
Advances in WASP

Mario Alviano Carmine Dodaro Nicola Leone
Francesco Ricca

University of Calabria, Italy

Lexington, Kentucky
LPNMR 2015



Outline

1 Introduction and contribution

2 The ASP solver WASP 2.1

3 Experiments

4 Conclusion

2 / 41



Outline

1 Introduction and contribution

2 The ASP solver WASP 2.1

3 Experiments

4 Conclusion

3 / 41



Context and motivation
Answer Set Programming (ASP)

declarative programming paradigm

strong theoretical basis

availability of efficient implementations

ease in representing complex problems

Applications in several fields

Artificial intelligence
Linux package configuration
Bioinformatics
Industrial applications
and many more!

Developing effective systems is a crucial research topic

4 / 41



Context and motivation
Answer Set Programming (ASP)

declarative programming paradigm

strong theoretical basis

availability of efficient implementations

ease in representing complex problems

Applications in several fields

Artificial intelligence
Linux package configuration
Bioinformatics
Industrial applications
and many more!

Developing effective systems is a crucial research topic
4 / 41



Solving ground ASP programs

Computational tasks and applications

1 Model generation

Given a ground ASP program Π, find an answer set of Π

→ [Balduccini et al., LPNMR 2001; Gebser et al, TPLP 2011]

2 Optimum answer set search

Given a ground ASP program Π, find an answer set of Π
with the minimum cost

→ [Marra et al., JELIA 2014; Koponen et al., TPLP 2015]

3 Cautious reasoning

Given a ground ASP program Π and a ground atom a,
check whether a is true in all answer sets of Π

→ [Arenas et al., TPLP 2003; Eiter, LPNMR 2005]

5 / 41



Contribution

1 Algorithms for the main computational tasks of ASP
solving

Model generation

Preprocessing, CDCL-like algorithm, incremental interface

Optimum answer set search

Model and core-guided algorithms

Cautious reasoning

New framework of anytime algorithms

2 Implementation of WASP 2.1

3 Experimental analysis

6 / 41



Outline

1 Introduction and contribution

2 The ASP solver WASP 2.1

3 Experiments

4 Conclusion

7 / 41



Architecture of WASP 2.1

Input pre-
processing

Numeric format

Simplifications

Controller

Model
generator

Optimum
answer set
interface

Cautious
reasoning
interface

Answer

8 / 41



Input preprocessing and simplifications

Preprocessing of the input program

Deletion of duplicate rules

-> Even more than 80% in some benchmarks

Deterministic inferences

-> Deletion of satisfied rules

Clark’s completion

-> Constraints for discarding unsupported models

Simplifications

In the style of SATELITE [Eén and Biere, 2005]

-> Subsumption, self-subsumption, literals elimination

9 / 41



Model generator

Based on a CDCL-like algorithm

Backtracking search algorithm

Introduced for SAT solving

Modified for taking in account ASP properties

→ more propagation rules

10 / 41



Model generator: propagation

Compute the deterministic consequences of an interpretation

Derivation Rules

1 Unit propagation (from SAT)

2 Aggregates propagation (from Pseudo-Boolean)

3 Unfounded set propagation (ASP specific)

Detect unfounded sets

Algorithm based on source pointers [Simons et al., 2002]

11 / 41



Model generator: propagation

Compute the deterministic consequences of an interpretation

Derivation Rules

1 Unit propagation (from SAT)

2 Aggregates propagation (from Pseudo-Boolean)

3 Unfounded set propagation (ASP specific)

Detect unfounded sets

Algorithm based on source pointers [Simons et al., 2002]

11 / 41



Model generator: heuristics and learning

Learning
Detect the reason of a conflict
Learn constraints using 1-UIP schema

Deletion Policy
Exponentially many constraints→ forget something
Less “useful” constraints are removed

Search Restarts
Avoid unfruitful branches by restarting the search
Based on some heuristic sequence

Branching Heuristics
Look back MINISAT heuristic

12 / 41



Optimum answer set search

Find the answer set with the minimum cost

Input: a propositional program Π with weak constraints

Output: an optimum answer set of Π

Three family of algorithms implemented in WASP 2.1
Model-guided

OPT, BASIC, MGD

Core-guided

OLL, PMRES

Stratification: force the ASP solver to concentrate on weak
constraints with higher weights

Mixed approaches

INTERLEAVING

13 / 41



Cautious reasoning

Formally, an atom a is a cautious consequence of a
program Π if a belongs to all answer sets of Π

Compute cautious consequences

Input: a propositional program Π and a query Q

Output: atoms in Q which are cautious
consequences of Π

14 / 41



Cautious reasoning: algorithms

Enumeration of models (DLV)

Overestimate reduction (CLASP)

Iterative coherence testing

15 / 41



Cautious reasoning by enumeration of models

Answers := ∅; Candidates := Query

model generator

Answers := Candidates

Answers
Candidates := Candidates ∩ AnswerSet

Π := Π ∪ Constraint(AnswerSet)

[coherent]

[incoherent]

16 / 41



Cautious reasoning by overestimate reduction

Answers := ∅; Candidates := Query

model generator

Answers := Candidates

Answers
Candidates := Candidates ∩ AnswerSet

Π := Π ∪ Constraint(Candidates)

[coherent]

[incoherent]

17 / 41



Cautious reasoning by iterative coherence testing

Answers := ∅; Candidates := Query

a := OneOf (Candidates \ Answers)

model generator on Π ∪ {← a}

Answers

Candidates := Candidates ∩ AnswerSet

Answers := Answers ∪ {a}

[Answers = Candidates]

[coherent]

[incoherent]

18 / 41



Example

19 / 41

Query Q

a,b, c

Program Π

a← not b b ← not a % either a or b
c ← a c ← b
d ← not e e← not d % either d or e

Execution

Step OneOf answer set Answers Candidates
0 ∅ {a,b, c}

1 c Incoherent {c} {a,b, c}
2 a {b, c,d} {c} {b, c}
3 b {a, c,d} {c} {c}



Example

19 / 41

Query Q

a,b, c

Program Π

a← not b b ← not a % either a or b
c ← a c ← b
d ← not e e← not d % either d or e

Execution

Step OneOf answer set Answers Candidates
0 ∅ {a,b, c}
1 c Incoherent {c} {a,b, c}

2 a {b, c,d} {c} {b, c}
3 b {a, c,d} {c} {c}



Example

19 / 41

Query Q

a,b, c

Program Π

a← not b b ← not a % either a or b
c ← a c ← b
d ← not e e← not d % either d or e

Execution

Step OneOf answer set Answers Candidates
0 ∅ {a,b, c}
1 c Incoherent {c} {a,b, c}
2 a {b, c,d} {c} {b, c}

3 b {a, c,d} {c} {c}



Example

19 / 41

Query Q

a,b, c

Program Π

a← not b b ← not a % either a or b
c ← a c ← b
d ← not e e← not d % either d or e

Execution

Step OneOf answer set Answers Candidates
0 ∅ {a,b, c}
1 c Incoherent {c} {a,b, c}
2 a {b, c,d} {c} {b, c}
3 b {a, c,d} {c} {c}



Example

19 / 41

Query Q

a,b, c

Program Π

a← not b b ← not a % either a or b
c ← a c ← b
d ← not e e← not d % either d or e

Execution

Step OneOf answer set Answers Candidates
0 ∅ {a,b, c}
1 c Incoherent {c} {a,b, c}
2 a {b, c,d} {c} {b, c}
3 b {a, c,d} {c} {c}



Anytime variants

Often termination cannot be achieved in reasonable time

Anytime algorithms are crucial for such cases to produce
some sound answers

Iterative coherence testing has the property to be anytime

Good news!

Any algorithm for cautious reasoning can be anytime

Hint: just check for new sound answers after each restart

20 / 41



Anytime variants

Often termination cannot be achieved in reasonable time

Anytime algorithms are crucial for such cases to produce
some sound answers

Iterative coherence testing has the property to be anytime

Good news!

Any algorithm for cautious reasoning can be anytime

Hint: just check for new sound answers after each restart

20 / 41



Outline

1 Introduction and contribution

2 The ASP solver WASP 2.1

3 Experiments

4 Conclusion

21 / 41



Experiments environment
Benchmarks

Comparison with CLASP and WASP 1

Time and memory limit: 600 seconds and 15 GB

Model generation

Benchmarks used in the 4th ASP Competition

Optimum answer set search

Benchmarks used in the 4th ASP Competition and in
[Andres et al., 2012]

Cautious reasoning

Consistent query answering (CQA)

Queries of [Kolaitis et al., 2013] on 10 different databases

For each query two different encodings [Barceló and
Bertossi, 2003;Manna et al., 2013]

22 / 41



Model generation
Problem # CLASP WASP 1 WASP 2.1

BottleFillingProblem 30 30 30 30
GracefulGraphs 30 15 9 10
GraphColouring 30 13 8 8
HanoiTower 30 28 15 30
IncrementalScheduling 30 3 0 4
Labyrinth 30 26 21 25
NoMystery 30 9 5 7
PermutationPatternMatching 30 22 20 26
QualitativeSpatialReasoning 30 30 27 29
RicochetRobot 30 30 7 30
Sokoban 30 11 8 12
Solitaire 27 22 20 22
StableMarriage 30 29 27 29
VisitAll 30 19 11 19
Weighted-Sequence Problem 30 25 14 25

Total 447 312 222 306
23 / 41



Optimum answer set search

Problem # CLASP WASP 2.1

CrossingMinim 30 26 22
Labyrinth 29 19 12
MaximalClique 30 30 29
MPSP 6 5 5
Sokoban 28 28 28
StillLife 10 7 5
WBDSS 29 12 12

Fastfood 29 15 19
OpenDoors 31 31 31
ValvesLocation 30 2 4
MaxSAT 42 18 28

Total 294 193 195

24 / 41



Cautious reasoning

Problem # CLASP WASP 2.1

CQA-Q1 20 20 20
CQA-Q2 20 20 20
CQA-Q3 20 15 20
CQA-Q4 20 20 20
CQA-Q5 20 20 20
CQA-Q6 20 14 20
CQA-Q7 20 10 12

Total 140 119 132

25 / 41



Outline

1 Introduction and contribution

2 The ASP solver WASP 2.1

3 Experiments

4 Conclusion

26 / 41



Ongoing and future work

Ongoing work

Support of non-HCF disjunction

Future work

Implementation of different heuristics

Implementation of brave reasoning

27 / 41



Conclusion
Implemented solutions for several computational tasks

Model generation

Preprocessing, CDCL-like algorithm, incremental interface

Optimum answer set search

Model-guided and core-guided algorithms

Cautious reasoning

Algorithm iterative coherence testing

A framework of anytime algorithms

Implementation of WASP 2.1

Comparable to the state-of-the-art solvers

Friendly Open Source License: Apache 2.0

http://alviano.github.io/wasp/

28 / 41

http://alviano.github.io/wasp/


Conclusion
Implemented solutions for several computational tasks

Model generation

Preprocessing, CDCL-like algorithm, incremental interface

Optimum answer set search

Model-guided and core-guided algorithms

Cautious reasoning

Algorithm iterative coherence testing

A framework of anytime algorithms

Implementation of WASP 2.1

Comparable to the state-of-the-art solvers

Friendly Open Source License: Apache 2.0

http://alviano.github.io/wasp/

28 / 41

Thanks

http://alviano.github.io/wasp/


29 / 41

Bonus slides



Simplifications

Simplification of the program in the style of SATELITE

Subsumption
-> A rule r1 subsumes a rule r2 if r1 ⊆ r2
-> r2 can be deleted

Self-subsumption
-> A rule r1 self-subsumes a rule r2 if there is a literal ` such

that ` ∈ r1, ¬` ∈ r2 and r1 \ {`} ⊆ r2 \ {¬`}
-> r2 can be strengthened by removing ¬`

Literals elimination
-> Eliminates literals through rule distribution
-> Detects if there exists such situation ` ⇐⇒ `1 ∧ . . . ∧ `n
-> Each occurrence of ` is substituted by `1 ∧ . . . ∧ `n

30 / 41



Model Generator

CDCL-like backtracking algorithm

unit/aggregates propagation

unfounded set propagation

choose undefined literal

analyze conflict

restore consistency

Incoherent Coherent

[inconsistent]

learning

backjumping

[consistent]

[loop formula]

[no undefined literals]

[fail]

[succeed]

31 / 41



Optimum answer set search
Model-guided algorithms: OPT, BASIC and MGD

+ Easy to implement

+ Work well on particular domains

+ Produce non-optimum solutions during the search

- Poor performances on industrial instances

Core-guided algorithms: PMRES and OLL

+ Good performances on industrial instances

- Do not produce non-optimum solutions (in general)

- The implementation is usually nontrivial

Mixed algorithms: INTERLEAVING

+ Exploit the properties of both strategies

+ Produce non-optimum solutions during the search

- Deterioration of the performance on some instances

32 / 41



Model-guided algorithms

I need a solution! Give me any answer set

remove weak constraints from the program

model generator

add violated weak constraints to the program

update upper bound

Optimum found
[coherent]

[incoherent]

33 / 41



Core-guided algorithms

I feel lucky! Try to satisfy all weak constraints

consider weak constraints as hard

model generator

analyze unsatisfiable core

update lower bound

Optimum found
[incoherent]

[coherent]

34 / 41



Stratification

wmax := +∞

wmax := max{wi | ri ∈ weak(Π) ∧ wi < wmax}

consider weak constraints in {ri | wi ≥ wmax} as hard

model generator

analyze unsatisfiable core
Optimum found

[incoherent]

[coherent]

[wmax = 0]

[wmax > 0]

35 / 41



Impact of stratification

Problem # OLL OLL NO_STRAT PMRES PMRES NO_STRAT

Fastfood 29 19 10 19 14
OpenDoors 31 31 31 31 31
ValvesLocation 30 4 2 4 2
MaxSAT 42 28 19 28 27

Total 132 82 62 82 74

36 / 41



Competition score: unweighted problems

Problem OPT BASIC MGD OLL PMRES INTERLEAVING

CrossingMinim 70 74 79 110 110 138
Labyrinth 23 116 89 60 40 85
MaximalClique 60 85 94 145 40 83
MPSP 27 26 26 25 25 30
Sokoban 125 125 125 125 125 125
StillLife 43 39 37 25 25 46
WBDSS 16 20 19 60 50 118

Fastfood 110 143 143 115 117 134
OpenDoors 155 155 155 155 155 155
ValvesLocation 10 118 116 101 101 92
MaxSAT 118 74 80 143 143 166

Total 756 973 963 1063 930 1170

37 / 41



CQA: encoding [Barceló and Bertossi, 2003]

Problem # CLASP WASP 2.1

Query1 10 10 10
Query2 10 10 10
Query3 10 6 10
Query4 10 10 10
Query5 10 10 10
Query6 10 5 10
Query7 10 5 6

Total 70 56 66

38 / 41



CQA: encoding [Manna et al., 2013]

Problem # CLASP WASP 2.1

Query1 10 10 10
Query2 10 10 10
Query3 10 9 10
Query4 10 10 10
Query5 10 10 10
Query6 10 9 10
Query7 10 5 6

Total 70 63 66

Total 140 119 132

39 / 41



Related work: WASP 1 vs WASP 2.1

Technique WASP 1 WASP 2.1

Support Native Clark’s
propagation Completion

Unfounded set Source pointers Source pointers
propagation

Optimum OPT, MGD BASIC, OPT, MGD

answer set OLL, BCD OLL, PMRES, INTERLEAVING

search Stratification

Cautious No Overestimate reduction
Reasoning Iterative coherence testing

Anytime variants!

40 / 41



Related work: CLASP vs WASP 2.1

Technique CLASP WASP 2.1

Support Clark’s Clark’s
propagation Completion Completion

Unfounded set Source pointers Source pointers
propagation

Optimum BASIC BASIC, OPT, MGD

answer set OLL, PMRES OLL, PMRES, INTERLEAVING

search Stratification

Cautious Overestimate reduction Overestimate reduction
Reasoning Iterative coherence testing

Anytime variants!

41 / 41


	Introduction and contribution
	The ASP solver wasp 2.1
	Experiments
	Conclusion

