

Logic Programming with Graded Modality

Zhizheng Zhang, Shutao Zhang seu_zzz@seu.edu.cn

School of Computer Science and Engineering Southeast University Nanjing, China

Motivation

- Express modal concepts: "at least as many as" and "at most as many as" naturally.
- Find natural and intuitive semantics for Epistemic Specification

Combine the basic idea in Graded Modal Logic and ASP!

Logic Programs with Graded Modality

- Syntax
 - Rule l_1 or ... or l_k :- $e_1, ..., e_m, s_1, ..., s_n$. $k \ge 0, m \ge 0, n \ge 0$
 - Literals
 - Extended literal *e*
 - » Objective literals: l
 - » Default literals: not l
 - Subject literals:
 - **»** With upper bound: $M_{[lb:ub]} e$
 - » Without upper bound: $M_{[1b:]} e$

M[lb:ub]*e* intuitively means: it is known that the number of belief sets where *e* is true is between lb and ub.

Safe Rule:

A rule is SAFE if each variable in it appears in the positive body of the rule.

 The positive body of a rule r is composed of the extended literals containing no not in its body.

Semantics(ground program):

Let *W* be a non-empty collection of consistent sets of ground objective literals, $w \in W$,

- $\langle W, w \rangle \models l \text{ if } l \in w$
- $\langle W, w \rangle \models not \ l \ if \ l \notin w$
- $\texttt{-} < W, w > \models \mathsf{M}_{[lb:ub]}e \text{ if } lb \leq |\{w \in W| < W, w > \models e\}| \leq ub$
- $< W, w > \models \mathbf{M}_{[lb:]}e \text{ if } |\{w \in W| < W, w > \models e\}| \ge lb$

Then, for a rule r in Π , $\langle W, w \rangle \models r$ if

- $\exists l \in head(r): \langle W, w \rangle \models l$
- $\exists t \in body(r) : < W, w > \not\models t.$

W is a model of a program Π , if $\forall r \in \Pi$, and $\forall w \in W$, $\langle W, w \rangle \models r$

A Special Model: World View I

- ASP Idea. [Gelfond,2014] give three principles for rational reasoning.
- Believe in the head of a rule if you believe in its body (Satisfiability principle)
- Do not believe in contractions (Consistency principle)
- Believe nothing you are not forced to believe(Rationality principle)

World View will be defined on

≻the principles (From ASP), and

➤ the above satisfaction notion for literals(From GML), and rules (Satisfiability principle in ASP).

A Special Model: World View II

• Part I. For a disjunctive logic program, its world view is the non-empty set of all its answer sets.

A Special Model: World View III

Part II. For an arbitrary *LPGM* program ∏, a non-empty set *W* is its world view if *W* is the world view of a DLP ∏^W which is a reduct of ∏ by the following laws.

A Special Model: World View IV

- \prod^{W}
- 1. Removing from all rules containing subjective literals not satisfied by *W*.
- 2. Replacing all other occurrences of subjective literals of the form $M_{[1b: ub]} l$ or $M_{[1b:]} l$ where lb=|W| by l.
- 3. Removing all other occurrences of subjective literals of the form $M_{[1b: ub]}$ not *l* or $M_{[1b:]}$ not *l* where lb=|W|.
- 4. Replacing all other occurrences of subjective literals of the form $K_{[0:0]} e$ by e^{not} . (e^{not} is not l if e is l, and e^{not} is l if e is not l)
- 5. Replacing other occurrences of subjective literals of the form M ω *e* by *e* and *e*^{*not*} respectively, that is, two rules should be created, one in which M ω *e* is replaced by *e* and one in which M ω *l* is replaced by *e*^{*not*}.

A Special Model: World View V

• Example \prod :

 $l :- \mathbf{M}_{[1:]}l.$

For $W=\{\{\}\}, \prod^{W}$ is empty and has a world view $\{\{\}\},$ therefore, $\{\{\}\}$ is a world view of \prod .

For $W = \{\{l\}\}, \prod^{W}$ has one rule: *l*:- *l*., and thus has a world view $\{\{\}\}$. Hence, $\{\{l\}\}$ is not a world view of \prod .

A Special Model: World View VI

- Law 1: Removing from all rules containing subjective literals not satisfied by *W*.
- Interpretation: The law directly comes from the notion of Rule Satisfiability and Rationality Principle in answer set programming which means if a rules body cannot be satisfied (believed in), the rule will contribute nothing;

A Special Model: World View VII

- Law 2: Replacing all other occurrences of subjective literals of the form M_[1b: ub] *l* or M_[1b:] *l* where lb=|*W*| by *l*.
- Interpretation: if it is known that there are at least lb number of belief sets where *l* is true and there are totally lb belief sets in *W*, then, by the meaning of the gradation based on counting, *l* must be believed with regard to each belief set in *W*. Then, by the Rationality Principle, you are forced to believe *l* with regard to each belief set. Hence, M[1b: ub] *l* or M[1b:] *l* should be replaced by *l* (instead of being removed) to avoid self-support;

A Special Model: World View VII

- Law 3: Removing all other occurrences of subjective literals of the form M_[1b: ub] *not l* or M_[1b:] *not l* where lb=|W/.
- **Interpretation**: if it is known that there are at least lb number of belief sets where *l* is not true and there are totally lb belief sets in *W*, then, *not l* must be believed with regard to each belief set in *W*. Then, removing M_[1b: ub] *not l* or M_[1b:] *not l* in a rule will not effect the satisfiability of the rule.

A Special Model: World View VIII

- Law 4: Replacing all other occurrences of subjective literals of the form M_[0:0] *e* by *e^{not}*.
- Interpretation: if it is known that *e* is not believed with regard to each belief set in *W*, then we are forced to believe *e^{not}* with regard to each belief set in *W*;

A Special Model: World View IX

- Law 5: Replacing other occurrences of subjective literals of the form $M\omega e$ by e and e^{not} respectively.
- Interpretation: The last law states that, if it is known that there are at least lb number of belief sets where *e* is believed, and the number of belief sets in *W* is strict greater than lb, then *e* may be believed or may not be believed with regard to a belief set in *W*.

• Example using Law 5. $l := M_{[0:]}l$.

For
$$W = \{\{\}\}(|W|=1), \prod^{W} is:$$

 $l:-l.$
 $l:-not l.$

Relation to Epistemic Specification

• Latest *Epistemic Specification* (2014 version): ASP^{KM}

where K, M, *not* K, *not* M are used to extend ASP.

Theorem. An ASP^{KM} Program can be represented as a LPGM program by $Kl \Rightarrow M_{[0:0]}not l$ $Ml \Rightarrow M_{[1:]}l$ and *not not l* respectively. *not* $Kl \Rightarrow M_{[1:]}not l$ and *not l* respectively *not* $Ml \Rightarrow M_{[0:0]}l$

A Sound and Complete Algorithm for Computing World Views

Algorithm 1 LPGMSolver.

Input:

 Π : A LPGM;

Output:

All world views of Π ;

- 1: $n = max\{lb|M_{[lb:ub]}e \text{ or } M_{[lb:]}e \text{ in } \Pi\}$ {computes the maximal lb of subjective literals in $\Pi\}$
- 2: $WV = \emptyset$

3: for every natural number $1 \le k \le n$ do

4: $WV_k = WViSolver(\Pi, k)$ {computes all world views of size k for Π }

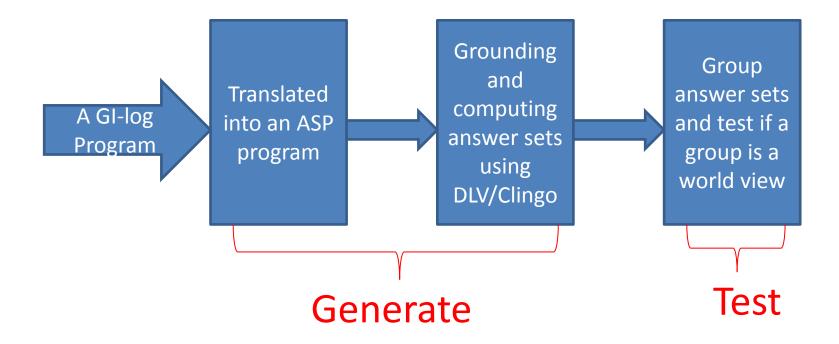
 $5: \quad WV = \overline{WV \cup WV_k}$

6: end for

7: $WV_{>n} = WV_{giSolver}(\Pi, n)$ {computes all world views of size strict greater than n for Π } 8: $WV = WV \cup WV_{>n}$ 9: output WV

An Algorithm for Computing World Views

WViSolver and WVgiSolver



Complexity of the Algorithm

- The algorithm is in PSPACE and $O(2^{3|\mathcal{L}|})$.
- A LPGM solver will be issued in <u>http://cse.seu.edu.cn/people/seu_zzz/</u>

Applications: A Case Study I

 N-critical edges problem. Given a directed graph G = (V, E) where V is the set of vertices of G and E is the set of edges of G, find the set of all edges that belong to n or more hamiltonian cycles in G.

Formalizing Hamiltonian cycles

$$\begin{split} &inhc(X,Y) \ or \ \neg inhc(X,Y) \leftarrow edge(X,Y). \\ &\leftarrow inhc(X1,Y1), inhc(X2,Y1), X1 \neq X2. \\ &\leftarrow inhc(X1,Y1), inhc(X1,Y2), Y1 \neq Y2. \\ &reachable(X,X) \leftarrow vertex(X). \\ &reachable(X,Y) \leftarrow inhc(X,Z), reachable(Z,Y). \\ &\leftarrow vertex(X), vertex(Y), not \ reachable(X,Y). \end{split}$$

Defining N-critical edges

 $ncritical(X,Y) \leftarrow M_{[n:]}inhc(X,Y), edge(X,Y).$

Applications: A Case Study II

• N-exclusive paths problem. Given a directed graph G = (V, E) where V is the set of vertices of G and E is the set of edges of G, decide whether there are *n* number of *m*-exclusive paths from a vertex a to another vertex b, that is, decide whether there are n or more paths between a and b, and there are no edge belonging to m or more of the paths.

Formalizing the definition of *Path(a, b)*

$$\begin{split} &inpath(X,Y) \ or \ \neg inpath(X,Y) \leftarrow edge(X,Y). \\ &\leftarrow inpath(X1,Y1), inpath(X2,Y1), X1 \neq X2. \\ &\leftarrow inpath(X1,Y1), inpath(X1,Y2), Y1 \neq Y2. \\ &reachable(X,X) \leftarrow vertex(X). \\ &reachable(X,Y) \leftarrow inpath(X,Z), reachable(Z,Y). \\ &path \leftarrow reachable(a,b). \\ &\leftarrow not \ path. \end{split}$$

Formalizing *n* or more paths

 $\begin{array}{l} npath \leftarrow \mathbf{M}_{[n:]}path. \\ \leftarrow not \; npath. \end{array}$

Formalizing *m-exclusive*

$$\leftarrow \mathbf{M}_{[m:]}inpath(X,Y), edge(X,Y).$$

Conclusion

• LPGM language is a new way of reasoning with Negation as Failure and Modality together.

• LPGM semantics/reduct is intuitive and based on the principles of ASP.

• The application of LPGM seems potential.

Future Work

• Mathematical Properties.

Methodologies for modeling with LPGM.
E.g. Contextual Reasoning, information fusion etc.

• Other graded modalities A new result can be found in <u>ASPOCP 2015</u>. "*logic programming with graded introspection*"

Thank You!