Improving Coordinated SMT-Based System Synthesis by Utilizing Domain-specific Heuristics

Benjamin Andres¹, <u>Alexander Biewer</u>², Javier Romero¹, Christian Haubelt³, Torsten Schaub^{1,4}

1University of Potsdam, Germany ²Robert Bosch GmbH, Germany ³University of Rostock, Germany ⁴INRIA Rennes, France

Automotive Domain: Embedded Systems

Powertrain systems

Safety systems Electronic Stability Control (ESC) Antilock Bracking System (ABS)

Electronic control unit embedded in physical context

Software (SW)

3

Alexander Biewer (CR/AEA1) | 9/30/2015 | © Robert Bosch GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Alexander Biewer (CR/AEA1) | 9/30/2015 | © Robert Bosch GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Alexander Biewer (CR/AEA1) | 9/30/2015 | © Robert Bosch GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Alexander Biewer (CR/AEA1) | 9/30/2015 | © Robert Bosch GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

SMT-Based System Synthesis

Alexander Biewer (CR/AEA1) | 9/30/2015 | © Robert Bosch GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Alexander Biewer (CR/AEA1) | 9/30/2015 | © Robert Bosch GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Alexander Biewer (CR/AEA1) | 9/30/2015 | © Robert Bosch GmbH 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

SMT-Based System Synthesis

→ Coordination between solvers^[2]

 Expect problems that can be decided within a reasonable amount of time in the T-Solver

[2] Biewer, Andres, Gladigau, Schaub, Haubelt: A Symbolic System Synthesis Approach for Hard Real-Time Systems Based on Coordinated SMT-Solving, Proc. of DATE, 2015

Improved SMT-Based System Synthesis

Runtime Characteristics

- → Coordination between solvers^[2]
 - Expect problems that can be decided within a reasonable amount of time in the T-Solver

Improved SMT-Based System Synthesis

→ Runtime Characteristics

- → Coordination between solvers^[2]
 - Expect problems that can be decided within a reasonable amount of time in the T-Solver

ASP Encoding (excerpt)

- Bind each computational task to one tile
 - 1 { bind(T,R) : tile(R) } 1 :- task(T,U).
- → Ensure utilization limit of tiles (100%)

ASP Encoding (excerpt)

- Bind each computational task to one tile
 - 1 { bind(T,R) : tile(R) } 1 :- task(T,U).
- → Ensure utilization limit of tiles (100%)
- → Routing^[3]
 - 1 { reached(M,R,S) : edge(R,S) } 1 :- ..

reached(2,1,2). reached(2,2,4). reached(2,4,3).

[3] Andres et al.: Symbolic System Synthesis Using Answer Set Programming, LPNMR, 2013

Our Heuristics

- → Domain-specific heuristics in clasp^[4]
 - Modifiers sign, level, init, factor in dedicated atoms _heuristic
- Tested over 60 different heuristics (combinations)

H1 – bindings first, then routing

- _heuristic(bind(T,R), level, 2) :- ..
- _heuristic(*reached(M,R,S)*, level, 1) :- ..

→ H2 – discourage routing

- _heuristic(*reached(M,R,S)*, sign, -1) :- ...
- → H3 binding sender & receiver together
 - _heuristic($bind(T^*,R)$, sign, 1)
 - :- ... *bind*(*T*,*R*), *send*(*T*,*M*), *receive*(*T**,*M*) ...

[4] Gebser, Kaufmann, Otero, Romero, Schaub, Wanko: Domain-Specific Heuristics in Answer Set Programming, Proc. of AAAI, 2013

Our Heuristics (cont'd)

H4 – Clustering computational tasks

_heuristic(bind(T,R), true, A+2)
:- ... bind(T*,R), send(T*,M), receive(T,M), belongs(A,T) ...

Our Heuristics (cont'd)

H4 – Clustering computational tasks

Experimental Setup

- Solvers
 - clasp (via gringo python module)
 - Yices^[5] & Z3^[6] to solve background theory
- Instances
 - 60 different system instances (3 synthesis runs each)
 - All platforms were composed of 25 tiles and 25 routers
- → Time limits
 - 15 minutes timeout for a synthesis run
 - Scheduling-aware binding & routing refinement set to 1 second
 - Optimize load balancing and minimization of send messages

[5] Dutertre: *Yices 2.2*, Proc. of CAV, 2014[6] de Moura, Bjørner: *Z3: An Efficient SMT Solver*, Proc. of TACAS, 2008

Experimental Results (excerpt)

Strategy / Heuristic	Completely solved instances [of 60]	Partially solved instances [of 60]	Successful synthesis [of 180 runs]	Average synthesis time (successful)
Reference	4	32	35%	241secs
Reference with structural heuristic*	34	8	62%	249secs

*Structural heuristic: set atoms in minimization statements to false

Experimental Results (excerpt)

Strategy / Heuristic	Completely solved instances [of 60]	Partially solved instances [of 60]	Successful synthesis [of 180 runs]	Average synthesis time (successful)
Reference	4	32	35%	241secs
Reference with structural heuristic*	34	8	62%	249secs
H1	12	30	44%	259secs
H1 + H2 + H3	14	38	59%	262secs
H4	34	25	79%	110secs

- H1 bindings first, then routing
- H2 discourage routing
- H3 binding sender & receiver together
- H4 Clustering computational tasks

*Structural heuristic: set atoms in minimization statements to false

Conclusions

- Introduced synthesis problem from the domain of embedded systems
- Coordinated SMT-based system synthesis
 - Scheduling-aware binding and routing refinement in ASP solver
- Presentation of our four most effective domain-specific heuristics
- → By utilizing domain-specific heuristics we were able to...
 - ... more than double the number of successful synthesis runs.
 - ... obtain at least one feasible synthesis out of three attempts (with the exception of one instance).
 - At the same time, the average synthesis time was reduced by 50%

