢𝑒 𝑥 𝐢𝐬 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑥);

𝐴𝑠𝑠𝑖𝑔𝑛 𝑥, 𝑝 𝐢𝐬 𝑀𝑜𝑣𝑒(𝑥, 𝑝);

𝐚𝐱𝐢𝐨𝐦𝐬

…

15

MAD: Action Description (cont.)

𝐦𝐨𝐝𝐮𝐥𝐞 𝑀𝐵;
𝐨𝐛𝐣𝐞𝐜𝐭𝐬 𝑀𝑜𝑛𝑘𝑒𝑦 ∶ 𝑇ℎ𝑖𝑛𝑔;

𝑃1, 𝑃2 ∶ 𝑃𝑙𝑎𝑐𝑒;
𝐚𝐜𝐭𝐢𝐨𝐧𝐬 𝑊𝑎𝑙𝑘 𝑃𝑙𝑎𝑐𝑒 ;
𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 𝑝 ∶ 𝑃𝑙𝑎𝑐𝑒;

𝐢𝐦𝐩𝐨𝐫𝐭 𝑀𝑂𝑉𝐸;
𝑀𝑜𝑣𝑒 𝑀𝑜𝑛𝑘𝑒𝑦, 𝑝 𝐢𝐬 𝑊𝑎𝑙𝑘(𝑝);

16

MAD: Informal Semantics

• Flatten action descriptions and translate them into 𝒞+.

• Flattening process:

▫ Replace sort names by new names.

▫ Add a prefix of the type “In.” to variables, renamed fluents,
and renamed actions.

▫ Add axioms to capture the renaming of fluents and actions.

• Example (axioms added when flattening):

I1. 𝐴𝑠𝑠𝑖𝑔𝑛 I2. I1. 𝑥, I2. I1. 𝑦 𝐜𝐚𝐮𝐬𝐞𝐬 I1. 𝑉𝑎𝑙𝑢𝑒 I2. I1. 𝑥 = I2. I1. 𝑦;

I1. 𝑉𝑎𝑙𝑢𝑒 I2. 𝑥 ≡ 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(I2. 𝑥);

I1. 𝐴𝑠𝑠𝑖𝑔𝑛 I2. 𝑥, I2. 𝑝 ≡ I2.𝑀𝑜𝑣𝑒(I2. 𝑥, I2. 𝑝);

I2.𝑀𝑜𝑣𝑒 𝑀𝑜𝑛𝑘𝑒𝑦, 𝑝 ≡ 𝑊𝑎𝑙𝑘(𝑝);

17

Translation

18

Translation: Main Challenges

1. Actions are represented using terms of MAD. In
ALM, there are action (sub)sorts and action
instances.

2. Sorts can be renamed in MAD; renamed sorts are
synonymous to the original ones. ALM can only
describe special cases.

3. Fluents can be renamed in MAD. There is no
equivalent concept in ALM.

4. Objects can be defined in MAD modules. In ALM,
only very general objects may be included in
modules.

19

Translation: Restrictions

I limited myself to action descriptions of MAD

• whose import statements and axioms satisfied
certain syntactic constraints and

• only contained simple inertial fluents and
exogenous actions.

Let us call such action descriptions simple.

20

Translation Key Points: Sorts

21

• Translate renaming clauses for sorts via the
specialization construct.

𝐢𝐦𝐩𝐨𝐫𝐭 𝐴𝑆𝑆𝐼𝐺𝑁;
𝐷𝑜𝑚𝑎𝑖𝑛 𝐢𝐬 𝑇ℎ𝑖𝑛𝑔;
𝑅𝑎𝑛𝑔𝑒 𝐢𝐬 𝑃𝑙𝑎𝑐𝑒;

𝑡ℎ𝑖𝑛𝑔 ∷ 𝑑𝑜𝑚𝑎𝑖𝑛
𝑝𝑙𝑎𝑐𝑒 ∷ 𝑟𝑎𝑛𝑔𝑒

Translation Key Points: Actions (1)

• Translate a MAD action into an action subsort of
ALM if

▫ there are axioms about it or

▫ it appears on the RHS of a renaming clause that does
not contain objects.

• Add attributes to represent parameters.

• Modify axioms about actions to reference the added
attributes.

22

Example: Actions (1)

𝐴𝑠𝑠𝑖𝑔𝑛 𝐷𝑜𝑚𝑎𝑖𝑛, 𝑅𝑎𝑛𝑔𝑒 ;

𝐴𝑠𝑠𝑖𝑔𝑛 𝑥, 𝑦 𝐜𝐚𝐮𝐬𝐞𝐬 𝑉𝑎𝑙𝑢𝑒 𝑥 = 𝑦;

𝑎𝑠𝑠𝑖𝑔𝑛 ∷ 𝐚𝐜𝐭𝐢𝐨𝐧𝐬
𝐚𝐭𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐬
𝑎𝑡𝑡𝑟1_𝑎𝑠𝑠𝑖𝑔𝑛 ∶ 𝑑𝑜𝑚𝑎𝑖𝑛
𝑎𝑡𝑡𝑟2_𝑎𝑠𝑠𝑖𝑔𝑛 ∶ 𝑟𝑎𝑛𝑔𝑒

𝑜𝑐𝑐𝑢𝑟𝑠 𝐴 𝐜𝐚𝐮𝐬𝐞𝐬 𝑣𝑎𝑙𝑢𝑒 𝑋 = 𝑌 𝐢𝐟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐴, 𝑎𝑠𝑠𝑖𝑔𝑛 ,

𝑎𝑡𝑡𝑟1_𝑎𝑠𝑠𝑖𝑔𝑛 𝐴 = 𝑋,

𝑎𝑡𝑡𝑟2_𝑎𝑠𝑠𝑖𝑔𝑛(𝐴) = 𝑌.

23

Example: Actions (1)

24

𝑀𝑜𝑣𝑒 𝑇ℎ𝑖𝑛𝑔, 𝑃𝑙𝑎𝑐𝑒 ;

𝐢𝐦𝐩𝐨𝐫𝐭 𝐴𝑆𝑆𝐼𝐺𝑁;
𝐴𝑠𝑠𝑖𝑔𝑛 𝑥, 𝑝 𝐢𝐬 𝑀𝑜𝑣𝑒(𝑥, 𝑝);

𝑚𝑜𝑣𝑒 ∷ 𝑎𝑠𝑠𝑖𝑔𝑛
𝐚𝐭𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐬
𝑎𝑡𝑡𝑟1_𝑚𝑜𝑣𝑒 ∶ 𝑡ℎ𝑖𝑛𝑔
𝑎𝑡𝑡𝑟2_𝑚𝑜𝑣𝑒 ∶ 𝑝𝑙𝑎𝑐𝑒

𝑎𝑡𝑡𝑟1_𝑎𝑠𝑠𝑖𝑔𝑛 𝐴 = 𝑋 𝐢𝐟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐴,𝑚𝑜𝑣𝑒 ,
𝑎𝑡𝑡𝑟1_𝑚𝑜𝑣𝑒 𝐴 = 𝑋.

𝑎𝑡𝑡𝑟2 _𝑎𝑠𝑠𝑖𝑔𝑛 𝐴 = 𝑋 𝐢𝐟 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝐴,𝑚𝑜𝑣𝑒 ,
𝑎𝑡𝑡𝑟2_𝑚𝑜𝑣𝑒(𝐴) = 𝑋.

Translation Key Points: Actions (2)

25

• Translate all other MAD actions (given the
mentioned restrictions) as instances of actions.

𝑊𝑎𝑙𝑘 𝑃𝑙𝑎𝑐𝑒 ;

𝐢𝐦𝐩𝐨𝐫𝐭 𝑀𝑂𝑉𝐸;
𝑀𝑜𝑣𝑒 𝑀𝑜𝑛𝑘𝑒𝑦, 𝑝 𝐢𝐬 𝑊𝑎𝑙𝑘(𝑝);

𝑤𝑎𝑙𝑘(𝑃) 𝐢𝐧 𝑚𝑜𝑣𝑒
𝑎𝑡𝑡𝑟1_𝑚𝑜𝑣𝑒 = 𝑚𝑜𝑛𝑘𝑒𝑦
𝑎𝑡𝑡𝑟2_𝑚𝑜𝑣𝑒 = 𝑃

Translation Key Points: Fluents

26

• Translate renaming clauses for fluents via state
constraints.

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑖𝑛𝑔 ∶ 𝑠𝑖𝑚𝑝𝑙𝑒 𝑃𝑙𝑎𝑐𝑒 ;

𝐢𝐦𝐩𝐨𝐫𝐭 𝐴𝑆𝑆𝐼𝐺𝑁;
𝑉𝑎𝑙𝑢𝑒 𝑥 𝐢𝐬 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑥);

𝐟𝐥𝐮𝐞𝐧𝐭𝐬 𝐛𝐚𝐬𝐢𝐜 𝐭𝐨𝐭𝐚𝐥 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶ 𝑡ℎ𝑖𝑛𝑔 → 𝑝𝑙𝑎𝑐𝑒

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑋1 = 𝑋2 𝐢𝐟 𝑣𝑎𝑙𝑢𝑒(𝑋1) = 𝑋2.
𝑣𝑎𝑙𝑢𝑒 𝑋1 = 𝑋2 𝐢𝐟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑋1 = 𝑋2.

Issue 1

27

𝐦𝐨𝐝𝐮𝐥𝐞 𝑀𝐵;
𝐨𝐛𝐣𝐞𝐜𝐭𝐬 𝐵𝑜𝑥,𝑀𝑜𝑛𝑘𝑒𝑦 ∶ 𝑇ℎ𝑖𝑛𝑔; 𝑃1 , 𝑃2 ∶ 𝑃𝑙𝑎𝑐𝑒;
𝐚𝐜𝐭𝐢𝐨𝐧𝐬 𝑃𝑢𝑠ℎ𝐵𝑜𝑥 𝑃𝑙𝑎𝑐𝑒 ;
𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬 𝑝 ∶ 𝑃𝑙𝑎𝑐𝑒;

𝐢𝐦𝐩𝐨𝐫𝐭 𝑀𝑂𝑉𝐸;
𝑀𝑜𝑣𝑒 𝑀𝑜𝑛𝑘𝑒𝑦, 𝑝 𝐢𝐬 𝑃𝑢𝑠ℎ𝐵𝑜𝑥(𝑝);

𝐢𝐦𝐩𝐨𝐫𝐭 𝑀𝑂𝑉𝐸;
𝑀𝑜𝑣𝑒 𝐵𝑜𝑥, 𝑝 𝐢𝐬 𝑃𝑢𝑠ℎ𝐵𝑜𝑥(𝑝);

𝑝𝑢𝑠ℎ𝑏𝑜𝑥(𝑃) 𝐢𝐧 𝑚𝑜𝑣𝑒
𝑎𝑡𝑡𝑟1_𝑚𝑜𝑣𝑒 = 𝑚𝑜𝑛𝑘𝑒𝑦
𝑎𝑡𝑡𝑟1_𝑚𝑜𝑣𝑒 = 𝑏𝑜𝑥
𝑎𝑡𝑡𝑟2_𝑚𝑜𝑣𝑒 = 𝑃

Issue 1: Solution

• Expand attributes by adding a new parameter
(their original range) and making them range
over Booleans.

𝑝𝑢𝑠ℎ𝑏𝑜𝑥(𝑃) 𝐢𝐧 𝑚𝑜𝑣𝑒
𝑎𝑡𝑡𝑟1_𝑚𝑜𝑣𝑒 𝑚𝑜𝑛𝑘𝑒𝑦 = 𝑡𝑟𝑢𝑒
𝑎𝑡𝑡𝑟1_𝑚𝑜𝑣𝑒 𝑏𝑜𝑥 = 𝑡𝑟𝑢𝑒
𝑎𝑡𝑡𝑟2_𝑚𝑜𝑣𝑒 𝑃 = 𝑡𝑟𝑢𝑒

28

Issue 2

Two fluents

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑇ℎ𝑖𝑛𝑔 ∶ 𝑠𝑖𝑚𝑝𝑙𝑒 𝑃𝑙𝑎𝑐𝑒 ;
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑇ℎ𝑖𝑛𝑔 ∶ 𝑠𝑖𝑚𝑝𝑙𝑒 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟 ;

𝐢𝐦𝐩𝐨𝐫𝐭 𝐴𝑆𝑆𝐼𝐺𝑁;
𝑉𝑎𝑙𝑢𝑒 𝑥 𝐢𝐬 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑥);

𝐢𝐦𝐩𝐨𝐫𝐭 𝐴𝑆𝑆𝐼𝐺𝑁;

𝑉𝑎𝑙𝑢𝑒(𝑡) 𝐢𝐬 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑡);

29

𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑋1 = 𝑋2 𝐢𝐟 𝑣𝑎𝑙𝑢𝑒(𝑋1) = 𝑋2.
𝑣𝑎𝑙𝑢𝑒 𝑋1 = 𝑋2 𝐢𝐟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑋1 = 𝑋2.
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋1 = 𝑋2 𝐢𝐟 𝑣𝑎𝑙𝑢𝑒(𝑋1) = 𝑋2.
𝑣𝑎𝑙𝑢𝑒 𝑋1 = 𝑋2 𝐢𝐟 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑋1 = 𝑋2.

value is
no longer
a function

Issue 2: Solution

• Expand renamed functions by adding a new parameter (the

original range) and making them range over Booleans.

𝑝𝑙𝑎𝑐𝑒, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟 ∷ 𝑟𝑎𝑛𝑔𝑒

𝑣𝑎𝑙𝑢𝑒 ∶ 𝑑𝑜𝑚𝑎𝑖𝑛 × 𝑟𝑎𝑛𝑔𝑒 → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛𝑠
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶ 𝑡ℎ𝑖𝑛𝑔 → 𝑝𝑙𝑎𝑐𝑒
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∶ 𝑡ℎ𝑖𝑛𝑔 → 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑟

𝑣𝑎𝑙𝑢𝑒 𝑋, 𝑌 𝐢𝐟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑋 = 𝑌.
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑋 = 𝑌 𝐢𝐟 𝑣𝑎𝑙𝑢𝑒 𝑋, 𝑌 .
¬𝑣𝑎𝑙𝑢𝑒 𝑋, 𝑌 𝐢𝐟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑋 ≠ 𝑌.
¬𝑣𝑎𝑙𝑢𝑒 𝑋, 𝑌 𝐢𝐟 𝑣𝑎𝑙𝑢𝑒 𝑋, 𝑍 , 𝑌 ≠ 𝑍,

𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑋, 𝑝𝑙𝑎𝑐𝑒 , 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑌, 𝑝𝑙𝑎𝑐𝑒 .

This works if sorts place and supporter have disjoint interpretations.

30

Properties of the Translation

31

Properties of the Translation

Goal:

• Find a class of MAD action descriptions whose
ALM translations define transition diagrams
isomorphic to the original ones, modulo the
common vocabulary.

32

Preliminary Definition

• Let 𝐴𝐷 be a MAD action description and 𝛼 𝐴𝐷 its
corresponding ALM translation.

A function of 𝐴𝐷
𝑓 𝑠1, … , 𝑠𝑛 ∶ 〈𝑡𝑦𝑝𝑒〉(𝑠𝑛+1)

is well-defined if for every interpretation 𝐼 of 𝛼 𝐴𝐷
and every pair of functions

𝑔 𝑧1, … , 𝑧𝑛 ∶ 〈𝑡𝑦𝑝𝑒〉(𝑧𝑛+1) and
ℎ 𝑐1, … , 𝑐𝑛 ∶ 𝑡𝑦𝑝𝑒 𝑐𝑛+1

such that both 𝑔 and ℎ are special cases of 𝑓,

∃𝑘, 1 ≤ 𝑘 ≤ 𝑛, such that 𝐼 𝑧𝑘 ∩ 𝐼 𝑐𝑘 = ∅.

33

Proposition (Informal)

• If all functions of a simple action description are
well-defined then its transition diagram will be
isomorphic to the transition diagram defined by
its ALM translation, modulo the following
differences:

34

States: MAD fluents contain additional prefixes
ALM states contain some expanded fluents
and predefined statics

Transitions: MAD transition will be labeled by additional
actions (the actions that were renamed)

Conclusions and Future Work

• Proposed a translation from MAD into ALM and a class of
action descriptions for which the translation is adequate.

▫ This allows for libraries of knowledge developed in MAD to be
seamlessly combined with knowledge modules written in ALM.

• Result: a better understanding of the relationship
between the constructs for the reuse of knowledge and the
description of actions as special cases of other actions.

• Future work: study other constructs of MAD.

35

